首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibition in the Limulus lateral eye in situ   总被引:1,自引:1,他引:0       下载免费PDF全文
Inhibition in the Limulus lateral eye in situ is qualitatively similar to that in the excised eye. In both preparations ommatidia mutually inhibit one another, and the magnitude of the inhibitory effects are linear functions of the response rate of individual ommatidia. The strength of inhibition exerted between single ommatidia is also about the same for both preparations; however, stronger effects can converge on a single ommatidium in situ. At high levels of illumination of the retina in situ the inhibitory effects are often strong enough to produce sustained oscillations in the discharge of optic nerve fibers. The weaker inhibitory influences at low levels of illumination do not produce oscillations but decrease the variance of the optic nerve discharge. Thresholds for the inhibitory effects appear to be determined by both presynaptic and postsynaptic cellular processes. Our results are consistent with the idea that a single ommatidium can be inhibited by more of its neighbors in an eye in situ than in an excised eye. Leaving intact the blood supply to the eye appears to preserve the functional integrity of the retinal pathways which mediate inhibition.  相似文献   

2.
Neural rhythms can be studied in terms of conditions for their generation, or in terms of their functional significance. The theta oscillation is a particularly prominent rhythm, reported to be present in many brain areas, and related to many important cognitive processes. The generating mechanisms of theta have extensively been studied and reviewed elsewhere; here we discuss ideas that have accumulated over the past decades on the computational roles it may subserve. Theories propose different aspects of theta oscillations as being relevant for their cognitive functions: limit cycle oscillations in neuronal firing rates, subthreshold membrane potential oscillations, periodic modulation of synaptic transmission and plasticity, and phase precession of hippocampal place cells. The relevant experimental data is briefly summarized in the light of these theories. Specific models proposing a function for theta in pattern recognition, memory, sequence learning and navigation are reviewed critically. Difficulties with testing and comparing alternative models are discussed, along with potentially important future research directions in the field.  相似文献   

3.
Calcium release via intracellular Ca2+ release channels is a central event underpinning the generation of numerous, often divergent physiological processes. In electrically non-excitable cells, this Ca2+ release is brought about primarily through activation of inositol 1,4,5-trisphosphate receptors and typically takes the form of calcium oscillations. It is widely believed that information is carried in the temporal and spatial characteristics of these signals. Furthermore, stimulation of individual cells with different agonists can generate Ca2+ oscillations with dramatically different spatial and temporal characteristics. Thus, mechanisms must exist for the acute regulation of Ca2+ release such that agonist-specific Ca2+ signals can be generated. One such mechanism by which Ca2+ signals can be modulated is through simultaneous activation of multiple second messenger pathways. For example, activation of both the InsP3 and cAMP pathways leads to the modulation of Ca2+ release through protein kinase A mediated phosphoregulation of the InsP3R. Indeed, each InsP3R subtype is a potential substrate for PKA, although the functional consequences of this phosphorylation are not clear. This review will focus on recent advances in our understanding of phosphoregulation of InsP3R, as well as the functional consequences of this modulation in terms of eliciting specific cellular events.  相似文献   

4.
Membrane potential (MP) oscillations produced by excitatory amino acids (EAA) have been studied in branching neurons isolated by an enzymatic-mechanical method from the lamprey spinal cord. It was shown that (1) all studied EAA (glutamate, kainate, NMDA, aspartate, and quisqualate) evoke an ion current and a short-term reversible depolarization in studied cells; (2) EAA added to perfusion solution may produce MP oscillations, with kinetic parameters and duration of the oscillation depending on the amino acid used (the most effective are kainate and NMDA, the least effective, quisqualate); (3) oscillations can be irregular (of the type of a synaptic noise or of a long-term plateau of depolarization with action potentials—AP) or regular, with frequency of 0.5–1.5 Hz. Amplitude of both oscillation types depends on MP level, frequency is more steady for each cell and less depends on MP. In 68 out of 128 studied cells, oscillations could be evoked, which indicates that a significant part of lamprey spinal neurons have intrinsic capability for MP oscillations and probably pacemaker properties. The functional role of oscillations can be different. They can take cells out from the profound inhibition state, synchronize activity of rhythm generation neurons and/or be the base for trigger signals (AP firing) sent by locomotor neuronal circuits to trunk muscles.  相似文献   

