首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: We have investigated the effect of endogenous adenosine on the release of [3H]acetylcholine ([3H]ACh) in cultured chick amacrine-like neurons. The release of [3H]ACh evoked by 50 m M KCl was mostly Ca2+ dependent, and it was increased in the presence of adenosine deaminase and in the presence of 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), an adenosine A1 receptor antagonist. The effect of adenosine on [3H]ACh release was sensitive to pertussis toxin (PTX) and was due to a selective inhibition of N-type Ca2+ channels. Ligand binding studies using [3H]DPCPX confirmed the presence of adenosine A1 receptors in the preparation. Using specific inhibitors of the plasma membrane adenosine carriers and of the ectonucleotidases, we found that the extracellular accumulation of adenosine in response to KCl depolarization was due to the release of endogenous adenosine per se and to the extracellular conversion of released nucleotides into adenosine. Activation of adenosine A1 receptors was without effect on the intracellular levels of cyclic AMP under depolarizing conditions, but it inhibited the accumulation of inositol phosphates. Our results indicate that in cultured amacrine-like neurons, the Ca2+-dependent release of [3H]ACh evoked by KCl is under tonic inhibition by adenosine, which activates A1 receptors. The effect of adenosine on the [3H]ACh release may be due to a direct inhibition of N-type Ca2+ channels and/or secondary to the inhibition of phospholipase C and involves the activation of PTX-sensitive G proteins.  相似文献   

2.
The amino acid glycine is the primary inhibitory neurotransmitter of the mammalian spinal cord. Glycine has also been shown to facilitate the excitatory actions of glutamate at the N-methyl-D-aspartic acid receptor subtype. In this article, glycine is shown to increase the Ca2(+)-dependent release of [3H]norepinephrine from preloaded slices of the rat hippocampus. This effect was inhibited noncompetitively by nanomolar concentrations of strychnine, which differentiates it from the glycine site associated with the N-methyl-D-aspartate receptor. Glycine also released [3H]acetylcholine, but was without effect on the efflux of [3H]serotonin or gamma-[3H]aminobutyric acid from the same tissue preparation. The release of [3H]norepinephrine was reversibly blocked by tetrodotoxin, indicating the effect is not initiated at the noradrenergic terminals, but requires propagation of an action potential. The results suggest that a glycine site that is pharmacologically similar to that found in the spinal cord exists in the rat hippocampus. We suggest that this site may participate in modulating the release of specific neurotransmitters in the brain.  相似文献   

3.
[3H]Nitrendipine was used to label sites in homogenates of bovine anterior and neurointermediate lobes of the pituitary gland. The amount of specific binding in the anterior lobe was 1.82 +/- 0.30 pmol/g wet weight of tissue and the KD was 1.44 +/- 0.02 X 10(-10) M. Preliminary experiments indicated a similar amount of binding in bovine neurointermediate lobe. In competition studies nimodipine and nisoldipine (two potent voltage-sensitive calcium channel blockers) displayed IC50 values of 1.6 and 6.8 X 10(-10) M, respectively. Verapamil and the verapamil-like calcium channel blockers D-600 and tiapamil competed in a complex manner for the [3H]nitrendipine specific binding to bovine anterior pituitary homogenates. Autoradiographical studies demonstrated specific [3H]nitrendipine binding sites distributed approximately equally in the anterior and posterior lobes, but not in the intermediate lobe of the rat pituitary. In general the properties of [3H]nitrendipine binding in the pituitary tissue resemble strongly the properties of [3H]nitrendipine binding in the brain which is believed to be to voltage-sensitive calcium channels. These results provide support for the hypothesis that calcium channels are involved in pituitary hormone secretion and that drugs that interact with calcium channels may modulate the secretory process directly at the level of the pituitary.  相似文献   

