首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary We have analyzed the effects of high doses of cyclophosphamide (Cy) on primary and secondary antitumor immune response against immunogenic (tum) variants of Lewis lung carcinoma (3LL) treated in vitro with UV light. Normal mice and mice previously immunized with tum clones were inoculated i.p. with Cy (200 mg/kg body weight) and 24 h later challenged intrafootpad with tum or parental 3LL cells. Cy treatment suppressed the primary immune response of normal animals and allowed the growth of tum cells. In contrast, Cy-treated immune mice rejected the tumor challenge. The in vivo treatment with Cy decreased the total number of lymphoid cells in the spleens, as well as the proportion of B lymphocytes; however, it increased the percentage of both Lyt2+ and L3T4+ lymphocytes. Thus, the immunosuppressive effects of Cy on the primary antitumor response could not be attributed to elimination of major T lymphocyte subpopulations. Although the treatment of immune mice with Cy did not significantly impair their antitumor resistance, nor the proportion of Lyt2+ and L3T4+ lymphocytes in their spleens, the in vitro generation of cytotoxic T lymphocytes (CTL) was markedly reduced.After Cy treatment, the proliferative ability of spleen cells in response to interleukin-2 (IL-2) was substantially impaired. Using monoclonal antibodies to the IL-2 receptor, we found that Cy-treated T lymphocytes failed to fully express the IL-2 receptor following in vitro stimulation with irradiated tumor cells. In line with these findings, the in vitro generation of CTL was not restored by addition of recombinant IL-2 to the cultures. In vivo experiments using purified functional subsets of immune T cells showed that Lyt1+, but not Lyt2+ lymphocytes were able to transfer antitumor immunity in normal irradiated recipients.Therefore, since Ly1+ T lymphocytes were responsible for the antitumor resistance in vivo, the Cy-induced impairment of CTL generation did not affect the ability of immune mice to reject a secondary tumor challenge.This project has been funded at least in part with Federal funds from the Department of Health and Human Services, under contract number NO1-CO-23910 with Resources, Inc. The contents of this publication do not necessarily reflect the view or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government  相似文献   

2.
Summary By cloning in vitro we have obtained two sublines of the L5222 rat leukemia, one with high (L5222-S) and the other with low (L5222-R) in vivo sensitivities to non-toxic doses of mafosfamide, a stabilized derivative of 4-hydroxy-cyclophosphamide. This sensitivity in vivo was not related to the cytotoxic activity of the drug in vitro. Treatment of rats bearing the L5222-S and of mice transplanted with the MOPC-315 plasmocytoma with low doses of mafosfamide or cyclophosphamide resulted in a high percentage of surviving animals, which were resistant to a subsequent tumor challenge. Viable leukemic cells were needed to establish antitumor immunity, since it was not possible to induce resistance by injection of mitomycin-C-treated, non-viable L5222 cells. The adoptive transfer of spleen cells from animals immune against the L5222-S and the MOPC-315 resulted in resistance of the syngeneic recipients against a rechallenge with tumor cells, provided that the animals were treated with an immunosuppressive dose (100 mg/kg) of cyclophosphamide prior to the spleen cell implantation. In nude mice treatment of the L5222 with low doses of mafosfamide also resulted in surviving animals, however resistance to a second tumor challenge occurred only sporadically.The data presented confirm that therapy with cyclophosphamide or mafosfamide enhances host antitumor immunity but, contrary to previous reports, it could be demonstrated that successful tumor rejection was independent of T cells.Supported by the Federal Ministry of Research and Technology (BMFT), Bonn-Bad Godesberg, FRG  相似文献   