5.
Tankanag  A. V.  Chemeris  N. K. 《Biophysics》2009,54(3):375-380
The main principles are outlined for spectral timing analysis of the peripheral blood flow oscillations obtained by laser Doppler flowmetry. The oscillations can be studied in a wide frequency range both in stationary and nonstationary conditions during functional tests. The potential of the method has been demonstrated in experiments with the reaction of the microvascular bed to transcutaneous iontophoretic introduction of acetylcholine chloride. The major advantage of the method over conventional wavelet analysis is a significant increase in the “effective” length of the signal analyzed, which allows correct analysis of low-frequency components in much shorter LDF recordings than those commonly used.  相似文献   

6.
Oscillations of a plasma column in a longitudinal magnetic field are considered. It is found that eigenmodes with frequencies close to the ion cyclotron frequency can be excited in columns the radii of which are smaller than the characteristic wavelength of magnetosonic oscillations predicted by the theory of homogeneous plasma. The eigenmodes have the form of waves running around the column axis in the direction of electron gyration in the magnetic field. Magnetosonic oscillations can be excited as a side effect when using helical antennas for ion cyclotron resonance heating of plasma. These oscillations should enhance electron heating in the plasma core, as well as both electron and ion heating at the periphery of the plasma column. The spectrum of eigenmodes of inhomogeneous plasma columns includes oscillations of different nature. Comparative analysis of their properties performed in the present paper is useful for understanding the full picture of the physical processes occurring during ion cyclotron resonance heating and clarifying the characteristic features of the magnetosonic oscillations under study.  相似文献   

7.
S. Shabala 《Plant and Soil》2003,255(1):217-226
Oscillatory processes are ubiquitous in the Plant Kingdom. Surprisingly, many plant physiologists ignored these as physiologically unimportant unwanted `noise'. Based on the application of the non-invasive ion-selective flux measuring (the MIFE) technique, this paper provides experimental evidence that ultradian oscillations in roots are a widespread phenomenon and reviews some physiological implications of ultradian rhythms in root nutrient acquisition. It is shown that the rhythmical character of root nutrient uptake is a characteristic feature for all measured species (both monocots and dicots; C3 and C4 type of photosynthesis). These oscillations were present in all major functional root zones, including root meristem, elongation and mature zone, and root hair region. For the first time, ultradian ion flux oscillations have been reported from the developing root hairs and from vertically grown roots exhibiting circumnutations. Several types of ultradian oscillations were distinguished, including those associated with extension growth of root tissues, more slow oscillations associated with either root circumnutation or nutrient acquisition in the mature zone, and rhythmical fluctuation in nutrient acquisition, associated with root adaptive responses to environmental stresses. Some underlying ionic mechanisms are discussed. Overall, these results show a crucial role of the rhythmical membrane-transport processes in plant–soil environmental interaction.  相似文献   

8.
The excitation of oscillations in a discharge with negative differential conductivity is studied experimentally. The possibility is demonstrated of amplifying oscillations in the cathode dark space at frequencies close to the electron plasma frequency of the positive-column plasma. The phase velocities of waves at these frequencies are determined. When the waves pass from the cathode dark space to the discharge positive column, their phase velocities decrease; the closer the frequency is to the electron plasma frequency, the more pronounced the decrease in the phase velocity. As the intensity of oscillations increases, the discharge becomes non-steady-state. This is confirmed by the time evolution of the current-voltage characteristic. The shape of the current-voltage characteristic, its splitting, and the rate at which it varies depend on the input RF power. The decrease in the cathode dark space indicates that the ionization processes in the discharge are strongly influenced by electron plasma oscillations excited due to the collective interaction of the electron beam formed at the cathode with the discharge plasma. It is these processes that determine the maximum values of both the frequency of the excited oscillations and the power that can be withdrawn from the discharge.  相似文献   