4.
An antagonistic effect of calcium on the action of morphine was studied in rat hippocampal slices. The effect of repeated administration of morphine on gamma-aminobutyric acid (GABA) release and binding of [3H]nitrendipine, a calcium antagonist, was also examined. (1) In rat brain hippocampal slices, morphine enlarged the amplitude of the field potentials evoked in pyramidal neurons, disinhibiting them through basket cells. When the calcium concentration was elevated, potentiation of the field potentials by morphine was reduced. Decrease of the calcium concentration, on the other hand, enhanced the potentiating effect of morphine. Following repeated administration of morphine, its enhancing effect on the field potentials in slices was not observed. (2) In hippocampal membrane fractions obtained from rats repeatedly treated with morphine, enhancement of [3H]nitrendipine binding was observed. (3) In hippocampal slice preparations from rats receiving morphine repeatedly, K+ (45 mM)-stimulated [3H]GABA efflux was enhanced. The above results indicate that morphine antagonizes calcium, thereby reducing the release of transmitters. Furthermore, increase in calcium channels following repeated treatment of rats with morphine may explain the mechanism underlying development of tolerance.  相似文献   

5.
Nicotinic cholinergic receptor binding sites labeled by [3H]acetylcholine were measured in the cerebral cortices, thalami, striata, and hypothalami of rats lesioned by intraventricular injection of either 6-hydroxydopamine or 5, 7-dihydroxytryptamine. In addition, [3H]acetylcholine binding sites were measured in the cerebral cortices of rats lesioned by injection of ibotenic acid into the nucleus basalis magnocellularis. [3H]Acetylcholine binding was significantly decreased in the striata and hypothalami of both 6-hydroxydopamine- and 5,7-dihydroxytryptamine-lesioned rats. There was no change in binding in the cortex or thalamus by either lesion. Ibotenic acid lesions of the nucleus basalis magnocellularis, which projects cholinergic axons to the cortex, did not alter [3H]acetylcholine binding. These results provide evidence for a presynaptic location of nicotinic cholinergic binding sites on catecholamine and serotonin axons in the striatum and hypothalamus.  相似文献   

6.
Abstract: Activation of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) subtype of ionotropic glutamate receptors has been shown to result in a rapid desensitization of the receptor in the presence of certain agonists. One effect of AMPA receptor desensitization in the hippocampus may be to decrease the efficacy of AMPA receptor agonists at stimulating the release of norepinephrine from noradrenergic terminals. Recently, cyclothiazide was reported to inhibit AMPA receptor desensitization by acting at a distinct site on AMPA receptors. We have examined the effect of cyclothiazide on AMPA- and kainate (KA)-induced norepinephrine release from rat hippocampal slices to determine whether cyclothiazide would increase the efficacy of AMPA-induced [3H]norepinephrine release by inhibiting AMPA receptor desensitization. Cyclothiazide was observed to potentiate markedly both AMPA- and KA-induced [3H]norepinephrine release. This potentiation is selective for AMPA/KA receptors as cyclothiazide did not potentiate N -methyl- d -aspartate-induced [3H]norepinephrine release or release induced by the nonspecific depolarizing agents veratridine and 4-aminopyridine. These results demonstrate that AMPA receptor-mediated modulation of [3H]norepinephrine release from rat brain slices is a useful approach to studying the cyclothiazide modulatory site on the AMPA receptor complex.  相似文献   

7.
We compared the potencies of halothane, enflurane, and methoxyflurane in producing unconsciousness in vivo and in inhibiting the release of [3H]norepinephrine and [3H]acetylcholine in vitro. Rats were anesthetized with various concentrations of each anesthetic, and responsiveness was determined by a hemostat tail pinch. Slices of cerebral cortex were equilibrated with similar concentrations of each agent in vitro, and potassium-evoked release of [3H]norepinephrine and [3H]acetylcholine was determined. For both studies, brain concentrations of the anesthetics were determined by heptane extraction and gas chromatography. Using this method, we found that brain concentrations of all three agents which caused unconsciousness in vivo also reduced depolarization-evoked release of [3H]norepinephrine by approximately 30% in vitro. The release of [3H]acetylcholine was unaffected by similar concentrations of these anesthetics. Such selective interference with stimulus-secretion coupling in central noradrenergic, and possibly other, neurons might contribute to the depressant actions of volatile anesthetics. The differential effects on norepinephrine and acetylcholine release also suggest differences in the mechanisms by which these two transmitters are released.  相似文献   