3.
The fate of dendritic cells (DC) after they have initiated a T cell immune response is still undefined. We have monitored the migration of DC labeled with a fluorescent tracer and injected s.c. into naive mice or into mice with an ongoing immune response. DC not loaded with Ag were detected in the draining lymph node in excess of 7 days after injection with maximum numbers detectable approximately 40 h after transfer. In contrast, DC that had been loaded with an MHC class I-binding peptide disappeared from the lymph node with kinetics that parallel the known kinetics of activation of CD8+ T cells to effector function. In the presence of high numbers of specific CTL precursors, as in TCR transgenic mice, DC numbers were significantly decreased by 72 h after injection. The rate of DC disappearance was extremely rapid and efficient in recently immunized mice and was slower in "memory" mice in which memory CD8+ cells needed to reacquire effector function before mediating DC elimination. We also show that CTL-mediated clearance of Ag-loaded DC has a notable effect on immune responses in vivo. Ag-specific CD8+ T cells failed to divide in response to Ag presented on a DC if the DC were targets of a pre-existing CTL response. The induction of antitumor immunity by tumor Ag-loaded DC was also impaired. Therefore, CTL-mediated clearance of Ag-loaded DC may serve as a negative feedback mechanism to limit the activity of DC within the lymph node.  相似文献   

4.
Dendritic cells and host resistance to infection   总被引:5,自引:1,他引:4  
Host defence against infection requires an integrated response of both the innate and adaptive arms of the immune system. Emerging data indicate that dendritic cells contribute an essential part to the initiation and regulation of adaptive immunity. Dendritic cells guard the sites of pathogen entry to the host and are uniquely suited to detect and capture invading microbes. Upon recognition of microbial structures and appropriate activation, a maturation programme is triggered and dendritic cells migrate to lymphoid organs to stimulate a primary cell-mediated immune response. Moreover, dendritic cells play a critical role in shaping the emerging response, thereby controlling the course of infection. They can discriminate between various types of microorganisms and are capable of producing different cytokines in response to different microbial stimuli. On the other hand, pathogens developed numerous strategies to evade and subvert dendritic cell functions. Elucidating the interactions of dendritic cells with microbial pathogens may lead to novel strategies for combating infectious diseases by dendritic cell-based vaccination and immunotherapy. This review highlights recent advances in our knowledge of the unique role of dendritic cells in counteracting microbial infections.  相似文献   

5.
Assessment of in vivo natural antitumor resistance and lymphocyte   总被引:1,自引:0,他引:1  
Clearance of IV-injected tumor cells has been correlated with levels of natural killer (NK) cell activity in recipient animals. Studies of in vivo tumor cell clearance strongly suggest a relationship between levels of NK cell activity and antitumor or antimetastatic effector function. This study outlines the applicability of three radiolabels, [125I]iododeoxyuridine, ( [125I]dUrd), indium-111-oxine chelate ( [111In]Ox), and chromium-51 (51Cr), to studies of tumor cell clearance in vivo. The suitability of these labels for analysis of the in vivo migration patterns of normal lymphocytes or thymus-derived T cells cultivated in vitro (CTC) is also discussed. The results indicate that [111In]Ox and 51Cr compare favorably with the more widely used [125]dUrd as radiolabels for the assessment of IV-injected tumor cell clearance from the lungs of mice. The rates of clearance of both [111In]Ox and 51Cr, like that for [125I]dUrd, correlate closely with levels of NK-cell activity of the host. Further studies with [111In]Ox reveal that treatment of recipients with anti-asialo GM1 serum, a regimen known to suppress NK-cell activity, demonstrates the appropriate reduction in isotope clearance from the lungs after NK suppression. However, clearance data obtained by monitoring levels of radioactivity in the liver after IV injection must be viewed cautiously, since the same cells labeled with [111In]Ox and [125I]dUrd had a different pattern of clearance from the liver. The same inconsistencies in clearance were observed when [111In]Ox and [125I]dUrd were injected intrafootpad (i.f.p.). Similar effects were observed when [111In]Ox or 51Cr was applied to studies of CTC migration. Levels of [111In]Ox and 51Cr remained high in the liver after IV injection, while [125I]dUrd was rapidly cleared. Normal spleen or thymic lymphocytes exhibited the expected homing to the spleen after labeling with [111In]Ox, indicating a suitability of this label for migration studies, except possibly in the liver. These results with CTC and normal lymphocytes should be considered during the formulation of immunotherapy protocols based on cell migration data, since the choice of radiolabel can result in widely divergent levels of radioactivity accumulated in some organs, and may not provide an accurate representation of the presence of viable, intact, or functional cells.  相似文献   