9.
The hormonal oscillations that occur during the female reproductive cycle influence the morphophysiology of several organs of the reproductive system. The female prostate is a functional organ sensitive to the action of steroidal hormones, but it is not known whether the hormonal oscillations that occur during the reproductive cycle can alter the biology of this gland. Thus, the present work aims to evaluate the morphofunctional aspects of the female prostate during the gerbil estrous cycle. For this purpose, morphological, morphometric-stereological, serological, and immunocytochemical analyses were carried out. The results of the present study show that the hormonal oscillations that occurred during the estrous cycle altered both the structure and functionality of the gerbil female prostate. These alterations include increased prostatic growth and augmented secretory activity during the proestrus and estrus phases and a gradual decrease of the secretory activity and glandular development in the diestrus I and II phases. These cyclical oscillations appear to be determined by the hormonal peaks of estrogen in diestrus II and by the high levels of progesterone during estrus, since the androgen levels remained constant throughout the estrous cycle.  相似文献   

10.
We extend the study of a computational model recently proposed for the mammalian circadian clock (Proc. Natl Acad. Sci. USA 100 (2003) 7051). The model, based on the intertwined positive and negative regulatory loops involving the Per, Cry, Bmal1, and Clock genes, can give rise to sustained circadian oscillations in conditions of continuous darkness. These limit cycle oscillations correspond to circadian rhythms autonomously generated by suprachiasmatic nuclei and by some peripheral tissues. By using different sets of parameter values producing circadian oscillations, we compare the effect of the various parameters and show that both the occurrence and the period of the oscillations are generally most sensitive to parameters related to synthesis or degradation of Bmal1 mRNA and BMAL1 protein. The mechanism of circadian oscillations relies on the formation of an inactive complex between PER and CRY and the activators CLOCK and BMAL1 that enhance Per and Cry expression. Bifurcation diagrams and computer simulations nevertheless indicate the possible existence of a second source of oscillatory behavior. Thus, sustained oscillations might arise from the sole negative autoregulation of Bmal1 expression. This second oscillatory mechanism may not be functional in physiological conditions, and its period need not necessarily be circadian. When incorporating the light-induced expression of the Per gene, the model accounts for entrainment of the oscillations by light-dark (LD) cycles. Long-term suppression of circadian oscillations by a single light pulse can occur in the model when a stable steady state coexists with a stable limit cycle. The phase of the oscillations upon entrainment in LD critically depends on the parameters that govern the level of CRY protein. Small changes in the parameters governing CRY levels can shift the peak in Per mRNA from the L to the D phase, or can prevent entrainment. The results are discussed in relation to physiological disorders of the sleep-wake cycle linked to perturbations of the human circadian clock, such as the familial advanced sleep phase syndrome or the non-24h sleep-wake syndrome.  相似文献   

11.
Calcium oscillations in endothelial cells   总被引:2,自引:0,他引:2  
R Jacob 《Cell calcium》1991,12(2-3):127-134
Several different types of endothelial cells are now known to respond to agonist stimulation with oscillations of cytosolic free [Ca2+] ([Ca2+]i). The oscillations can be repetitive [Ca2+]i spikes or sinusoidal-like oscillations according to the type of endothelial cell. Several properties of these oscillations are described including the effect of removal of extracellular Ca2+ and of changes in membrane potential, and the spatial heterogeneity of the oscillations. Results obtained with human umbilical vein endothelial cells are assessed in relation to a model for [Ca2+]i oscillations that involves Ca(2+)-induced Ca2+ release. In some preparations the oscillations are synchronized in neighbouring cells, whereas in other preparations they are not. The degree of synchrony may have functional implications and this is discussed with respect to control of blood flow and transmural permeability. A third functional implication of oscillations, their possible effect on desensitization, is also discussed.  相似文献   