8.
The effects of gamma-aminobutyric acid (GABA) on the spontaneous efflux of [3H]norepinephrine ([3H]NE) were studied in synaptosomes prepared from rat hippocampus and prelabelled with [3H]NE. It had been observed previously that, when synaptosomes were exposed in superfusion to GABA, the basal release of the tritiated catecholamine was enhanced, apparently with no involvement of the known GABA receptors. The mechanisms underlying this effect have now been investigated. The potency of GABA as a releaser of [3H]NE was decreased by lowering the Na+ content of the superfusion medium, and its effect disappeared at 23 mM Na+. The GABA-induced [3H]NE release was counteracted by the GABA uptake inhibitor N-(4,4-diphenyl-3-butenyl)nipecotic acid (SKF 89976A), but it was unaffected by the NE uptake blockers desmethylimipramine and nisoxetine. The GABA-induced release of [3H]NE was Ca2+-dependent and tetrodotoxin-sensitive. The data support the hypothesis that GABA provoked [3H]NE release by a novel mechanism which involves penetration into the noradrenergic nerve terminals through a GABA carrier located on the NE terminals themselves. This uptake process might be electrogenic and provoke depolarization of the nerve terminals, causing an exocytotic release of [3H]NE.  相似文献   

9.
Abstract: The potent nicotinic agonist anatoxin-a elicits mecamylamine-sensitive [3H]dopamine release from striatal synaptosomes, and this action is both Na+ and Ca2+ dependent and is blocked by Cd2+. This suggests that stimulation of presynaptic nicotinic receptors results in Na+ influx and local depolarisation that activates voltage-sensitive Ca2+ channels, which in turn provide the Ca2+ for exocytosis. Here we have investigated the subtypes of Ca2+ channels implicated in this mechanism. [3H]Dopamine release evoked by anatoxin-a (1 µM) was partially blocked by 20 µM nifedipine, whereas KCl-evoked release was insensitive to the dihydropyridine. However, a 86Rb+ efflux assay of nicotinic receptor function suggested that nifedipine has a direct effect on the receptor, discrediting the involvement of L-type channels. The N-type Ca2+ channel blocker ω-conotoxin GVIA (1 µM) blocked anatoxin-a-evoked [3H]dopamine release by 60% but had no significant effect on 86Rb+ efflux; release evoked by both 15 and 25 mM KCl was inhibited by only 30%. The P-type channel blocker ω-agatoxin IVA (90 nM) also inhibited KCl-evoked release by ~30%, whereas anatoxin-a-evoked release was insensitive. The Q-type channel blocker ω-conotoxin MVIIC (1 µM) had no effect on either stimulus. These results suggest that presynaptic nicotinic receptors on striatal nerve terminals promote [3H]dopamine release by activation of N-type Ca2+ channels. In contrast, KCl-evoked [3H]dopamine release appears to involve both N-type and P-type channels.  相似文献   

10.
Abstract: The ability of adenosine agonists to modulate K+-evoked 4D†-[3H]aminobutyric acid ([3H]GABA) and acetylcholine (ACh) release from rat striatal synaptosomes was investigated. The A2a receptor-selective agonist CGS 21680 inhibited Ca2+-dependent [3H]GABA release evoked by 15 m M KCI with a maximal inhibition of 29 ± 4% (IC50 of ∼4 ± 10 −12 M ). The relative order of potency of three agonists was CGS 21680 ± 5'- N -ethylcarboxamidoadenosine > R-phenylisopropyladenosine (R-PIA), with the inhibition being blocked by A2a receptor-selective antagonists (CP 66,713 and CGS 15943A) but not by the A1-selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). When release of [3H]GABA was evoked by 30 mM KCI, no significant inhibition was observed. In contrast, CGS 21680 stimulated the release of [3H]ACh evoked by 30 m M KCI, with a maximal stimulation of 26 ± 5% (IC50 of ∼10−11 M ). This effect was blocked by CP 66,713 but not by DPCPX. The A1 agonist R -PIA inhibited [3H]ACh release, an effect blocked by DPCPX. It is concluded that adenosine A2a receptors are present on both GABAergic and cholinergic striatal nerve terminals where they inhibit and stimulate transmitter release, respectively. Key Words : GABA—Acetylcholine—Adenosine receptors—Striatum.  相似文献   

