首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The midlittoral trochid, Monodonta turbinata (Born) has a higher rate of oxygen consumption in air than in water at temperatures between 15 and 25C. The temperature coefficient of its oxygen consumption is higher for the temperature interval 15 to 25C than it is for the interval 5 to 15C. The aerial oxygen consumption is increased by forced emersion or immersion for 24 hours. Immersion has the greater effect. It would appear that the trochid shows respiratory adaptation to zonation and environmental temperature.  相似文献   

2.
Experiments were designed to examine the effects of various temperature challenges on oxygen consumption and ammonia excretion rates and protein utilization in juvenile Atlantic salmon Salmo salar . Fish acclimated to 15° C were acutely and abruptly exposed to either 20 or 25° C for a period of 3 h. To simulate a more environmentally relevant temperature challenge, a third group of fish was exposed to a gradual increase in temperature from 15 to 20° C over a period of 3 h ( c. 1·7° C h−1). Oxygen consumption and ammonia excretion rates were monitored before, during and after the temperature shift. From the ammonia excretion and oxygen consumption rates, protein utilization rates were calculated. Acute temperature changes (15–20° C or 15–25° C) caused large and immediate increases in the oxygen consumption rates. When the temperature was gradually changed ( i.e. 1·7° C h−1), however, the rates of oxygen consumption and ammonia excretion were only marginally altered. When fish were exposed to warmer temperatures ( i.e. 15–20° C or 15–25° C) protein use generally remained at pre-exposure (15° C) levels. A rapid transfer back to 15° C (20–15° C or 25–15° C) generally increased protein use in S. salar . These results indicate that both the magnitude and the rate of temperature change are important in describing the physiological response in juvenile salmonids.  相似文献   

3.
This study examined the influence of body size and temperature on oxygen consumption and food converstion in juvenile American eels ( Anguilla rostrata ). The weight-specific oxygen consumption rate for underdeveloped eels (18 months old) was significantly higher than the weight-specific oxygen consumption rate of developed eels of the same weight (6 months old). Oxygen consumption rates increased linearly with weight at each experimental temperature (15, 20, 25°C) when data were transformed logarithmically. No significant differences were found among slopes oflog transformed data at varying temperatures. Oxygen consumption was significantly higher at night (2300 h) as compared to morning (0900 h). The results indicate that underdeveloped eels use more energy and use less food less efficiently than developed eels.  相似文献   

4.
The ability of adult Tilapia mossambica Peters to enter deep water was determined at 15, 22 and 30°C. At 30°C adults compensate to about 20m depth but at 15°C to only 7 m. Compensation is more rapid at high than at low temperatures. T. mossambica haemoglobin has a marked Root effect which is the same at 22 and 30°C. The oxygen affinity of the haemoglobin is higher at 15°C than at 30°C. There was no measurable difference in the rate of passive oxygen diffusion across the swimbladder wall in the temperature range 15–30°C. It is concluded that the ability to enter deeper water at higher temperatures is related to decreased oxygen affinity of the haemoglobin and higher rates of oxygen secretion and blood circulation.  相似文献   

5.
The capacity of tropical whitespotted bamboo sharks Chiloscyllium plagiosum to metabolically compensate, at both the whole‐animal and biochemical levels, to prolonged exposure to temperatures higher (30° C) and lower (20 and 15° C) than their native temperature (24·5° C) was examined. As expected, whitespotted bamboo shark oxygen consumption increased upon exposure to 30° C and decreased at 20 and 15° C. Initial changes in oxygen consumption were maintained even after months at the experimental temperature, indicating that whitespotted bamboo sharks did not compensate metabolically to the experimental temperatures. Maximal activities and thermal sensitivity of citrate synthase and lactate dehydrogenase from whitespotted bamboo shark white locomotor muscle were similar between control animals maintained at 24·5° C and those maintained at 15° C, indicating that cold‐exposed animals did not compensate at the biochemical level. Similarly, lactate dehydrogenase activity did not change following prolonged exposure to 30° C. White muscle from whitespotted bamboo sharks maintained at 30° C had significantly lower citrate synthase activity than did control animals. This result was surprising given the lack of metabolic compensation at the whole‐animal level. Overall, whole‐animal oxygen consumption measurements supported the hypothesis that animals from thermally stable environments lacked the capacity to metabolically compensate to altered temperatures. Enzymatic results, however, suggested that the metabolic potential of muscle could change following temperature acclimation even in the absence of metabolic compensation at the whole‐animal level.  相似文献   