12.
In 3 dogs with implanted electrodes, in conditioned experiments correlation of the bioelectrical processes was studied by coherence function calculation of the hippocampus, hypothalamus, amygdala and frontal cortex biopotentials. It was shown, that the level of maximum values of coherence function of bioelectrical oscillations, led from various pairs of the studied brain structures significantly differed both in magnitude and frequency at which the greatest synchronization of biopotentials was noticed. In one dog with a high degree of connection between the hippocampus and hypothalamus biopotentials oscillations, a low synchronization of the frontal cortex and amygdala oscillations was found; in two other animals with a higher level of coherence between the oscillations of the frontal cortex and amygdala biopotentials, a lower degree of connection between the oscillations led from the hippocampus and hypothalamus was revealed. Synchronization of the biopotentials of the hippocampus and frontal cortex and also of the hippocampus and amygdala biopotentials proved to be low in all experimental dogs, what additionally testifies to different role of these structures in organization of the behaviour.  相似文献   

13.
Theta oscillations in the hippocampus   总被引:43,自引:0,他引:43  
Buzsáki G 《Neuron》2002,33(3):325-340
Theta oscillations represent the "on-line" state of the hippocampus. The extracellular currents underlying theta waves are generated mainly by the entorhinal input, CA3 (Schaffer) collaterals, and voltage-dependent Ca(2+) currents in pyramidal cell dendrites. The rhythm is believed to be critical for temporal coding/decoding of active neuronal ensembles and the modification of synaptic weights. Nevertheless, numerous critical issues regarding both the generation of theta oscillations and their functional significance remain challenges for future research.  相似文献   

14.
Yamaguchi I  Ogawa Y  Jimbo Y  Nakao H  Kotani K 《PloS one》2011,6(11):e26497
Time delay is known to induce sustained oscillations in many biological systems such as electroencephalogram (EEG) activities and gene regulations. Furthermore, interactions among delay-induced oscillations can generate complex collective rhythms, which play important functional roles. However, due to their intrinsic infinite dimensionality, theoretical analysis of interacting delay-induced oscillations has been limited. Here, we show that the two primary methods for finite-dimensional limit cycles, namely, the center manifold reduction in the vicinity of the Hopf bifurcation and the phase reduction for weak interactions, can successfully be applied to interacting infinite-dimensional delay-induced oscillations. We systematically derive the complex Ginzburg-Landau equation and the phase equation without delay for general interaction networks. Based on the reduced low-dimensional equations, we demonstrate that diffusive (linearly attractive) coupling between a pair of delay-induced oscillations can exhibit nontrivial amplitude death and multimodal phase locking. Our analysis provides unique insights into experimentally observed EEG activities such as sudden transitions among different phase-locked states and occurrence of epileptic seizures.  相似文献   

15.
《Biophysical journal》2021,120(18):4129-4136
Generation of mechanical oscillations is ubiquitous to a wide variety of intracellular processes, ranging from activity of muscle fibers to oscillations of the mitotic spindle. The activity of motors plays a vital role in maintaining the integrity of the mitotic spindle structure and generating spontaneous oscillations. Although the structural features and properties of the individual motors are well characterized, their implications on the functional behavior of motor-filament complexes are more involved. We show that force-induced allosteric deformations in dynein, which result in catchbonding behavior, provide a generic mechanism to generate spontaneous oscillations in motor-cytoskeletal filament complexes. The resultant phase diagram of such motor-filament systems—characterized by force-induced allosteric deformations—exhibits bistability and sustained limit-cycle oscillations in biologically relevant regimes, such as for catchbonded dynein. The results reported here elucidate the central role of this mechanism in fashioning a distinctive stability behavior and oscillations in motor-filament complexes such as mitotic spindles.  相似文献   