11.
The effects of nicotine and 1,1-dimethyl-4-phenylpiperazinium (DMPP) on the release of newly synthesized [3H]acetylcholine in mouse cerebral cortical synaptosomes were examined. Nicotine and DMPP produced increases in [3H]acetylcholine release, over the level of spontaneous release, of 24% and 30%, respectively, of a maximum depolarization-induced release produced by 50 mM potassium. The maximum effect was achieved at a concentration of 1 X 10(-4) M for both agents. The time course of release indicated a slow onset of action, reaching a maximum effect at 15 min of incubation. Both nicotine and DMPP also produced a slightly greater release of total tritium, measured in the absence of cholinesterase inhibition, than of [3H]acetylcholine. The release induced by nicotine was completely antagonized by hexamethonium and was largely (58%) calcium-dependent. Nicotine also produced an increase in [3H]choline accumulation into synaptosomes. These results indicate that the nicotinic agonists nicotine and DMPP can produce a moderate enhancement of acetylcholine release by a receptor-mediated action on cholinergic nerve terminals in the central nervous system.  相似文献   

12.
Abstract: KCI (20–100 mM) and W-methyl-D-aspartate (NMDA, 100–1,000 μM) produce concomitant concentration-dependent increases in the release of previously captured [14C]acetylcholine and [3H]spermidine from rat striatal slices in vitro. The effects of NMDA (300μM) on striatal [14C]acetylcholine and [3H]spermidine release were blocked with equal potencies by the competitive NMDA antagonist CGP 37849, the glycine site antagonist L-689,560, and the NMDA channel blocker dizocilpine. In contrast, although NMDA-evoked [14C]acetylcholine release was antagonized by ifenprodil (IC50= 5.3 μM) and MgCl2, (IC50= 200 μM), neither compound antagonized the NMDA-evoked release of [3H]spermidine at concentrations up to 100 μM (ifenprodil) or 1 mM (MgCl2). Distinct NMDA receptor subtypes with different sensitivities to magnesium and ifenprodil therefore exist in the rat striaturn.  相似文献   

13.
Abstract: The modulation by adenosine analogues and endogenous adenosine of the electrically evoked release of [3H]acetylcholine ([3H]ACh) was compared in subslices of the three areas of the rat hippocampus (CA1, CA3, and dentate gyrus). The mixed A1/A2 agonist 2-chloroadenosine (CADO; 2–10 µM) inhibited, in a concentration-dependent manner, the release of [3H]ACh from the three hippocampal areas, being more potent in the CA1 and CA3 areas than in the dentate gyrus. The inhibitory effect of CADO (5 µM) on [3H]ACh release was prevented by the A1 antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX; 50 nM) in the three hippocampal areas and was converted in an excitatory effect in the CA3 and dentate gyrus areas. The A2A agonist CGS-21680 (30 nM) produced a greater increase of the evoked release of [3H]ACh in the CA3 than in the dentate gyrus areas, whereas no consistent effect was found in the CA1 area or in the whole hippocampal slice. The excitatory effect of CGS-21680 (30 nM) in the CA3 area was prevented by the adenosine receptor antagonist 3,7-dimethyl-1-propargylxanthine (10 µM). Both adenosine deaminase (2 U/ml) and DPCPX (250 nM) increased the evoked release of [3H]ACh in the CA1 and CA3 areas but not in the dentate gyrus. The amplitude of the effect of DPCPX and adenosine deaminase was similar in the CA1 area, but in the CA3 area DPCPX produced a greater effect than adenosine deaminase. It is concluded that the electrically evoked release of [3H]ACh in the three areas of the rat hippocampus can be differentially modulated by adenosine. In the CA1 area, only A1 inhibitory receptors modulate ACh release, whereas in the CA3 area, both A2A excitatory and A1 inhibitory adenosine receptors modulate ACh release. In the dentate gyrus, both A1 inhibitory and A2A excitatory adenosine receptors are present, but endogenous adenosine does not activate them.  相似文献   