6.
The standard oxygen consumption of flounders, PLatichthys flesus , adapted for two months to 5 and 15° C was measured during single step and fluctuating temperature changes, A considerable recovery period from handling was required before standard levels were recorded, although no locomotor activity was evident. The Q 10(adapt) value between 5 and 15° C was 2.0. Q 10 (acute) values were higher. The responses of oxygen consumption to temperature rise conform to Type I11 metabolic compensation (Precht, 1958). No compensatory response was evident at lower temperatures. An alternative explanation of the results in terms ofexcitement metabolism is suggested.  相似文献   

7.
The main aims of the present work were to investigate whether a chilling treatment which breaks dormancy of Douglas fir ( Pseudotsuga menziesii (Mirb.) Franco) seeds induces changes in the sensitivity of seeds to exogenous ABA or in ABA levels in the embryo and the megagametophyte, and whether these changes are related to the breaking of dormancy. Dormant seeds germinated very slowly within a narrow range of temperatures (20–30°C), the thermal optimum being approximately 25°C. The seeds were also very sensitive to oxygen deprivation. Treatment of dormant seeds at 5°C improved further germination, and resulted in a widening of the temperature range within which germination occurred and in better germination in low oxygen concentrations. In dry dormant seeds the embryo contained about one-third of the ABA in the megagametophyte. ABA content of both organs increased during the first 4 weeks of chilling. It then decreased sharply in the megagametophyte to the level in the embryo after 7–15 weeks of chilling. At 15°C, a temperature at which dormancy was expressed, the ABA level increased in the embryo and the megagametophyte of dormant unchilled seeds whereas it decreased in the organs of chilled seeds. The longer the chilling treatment, the faster the decrease in ABA after the transfer of seeds from 5°C to higher temperatures, and the decrease was faster at 25 than at 15°C. These results suggest that the breaking of dormancy by cold was associated with a lower capacity of ABA biosynthesis and/or a higher ABA catabolism in the seeds subsequently placed at 15 or 25°C. Moreover, the chilling treatment resulted in a progressive decrease in the sensitivity of seeds to exogenous ABA. However, seeds remained more sensitive to ABA at 15 than at 25°C. The possible involvement of ABA synthesis and of responsiveness of seeds to ABA in the breaking of dormancy by cold treatment is discussed.  相似文献   

8.
Abstract. Third-instar larvae of the goldenrod gall fly ( Eurosta solidaginis Fitch) live inside ball galls on goldenrod plants from summer to the following spring.Because galls are highly exposed to the weather, larvae experience substantial variations in body temperature.This study documents the oxygen consumption of gall fly larvae with regard to the effects of ambient temperature, seasonal conditioning, and prior exposure to subzero temperature.The body mass of larvae doubles between the late summer and the autumn; it subsequently undergoes a modest decline by early winter.The O2, consumption of field-acclimatized larvae increases with ambient temperature, especially between 0 and 10°C (Q10= 2.6-3.4).The thermal sensitivity of metabolism declines at higher ambient temperatures, most notably during the autumn/early winter.After exposure to 15°C for 1 week, autumn and early winter larvae maintain much lower rates of O2 consumption than do late summer specimens.Prior exposure to -5°C for 24 h did not influence the O2 consumption of larvae.Low thermal sensitivity of O2 consumption, especially at higher ambient temperatures, is an energy-sparing mechanism during seasonal inactivity.Indeed, the persistence of this metabolic pattern in larvae exposed to 15°C suggests that they have entered a state of diapause.  相似文献   

9.
Growth and long-term trends of oxygen consumption were monitored at 15 and 20° C in spontaneously swimming juvenile perch fed a fixed daily submaximal ration. The average rate as well as the efficiency of assimilation were the same at the two temperatures but a much higher proportion of food energy was allocated to activity and maintenance, and a correspondingly lower proportion to growth, at 20 than at 15° C. By computing average specific rates of oxygen consumption separately for all light and dark periods, it was found that at 20, but not at 15° C, the' scope for spontaneous activity' of two consecutive (dark and light) phases of a diurnal cycle was indirectly proportional to the average rate of oxygen consumption in the dark phase. This indicates that at 20° C the perch displayed partial compensation for a high metabolic rate in the dark by reducing swimming activity in the following light phase. However, the overall effect of this behaviour was probably too small to make a noticeable impact on the low conversion efficiency in the juvenile perch at 20 as compared to 15° C.  相似文献   