16.
Short results' review of investigations of Laboratory of Neurophysiology of Child of Sechenov Institute is presented in the article. Investigations are based on concept of academic M.N. Livanov about special role of spatial-temporal relations of brain potentials oscillations of various brain areas in providing of functional connection between them. It is shown, that in rest condition the structure of interregional relations of cortex biopotentials in all healthy people is characterized by high spatial orderliness that obviously assists to optimal realization of informational processes during various functional conditions from rest to complex cognitive functions. Special attention is given for the problem of functional signigicance of phase shifts of EEG waves. Data, that allows concluding that brainstem and thalamocartical integrative systems are characterized with relatively small inherited and phenotypic variability whereas fiber systems of both hemispheres that provide processes of intercortical integration are characterized by more expressed inter-individual variability, is presented. Intensive development of long associative and commissural tracks of telencephalon that joined even the most distanced cortical regions of hemispheres in united formation apparently results in formation of morpho-functional "skeleton" of neocortex, that occurred to be the basis for origin of qualitatively new (in comparison to animals) principals of formation of system organization of integral activity of the brain. Existence of long mono- and oligo-synaptic connections provides conditions for correlative develoment in ontogenesis of new function that is not conditioned by phylogenetic development.  相似文献   

17.
Physical processes determining the excitation of RF electromagnetic fields in a plasma column in a magnetic field are analyzed. The Alfvén resonance plays an important role at frequencies close to the ion cyclotron frequency. It leads to the enhancement of the RF electric field and transformation of Alfvén oscillations with a predominantly transverse polarization of the electric field into lower hybrid ones, which have a significant longitudinal component of the electric field. Lower hybrid oscillations efficiently interact with electrons causing their heating. Difficulties in the implementation of ion cyclotron resonance heating by the magnetic beach method are outlined. The processes considered in this work can be important for the VASIMR plasma engine.  相似文献   

18.
ABSTRACT: BACKGROUND: Feedback loops, both positive and negative are embedded in the Mitogen Activated Protein Kinase (MAPK) cascade. In the three layer MAPK cascade, both feedback loops originate from the terminal layer and their sites of action are either of the two upstream layers. Recent studies have shown that the cascade uses coupled positive and negative feedback loops in generating oscillations. Two plausible designs of coupled positive and negative feedback loops can be elucidated from the literature; in one design the positive feedback precedes the negative feedback in the direction of signal flow and vice-versa in another. But it remains unexplored how the two designs contribute towards triggering oscillations in MAPK cascade. Thus it is also not known how amplitude, frequency, robustness or nature (analogous/digital) of the oscillations would be shaped by these two designs. RESULTS: We built two models of MAPK cascade that exhibited oscillations as function of two underlying designs of coupled positive and negative feedback loops. Frequency, amplitude and nature (digital/analogous) of oscillations were found to be differentially determined by each design. It was observed that the positive feedback emerging from an oscillating MAPK cascade and functional in an external signal processing module can trigger oscillations in the target module, provided that the target module satisfy certain parametric requirements. The augmentation of the two models was done to incorporate the nuclear-cytoplasmic shuttling of cascade components followed by induction of a nuclear phosphatase. It revealed that the fate of oscillations in the MAPK cascade is governed by the feedback designs. Oscillations were unaffected due to nuclear compartmentalization owing to one design but were completely abolished in the other case. CONCLUSION: The MAPK cascade can utilize two distinct designs of coupled positive and negative feedback loops to trigger oscillations. The amplitude, frequency and robustness of the oscillations in presence or absence of nuclear compartmentalization were differentially determined by two designs of coupled positive and negative feedback loops. A positive feedback from an oscillating MAPK cascade was shown to induce oscillations in an external signal processing module, uncovering a novel regulatory aspect of MAPK signal processing.  相似文献   

19.
We measured temporal oscillations in thermodynamic variables such as temperature, heat flux, and cellular volume in suspensions of non-dividing yeast cells which exhibit temporal glycolytic oscillations. Oscillations in these variables have the same frequency as oscillations in the activity of intracellular metabolites, suggesting strong coupling between them. These results can be interpreted in light of a recently proposed theoretical formalism in which isentropic thermodynamic systems can display coupled oscillations in all extensive and intensive variables, reminiscent of adiabatic waves. This interpretation suggests that oscillations may be a consequence of the requirement of living cells for a constant low-entropy state while simultaneously performing biochemical transformations, i.e., remaining metabolically active. This hypothesis, which is in line with the view of the cellular interior as a highly structured and near equilibrium system where energy inputs can be low and sustain regular oscillatory regimes, calls into question the notion that metabolic processes are essentially dissipative.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号