14.
Abstract: cis -4-Aminocrotonic acid (CACA; 100 µ M ), an analogue of GABA in a folded conformation, stimulated the passive release of [3H]GABA from slices of rat cerebellum, cerebral cortex, retina, and spinal cord and of β-[3H]alanine from slices of cerebellum and spinal cord without influencing potassium-evoked release. In contrast, CACA (100 µ M ) did not stimulate the passive release of [3H]taurine from slices of cerebellum and spinal cord or of d -[3H]aspartate from slices of cerebellum and did not influence potassium-evoked release of [3H]taurine from the cerebellum and spinal cord and d -[3H]aspartate from the cerebellum. These results suggest that the effects of CACA on GABA and β-alanine release are due to CACA acting as a substrate for a β-alanine-sensitive GABA transport system, consistent with CACA inhibiting the uptake of β-[3H]alanine into slices of rat cerebellum and cerebral cortex. The observed K i for CACA against β-[3H]alanine uptake in the cerebellum was 750 ± 60 µ M . CACA appears to be 10-fold weaker as a substrate for the transporter system than as an agonist for the GABAc receptor. The effects of CACA on GABA and β-alanine release provide indirect evidence for a GABA transporter in cerebellum, cerebral cortex, retina, and spinal cord that transports GABA, β-alanine, CACA, and nipecotic acid that has a similar pharmacological profile to that of the GABA transporter, GAT-3, cloned from rat CNS. The structural similarities of GABA, β-alanine, CACA, and nipecotic acid are demonstrated by computer-aided molecular modeling, providing information on the possible conformations of these substances being transported by a common carrier protein.  相似文献   

15.
The interaction of the potassium channel blocker 4-aminopyridine (4-AP) and its analogs with muscarinic acetylcholine receptors was studied in rat brain homogenate. 4-AP displaced specific [3H]quinuclidinyl benzilate [( 3H]QNB) binding in a concentration-dependent fashion. Hill coefficient values decreased with increasing the concentration of [3H]QNB and different analogs of 4-AP demonstrated varying potencies. Scatchard analysis of saturation isotherms of specific [3H]QNB binding showed that low concentrations of 4-AP slightly reduced maximum binding without affecting the equilibrium dissociation constant, whereas higher concentrations reduced maximum binding further and significantly increased the equilibrium dissociation constant. Schild plots of these data resulted in curvilinear functions. The results are discussed in terms of possible allosteric interactions between potassium channels and muscarinic receptor binding sites.  相似文献   

16.
Reportedly, stimulation of D-2 dopamine receptors inhibits the depolarization-induced release of acetylcholine from the neostriatum in a cyclic AMP-independent manner. In the present study, we investigated the role of K+ and Ca2+ in the D-2 receptor-mediated inhibition of evoked [3H]acetylcholine release from rat striatal tissue slices. It is shown that the D-2 receptor-mediated decrease of K+-evoked [3H]acetylcholine release is not influenced by the extracellular Ca2+ concentration. However, increasing extracellular K+, in the presence and absence of Ca2+, markedly attenuates the effect of D-2 stimulation on the K+-evoked [3H]acetylcholine release. Furthermore, it is shown that activation of D-2 receptors in the absence of Ca2+ also inhibits the veratrine-evoked release of [3H]acetylcholine from rat striatum. These results suggest that the D-2 dopamine receptor mediates the decrease of depolarization-induced [3H]acetylcholine release from rat striatum primarily by stimulation of K+ efflux (opening of K+ channels) and inhibition of intracellular Ca2+ mobilization.  相似文献   

17.
The effect of cold and immobilization stress on presynaptic GABAergic autoreceptors was examined using the release of [3H]GABA (gamma-aminobutyric acid) from slices of rat striatum. It was found that in vitro addition of delta-aminolevulinic acid, as well as GABA agonists such as muscimol and imidazoleacetic acid, exhibited a significant suppression of the striatal release of [3H]GABA evoked by the addition of high potassium, whereas delta-aminovaleric acid had no significant effects on the evoked release. These suppressive actions were antagonized invariably by the GABA antagonists, bicuculline and picrotoxin, but not by the glycine antagonist, strychnine. Cholinergic agonists, such as pilocarpine and tetramethylammonium, also attenuated significantly the evoked release of [3H]GABA from striatal slices, while none of its antagonists, including atropine, hexamethonium and d-tubocurarine, affected the release. On the other hand, in vitro addition of dopamine receptor agents such as dopamine, apomorphine, and haloperidol, or the inhibitory amino acids, glycine, beta-alanine, and taurine failed to influence the evoked release of [3H]GABA from striatal slices. Application of a cold and immobilization stress for 3 h was found to induce a significant enhancement of the suppressive effects by muscimol and delta-aminolevulinic acid on the evoked release of [3H]GABA, without affecting that by pilocarpine and tetramethylammonium. These results suggest that the release of GABA from striatal GABA neurons may be regulated by presynaptic autoreceptors for this neuroactive amino acid, and may play a significant functional role in the exhibition of various symptoms induced by stress.  相似文献   