10.
When water temperature was increased from 12 to 27°C at a rate of 2°C h−1, oxygen consumption of rainbow trout Oncorhynchus mykiss was correlated strongly with both heart rate and blood oxygen extraction but the relationship with cardiac output was variable and weak. On the other hand, when water temperature was decreased from 21 to 12°C at a rate of 0·5°C h−1, oxygen consumption was correlated with both heart rate and cardiac output but not with blood oxygen extraction. When fish were forced to swim increasingly faster, heart rate, cardiac output and blood oxygen extraction all correlated positively with oxygen consumption. For both cardiac output and heart rate, the slope of the regression line with oxygen consumption was elevated significantly more when the fish were forced to swim at increasingly higher swimming speeds than when water temperature was increased or decreased. The variation of the regression lines between cardiac output and oxygen consumption indicated that cardiac output presents few advantages over heart rate as a predictor of metabolic rate.  相似文献   

11.
The standard oxygen consumption rate and the activities of muscle citrate synthase, creatine phosphokinase and lactate dehydrogenase in the tropical fish Oreochromis niloticus acclimated to either 20.5 ± 0.3° C or 26.5 ± 0 ± 5 ± C for at least 3 months were investigated. The standard oxygen consumption rate of individual fish from the two acclimation temperatures was determined at 20, 25 and 30 ± C. At all experimental temperatures, the standard oxygen consumption rate of fish acclimated to 20.5 ± 0.3° C was significantly higher than that of fish kept at 26.5 ± 0.5 ± C. In both groups smaller individuals had a higher oxygen consumption rate than large ones.
Analyses of the activity levels of citrate synthase (CS), creatine phosphokinase (CPK) and lactate dehydrogenase (LDH) in both red and white muscles isolated from fish kept under the two temperature regimes were performed at 26 ± C. The activity of CS in both red and white muscles isolated from the 20.5 ± 0.3° C acclimated fish was significantly higher than that of muscles isolated from the 26.5 ± 0.5 ± C acclimation group. Similarly, the CPK activity in white muscles isolated from fish acclimated to 20.5 ± 0.3 ± C was higher than that of muscles obtained from the 26.5 ± 0.5 ± C acclimation group. However, the CPK activity in red muscles isolated from the two fish groups was not significantly different. The opposite results were obtained for LDH activity. For example, the LDH activity of white muscles isolated from fish acclimated to 26.5 ± 0.5 ± C was significantly higher than that of the same muscles but from the 20.5 ± 0.3 ± C acclimated fish. No differences were observed in the LDH activity of red muscles isolated from the two fish groups.  相似文献   

12.
Oxygen consumption (o2) and respiratory variables were measured in the Prochilodontid fish, Prochilodus scrofa exposed to graded hypoxia after changes in temperature. The measurements were performed on fish acclimated to 25°C and in four further groups also acclimated to 25°C and then changed to 15, 20, 30 and 35°C. An increase in o2 occurred with rising temperature, but at each temperature o2 was kept constant over a wide range of O2 tensions of inspired water ( Pi o2). The critical oxygen tensions ( Pc o2) were Pi o2= 22 mmHg for 25°C acclimated specimens and after transfer from 25°C to 15, 20, 30 and 35°C the Pc o2 changed to Pi o2= 28, 22, 24 and 45 mmHg, respectively. Gill ventilation ( G ) increased or decreased following the changes in o2 as the temperature changed and was the result of an accentuated increase in breath frequency. During hypoxia the increases in G were characterized by larger increases in breath volume. Oxygen extraction was kept almost constant at about 63% regardless of temperature and ambient oxygen tensions in normoxia and moderate hypoxia ( P o2∼70 mmHg). P. scrofa showed high tolerance to hypoxia after abrupt changes in temperature although its survival upon transfer to 35°C could become limited by the capacity of ventilatory mechanisms to alleviate hypoxic stress.  相似文献   

13.
Underyearling Lake Inari Arctic charr Salvelinus alpinus were acclimated to 11·0) C for 3 weeks, and then one group was maintained at 11·0) C and others were exposed to 14·4) Cconst, 17·7) Cconst or a diel fluctuating temperature of 14·3° C ± 1° C (14·3° Cfluc). Routine rates of oxygen consumption and ammonia excretion were measured over 10 days before the temperature change and over 31 days following the change. Measurements were made on fish that were feeding and growing. The temperature increase produced an immediate increase in oxygen consumption. There was then a decline over the next few days, suggesting that thermal acclimation was rapid. For groups exposed to constant temperature there was an increase in oxygen consumption ( M accl, mg kg−1 h−1) with increasing temperature ( T ), the relationship being approximated by an exponential model: M accl= 46·53e0·086 T . At 14·3° Cfluc oxygen consumption declined during the 3–4 days following the temperature shift, but remained higher than at 14·4° Cconst. This indicates that small temperature fluctuations have some additional influences that increase metabolic rate. Ammonia excretion rates showed diel variations. Excretion was lower at 11° Cconst than at other temperatures, and increases in temperature had a significant effect on ammonia excretion rate. Fluctuating (14·3° Cfluc) temperature did not influence ammonia excretion relative to constant temperature (14·4° Cconst).  相似文献   