6.
L Li  X Liu  Y Zhou  J Wang 《Biophysical journal》2012,102(9):2230-2233
In this article, we adopt a continuum model from Sun and Wirtz (2006. Biophys. J. 90:L10-L12) to show that, for the enveloped virus entry into host cells, the binding energy of the receptor-ligand complex can drive the engulfment of the viral particle to overcome the resistance alternatively dominated by the membrane deformation and cytoskeleton deformation at a different engulfing stage. This is contrary to the conclusions by Sun and Wirtz that the cytoskeleton deformation is always dominant. This discrepancy occurs because the energy of membrane deformation in their article is incorrect. Such an unfortunate small error has led to a severe underestimation of the contribution from membrane deformation to the total energy of the system, which then led them to improperly conclude that the cytoskeleton deformation plays the dominant role in the virus entry into host cell. By using the correct energy expression, our conclusion is justified by energy comparisons under a large range of virus sizes and Young's moduli of cytoskeleton. We even find that a critical radius of virus exists, beyond which the resistance to the virus engulfment becomes dominated by the membrane deformation during the whole stage, contrary to the point of view of Sun and Wirtz.  相似文献   

7.
The present study investigates the augmenting effect of tuberculin- (PPD) reactive amplifier T cells on the induction of syngeneic tumor immunity. PPD-reactive helper (amplifier) T cell activity was generated in C3H/HeJ mice by appropriate immunization with heat-killed Mycobacterium (Tbc). Immunization of these Tbc-primed mice with PPD-coupled syngeneic X5563 tumor cells led to augmented generation of in vivo tumor-neutralizing activity contingent on the presence of PPD-reactive amplifier T cell activity. Splenic T cells from these mice exhibited potent tumor-neutralizing activity using Winn's assay, whereas spleen cells from mice not primed with Tbc before PPD-X5563 immunization failed to neutralize viable X5563 tumor cells. After establishing that the neutralizing activity was tumor specific and mediated by T cells, the applicability of this augmentation of tumor-specific immunity to an immunotherapy model was explored. Immunization with PPD-X5563 in the early stages of the tumor-bearing state induced potent anti-tumor activity sufficient to reject the growing tumor. Pretreatment of mice with cyclophosphamide or light x-irradiation (250 R), procedures that eliminate suppressor cell activity nonspecifically, before priming with Tbc further potentiated the anti-tumor activity under these conditions. Thus, the present study elucidates the augmenting effect of PPD-reactive amplifier T cells in the induction of tumor-specific immunity and provides an effective method of immunotherapy in tumor-bearing animals.  相似文献   

8.
9.
10.
The objective of this study was to investigate the effect of phenytoin (PHE) on cyclophosphamide (CP) disposition. CP was administered to 6 adult patients in a preparative regimen for bone marrow transplantation consisting of busulfan and CP. Three of the patients received PHE and the other 3 “control” patients received diazepam (DZP) as anti‐epileptic prophylactic treatment. Plasma samples were collected at intervals up to 24 h after CP administration. The plasma concentrations of (R)‐ and (S)‐CP and their respective N‐dechloroethylated metabolites, (R)‐ and (S)‐DCE‐CP were simultaneously fitted using an enantiospecific 2‐compartment pharmacokinetic (PK) model with Bayesian control estimation. DZP had no significant effect on the metabolism of CP and any of its PK parameters. PHE, however, increased significantly the formation of (S)‐DCE‐CP while having no effect on the formation of (R)‐DCE‐CP. These results suggest that different enzymes are responsible for the formation of (S)‐DCE‐CP from (S)‐CP and (R)‐DCE‐CP from (R)‐CP. Additionally, assuming that PHE does not affect the passive renal elimination of (R)‐ and (S)‐CP, this analysis suggests that the clearance of both (R)‐ and (S)‐CP to 4‐hydroxy‐CP (the activation pathway) is increased by PHE. Chirality 11:569–574, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

11.
Salmonellosis (diseases caused by Salmonella species) have several clinical manifestations, ranging from gastroenteritis (food poisoning) to typhoid (enteric) fever and bacteraemia. Salmonella species (especially Salmonella typhimurium) also represent organisms that can be readily used to investigate the complex interplay that occurs between a pathogen and its host, both in vitro and in vivo. The ease with which S. typhimurium can be cultivated and genetically manipulated, in combination with the availability of tissue culture models and animal models, has made S. typhimurium a desirable organism for such studies. In this review, we focus on Salmonella interactions with its host cells, both in tissue culture (in vitro) and in relevant animal models (in vivo), and compare results obtained using these different models. The recent advent of sophisticated imaging and molecular genetic tools has facilitated studying the events that occur in disease, thereby confirming tissue culture results, yet identifying new questions that need to be addressed in relevant disease settings.  相似文献   