18.
Rat hippocampal formation slices were prelabelled with [3H]inositol and stimulated with carbachol for times between 7 s and 3 min. The [3H]inositol metabolites in an acid extract of the slices were resolved with anion-exchange HPLC. Carbachol dramatically increased the concentration of [3H]inositol monophosphate, [3H]inositol bisphosphate (two isomers), [3H]inositol 1,3,4-trisphosphate, [3H]inositol 1,4,5-trisphosphate, and [3H]inositol 1,3,4,5-tetrakisphosphate. The levels of [3H]inositol 1,4,5-trisphosphate rose most rapidly; they were maximally elevated after only 7 s and declined toward control levels in 1 min followed by a more sustained elevation in levels for up to 3 min. When [3H]inositol 1,4,5-trisphosphate was incubated with hippocampal formation homogenates in an ATP-containing buffer it was very rapidly metabolised. After 5 min [3H]inositol 1,4-bisphosphate, [3H]inositol 1,3,4-trisphosphate, and [3H]inositol 1,3,4,5-tetrakisphosphate could be detected in the homogenates. Under similar experimental conditions [3H]inositol 1,3,4,5-tetrakisphosphate is metabolised to [3H]inositol 1,3,4-trisphosphate and an inositol bisphosphate isomer that is not [3H]inositol 1,4-bisphosphate. We conclude that like other tissues the primary event in the hippocampus following carbachol stimulation is the activation of phosphatidylinositol 4,5-bisphosphate selective phospholipase C.  相似文献   

19.
The specific binding of L-[3H]glutamate was investigated in the presence and the absence of sodium ions in freshly prepared membranes from rat hippocampus. Sodium ions were found to have a biphasic effect; low concentrations induced a marked inhibition of the binding (in the range 0.5-5.0 mM), whereas higher concentrations resulted in a dose-dependent stimulation of binding (in the range 10-150 mM). These results permit the discrimination of two binding sites in hippocampal membranes. Both Na+-independent and Na+-dependent binding sites were saturable, exhibiting dissociation constants at 30 degrees C of 750 nM and 2.4 microM, respectively, with Hill coefficients not significantly different from unity, and maximal number of sites of 6.5 and 75 pmol/mg protein, respectively. [3H]Glutamate binding to both sites reached equilibrium between 5 and 10 min and was reversible. The relative potencies of a wide range of compounds, with known pharmacological activities, to inhibit [3H]glutamate binding were very different for the Na+-independent and Na+-dependent binding and suggested that the former sites were related to post-synaptic glutamate receptors, whereas the latter were related to high-affinity uptake sites. This conclusion was also supported by the considerable variation in the regional distribution of the Na+-dependent binding site, which paralleled that of the high-affinity glutamate uptake; the Na+-independent binding exhibited less regional variation.  相似文献   

20.
In situ phosphorylation of the presynaptic protein kinase C substrate B-50 was investigated in rat hippocampal slices incubated with the convulsant drug 4-aminopyridine (4-AP). Phosphorylation of B-50 was significantly enhanced 1 min after the addition of 4-AP (100 microM). This increase by 4-AP was concentration dependent (estimated EC50 30-50 microM). Concomitant with the changes in B-50 phosphorylation, 4-AP also dose-dependently stimulated [3H]noradrenaline [( 3H]NA) release from the slices. 4-AP stimulated [3H]NA release within 5 min to seven times the control level. The B-50 phosphorylation induced by 4-AP remained elevated after removal of the convulsant, this is contrast to B-50 phosphorylation induced by depolarization with K+. A similar persistent increase was observed for [3H]NA release after a 5-min incubation period with 4-AP. These results give more insight into the molecular mechanisms underlying 4-AP-induced epileptogenesis and provide further evidence for the correlation between B-50 phosphorylation and neurotransmitter release in the hippocampal slice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号