14.
SUMMARY. The effect of temperature on gut-loading times, gut-clearing times, and the calculated ingestion rates, egestion rates, and consumption indices of the deposit-feeding burrowing mayfly, Hexagenia limbata , were investigated in laboratory experiments. Rates of movement of two natural sediments of differing colour through the digestive tract were monitored to quantify feeding intensity when ambient water temperatures approached 5, 10, 15, 20, and 25°C.
At each temperature, gut-loading times (GLT) and gut-clearing times (GCT) increased as nymph length increased. Mean GLT and GCT values decreased as temperature increased from 5 to 20°C but were longer at 25°C than at 20°C. Relationships between GLT, GCT, and length of nymphs and temperature were best described by multiple regression equations. No diel variation in gutclearing times was observed. Low water temperatures resulted in lower ingestion and egestion rates and consumption indices. At most temperatures nymphs ingested over 100% of their dry body weights per day.  相似文献   

15.
Despite many studies demonstrating the effect of acclimation on behavioural or physiological traits, considerable debate still exists about the evolutionary significance of this phenomenon. One of the unresolved issues is whether acclimation to warmer temperature is beneficial at treatment or at more extreme test temperatures. To answer this question, we assessed the effect of thermal acclimation on preferred body temperatures ( T ps), maximum swimming and running speed, and critical thermal maximum ( CT max) in the Danube crested newt ( Triturus dobrogicus ). Adult newts were kept at 15 °C (control) and 25 °C (treatment) for 8 weeks prior to measurements. We measured T ps in an aquatic thermal gradient over 24 h, maximum speeds in a linear racetrack at six temperatures (5–33 °C), and CT max in a continuously heated water bath. T ps were higher in newts kept at 15 °C than in those kept at 25 °C. The maximum swimming speed did not acclimate. The maximum running speed at 30–33 °C was substantially higher in newts kept at 25 °C than in those kept at 15 °C. CT max increased with the treatment temperature. Hence, we conclude that the acclimation response to warm temperature is beneficial not at treatment but at more extreme temperatures in newts.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 627–636.  相似文献   

16.
The aim of this study was to evaluate the effect of temperature on growth and aerobic metabolism in clones of Daphnia magna from different thermal regimes. Growth rate (increment in size), somatic juvenile growth rate (increment in mass), and oxygen consumption were measured at 15 and 25 degrees C in 21 clones from one northern and two southern sites. There were no significant differences in body size and growth rate (increase in length) at both 15 and 25 degrees C among the three sites. Clones from southern site 2 had a higher mass increment than clones from the other two sites at both temperatures. Clone had a significant effect on growth (body length) and body size at both temperatures. As expected, age at maturity was lower at 25 degrees C (4.5 days) than at 15 degrees C, (11.6 days) and body sizes, after the release of the third clutch, were larger at 15 degrees C than at 25 degrees C. Northern clones had higher oxygen consumption rates and specific dynamic action (SDA) than southern clones at 15 degrees C. By contrast, southern clones from site 1 had a higher oxygen consumption and SDA than subarctic clones at 25 degrees C. Clones from southern site 2 had high oxygen consumption rates at both temperatures. Our results reveal important differences in metabolic rates among Daphnia from different thermal regimes, which were not always reflected in growth rate differences.  相似文献   

17.
ABSTRACT. Locomotor, feeding, drinking, and oxygen consumption rhythms in adult virgin Acheta domesticus L. all appear to peak in the first half of the scotophase, be entrained cophasically by a LD 14:10 h cycle, have a lights-off Zeitgeber and persist in LL with a π c. 25 h for the locomotor rhythm and c. 23 h for the oxygen consumption rhythm. There is no evidence of these rhythms in last instar larvae. The onset of the locomotor rhythm requires 3 days at 30°C but 5–7 days at 25–28°C after the final ecdysis in virgins, indicating a temperature related development of the locomotor rhythm. Oxygen consumption rhythms are lacking in 2-day-old virgins but present in 8-day-old virgins. Feeding rhythms can be recorded in virgins as young as 2 days (before locomotor rhythm developed). Both oxygen consumption and locomotor rhythms persist during starvation. The results suggest that a central brain oscillator drives both feeding and locomotor rhythms independently, but that the oxygen consumption rhythm is derived from the metabolic demands associated with the other rhythms.  相似文献   