12.
13.
14.
The influence of cortisone administration on either the induction or the duration of immunologic tolerance was examined in vivo. Tolerance induced by isologous IgG coupled to fluorescein was chosen because the hapten-bearing cell can be directly visualized and the hapten-specific immune response to either a TD antigen or a TI2 antigen can be tested. It was found that cortisone facilitates the maintenance of tolerance, but fails to affect its induction to either class of antigen. Fluorescein-IgG-bearing cells are cortisone resistant. They are seen for a longer period of time in animals treated with cortisone and tolerogen than in animals treated with tolerogen, and fluorescent cells are either T or B cells. We propose that cortisone facilitates the maintenance of tolerance by maintaining a receptor blockade in vivo. This finding might have clinical implications for the treatment of autoimmunity.  相似文献   

15.
The effect of the cyclophosphamide on the changes of the mitotic index (MI), metaphase-prophase ratio (M/P) and chromosomal aberrations in postmetaphase in regenerating rat liver was studied. Cyclophosphamide was injected in the single doses of 100 and 200 mg/kg i.p. 2 hours before partial hepatectomy (PHE). The results have shown that cyclophosphamide caused latent liver damage which was manifested after PHE in reduced MI and increased frequency of chromosomal aberrations. The extent of the changes induced by cyclophosphamide corresponds to that due to the effect of 3 or 6 Gy of X-rays, respectively.  相似文献   

16.
17.
18.
19.
The present paper assesses the most suitable conditions for metabolic activation with yeasts in vitro, at least as far as cyclophosphamide (Cy) is concerned. These include treatment time, incubation temperature, the amounts of S9 and cofactors. Particular attention is devoted to the use of various solvents, showing that their use can considerably affect the mutagenic response of the chemical being tested. It also examines the effects of enzyme inducers (by using S9 from rats and mice) such as phenobarbital (PB) and 5,6-benzoflavone (BF) administered separately or together. The metabolizing capability of other organs such as the lungs and kidneys is also determined. All these data are compared with Cy genotoxicity (in vivo) evaluated by the intrasanguineous host-mediated assay and by recovering the yeast target cells from the liver, lungs and kidneys. The most striking effects are that, in vitro, PB greatly enhances Cy genotoxicity, whilst in vivo it substantially reduces it.  相似文献   

20.
The aim of this study was to examine the contribution of IL-18 in host defense against infection caused by Cryptococcus neoformans in mice with defective IL-12 production. Experiments were conducted in mice with a targeted disruption of the gene for IL-12p40 subunit (IL-12p40-/- mice). In these mice, host resistance was impaired, as shown by increased number of organisms in both lungs and brains, compared with control mice. Serum IFN-gamma was still detected in these mice at a considerable level (20-30% of that in control mice). The host resistance was moderately impaired in IL-12p40-/- mice compared with IFN-gamma-/- mice. Neutralizing anti-IFN-gamma mAb further increased the lung burdens of organisms. In addition, treatment with neutralizing anti-IL-18 Ab almost completely abrogated the production of IFN-gamma and also impaired the host resistance. Host resistance in IL-12p40-/- IL-18-/- mice was more profoundly impaired than in IL-12p40-/- mice. Administration of IL-12 as well as IL-18 increased the serum levels of IFN-gamma and significantly restored the reduced host resistance. Spleen cells obtained from infected IL-12p40-/- mice did not produce any IFN-gamma upon restimulation with the same organisms, while those from infected and IL-12-treated mice produced IFN-gamma. In contrast, IL-18 did not show such effect. Finally, depletion of NK cells by anti-asialo GM1 Ab mostly abrogated the residual production of IFN-gamma in IL-12p40-/- mice. Our results indicate that IL-18 contributes to host resistance to cryptococcal infection through the induction of IFN-gamma production by NK cells, but not through the development of Th1 cells, under the condition in which IL-12 synthesis is deficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号