18.
Abstract. Many Rumex species show similar seed dormancy characteristics but there is more information concerning R. crispus and R. obtusifolius than other species. These species respond positively to red or white light. Far-red light applied for short periods may promote or inhibit germination depending on the timing of the irradiation in relation to temperature change; but long periods of far-red inhibit germination. Seeds may also be stimulated to germinate in the dark by low-temperature stratification at 15°C or less providing the temperature of the seeds is subsequently raised to a minimum of about 15°C. Seeds can, however, germinate at lower temperatures providing they have received other appropriate stimulatory treatment. Seeds also respond to alternating temperatures. In a diurnal cycle the minimum upper temperature required is about 15°C and the maximum lower temperature is about 25°C. The optimum period spent at the upper temperature is about 8 h when it is 15–25°C but the optimum period decreases as the upper temperature is increased above this range so that at 45°C, for example, it is only about 30 min. The period spent at the lower temperature in a diurnal cycle is not critical. Providing these criteria are met, the percentage germination increases with the number and amplitude of the cycles. The warming part of the cycle is necessary for the response but so far there is no convincing evidence that cooling itself is important. Secondary dormancy is induced at constant temperatures at a rate dependent on temperature, but apparently only in the presence of oxygen. This feature affects the optimum timing of a temperature change or exposure to light. Strong positive interactions are shown between stimulatory temperature treatments and white or red light. Unlike many other weed species the seeds respond only slightly to nitrate ions. The implications of these responses are discussed in relation to field behaviour.  相似文献   

19.
Mode of high temperature injury to wheat during grain development   总被引:5,自引:0,他引:5  
High temperature stress adversely affects wheat growth in many important production regions, but the mode of injury is unclear. Wheat ( Triticum aestivum L. cv. Newton) was grown under controlled conditions to determine the relative magnitude and sequences of responses of source and sink processes to high temperature stress during grain development. Regimes of 25°C day/15°C night, 30°C day/20°C night, and 35°C day/25°C night from 5 days after anthesis to maturity differentially affected source and sink processes. High temperatures accelerated the normal decline in viable leaf blade area and photosynthetic activities per unit leaf area. Electron transport, as measured by Hill reaction activity, declined earlier and faster than other photosynthetic processes at the optimum temperature of 25/15 °C and at elevated temperatures. Changes in RUBP carboxylase activities were similar in direction but smaller in magnitude than changes in photosynthesic rate. Increased protease activity during senscence was markedly accentuated by high temperature stress. Specific protease activity increased 4-fold at 25/15 °C and 28-fold at 35/25 °C from 0 to 21 days after initiation of temperature treatments. Grain-filling rate decreased from the lowest to the highest temperature, but the change was smaller than the decrease in grain-filling duration at the same temperatures. We concluded that a major effect of high temperature is acceleration of senescence, including cessation of vegetative and reproductive growth, deterioration of photosynthetic activities, and degradation of proteinaceous constituents.  相似文献   

20.
Incubation of eggs of tuatara, Sphenodon punctatus   总被引:3,自引:0,他引:3  
Eggs of the tuatara, Sphenodon punctatus , were incubated either buried or half buried in vermiculite at constant temperatures of 15, 18, 20, 22 and 25 °C and constant water potentials between —90 and —400 kPa. Many clutches failed completely, possibly because they had been taken from females prior to proper shell development. Failed eggs were significantly smaller than successful eggs. Incubation is unsuccessful at 15 °C. Hatching success is high between 18 and 22 °C but low at 25 °C, but equally successful between 18 and 22°C. Incubation is strongly influenced by temperature, with mean incubation periods of 328 days at 18 °C, 259 days at 20 °C, 169 days at 22 °C and 150 days at 25 °C. Water potential generally has little influence on incubation time at a given temperature. Buried eggs hatch sooner than partially buried eggs at 20 °C but the large range makes significance dubious.
Eggs on the driest substrata at 18 and 20 °C lose water initially but then gain water through the rest of incubation. Eggs in all other conditions gain water throughout incubation, with the rate of i water absorption being maintained or increasing late in incubation. The suggestion that increasing rate of water absorption late in incubation facilitates explosive hatching is not supported. Egg mass at the time of hatching varies from 132 to 398% of initial values, depending on incubation conditions. Final egg mass is not affected significantly by incubation temperature. Hence, rates of absorption increase with temperature.
Water potential has no influence on hatchling size. However, hatchlings from buried eggs generally are significantly larger than those from partially buried eggs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号