首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ultimate goal of ecological restoration is to create a self-sustaining ecosystem that is resilient to perturbation without further assistance. Genetic variation is a prerequisite for evolutionary response to environmental changes. However, few studies have evaluated the genetic structure of restored populations of dominant plants. In this study, we compared genetic variation of the restored populations with the natural ones in Cyclobalanopsis myrsinaefolia, a dominant species of evergreen broadleaved forest. Using eight polymorphic microsatellite loci, we analyzed samples collected from restored populations and the donor population as well as two other natural populations. We compared the genetic diversity of restored and natural populations. Differences in genetic composition were evaluated using measurements of genetic differentiation and assignment tests. The mean number of alleles per locus was 4.65. Three parameters (A, A R, and expected heterozygosity) of genetic variation were found to be lower, but not significantly, in the restored populations than they were in the natural populations, indicating a founder effect during the restoration. Significant but low F ST (0.061) was observed over all loci, indicating high gene flow among populations, as expected from its wind-pollination. Differentiation between the two restored populations was smallest. However, differences between the donor population and the restored populations were higher than those between other natural populations and the restored populations. Only 13.5% and 25.7% individuals in the two restored populations were assigned to the donor population, but 54.1 and 40% were assigned to another natural population. The genetic variation of the donor population was lowest, and geographic distances from the restoration sites to the donor site were much higher than the other natural populations, indicating that the present donor likely was not the best donor for these ecological restoration efforts. However, no deleterious consequences might be observed in restored populations due to high observed heterozygosity and high gene flow. This study demonstrates that during the restoration process, genetic structures of the restored populations may be biased from the donor population. The results also highlight population genetic knowledge, especially of gene flow-limited species, in ecological restoration.  相似文献   

2.
Pathogens are believed to drive genetic diversity at host loci involved in immunity to infectious disease. To date, studies exploring the genetic basis of pathogen resistance in the wild have focussed almost exclusively on genes of the Major Histocompatibility Complex (MHC); the role of genetic variation elsewhere in the genome as a basis for variation in pathogen resistance has rarely been explored in natural populations. Cytokines are signalling molecules with a role in many immunological and physiological processes. Here we use a natural population of field voles (Microtus agrestis) to examine how genetic diversity at a suite of cytokine and other immune loci impacts the immune response phenotype and resistance to several endemic pathogen species. By using linear models to first control for a range of non-genetic factors, we demonstrate strong effects of genetic variation at cytokine loci both on host immunological parameters and on resistance to multiple pathogens. These effects were primarily localized to three cytokine genes (Interleukin 1 beta (Il1b), Il2, and Il12b), rather than to other cytokines tested, or to membrane-bound, non-cytokine immune loci. The observed genetic effects were as great as for other intrinsic factors such as sex and body weight. Our results demonstrate that genetic diversity at cytokine loci is a novel and important source of individual variation in immune function and pathogen resistance in natural populations. The products of these loci are therefore likely to affect interactions between pathogens and help determine survival and reproductive success in natural populations. Our study also highlights the utility of wild rodents as a model of ecological immunology, to better understand the causes and consequences of variation in immune function in natural populations including humans.  相似文献   

3.
Allozyme variation was studied in all nine diploidErigeron species known from the Alps:E. alpinus, E. neglectus, E. polymorphus, E. candidus, E. uniflorus, E. atticus, E. gaudinii, E. acer, andE. angulosus. A total of 248 individuals from 24 natural populations was investigated using starch gel electrophoresis. Seven enzymes and 13 loci were assessed. Genetic variation within populations was low with the proportion of polymorphic loci ranging from 0.0–0.385, and average number of alleles per polymorphic locus from 2.0–2.5. In general, 70–100% of the genetic variation was attributed to between population differences. Mean genetic identities for pair-wise comparisons of populations averaged 0.893 within species, and 0.890 among species. Interspecific genetic variation of populations usually did not exceed intraspecific variation. It was concluded that theErigeron species from the Alps may have arisen by recent speciation probably during the epoches of glaciation. Morphological and ecological differences between species seem to be based on few gene loci.  相似文献   

4.
We investigated the genetic architecture of courtship song and cuticular hydrocarbon traits in two phygenetically distinct populations of Drosophila montana. To study natural variation in these two important traits, we analysed within-population crosses among individuals sampled from the wild. Hence, the genetic variation analysed should represent that available for natural and sexual selection to act upon. In contrast to previous between-population crosses in this species, no major quantitative trait loci (QTLs) were detected, perhaps because the between-population QTLs were due to fixed differences between the populations. Partitioning the trait variation to chromosomes suggested a broadly polygenic genetic architecture of within-population variation, although some chromosomes explained more variation in one population compared with the other. Studies of natural variation provide an important contrast to crosses between species or divergent lines, but our analysis highlights recent concerns that segregating variation within populations for important quantitative ecological traits may largely consist of small effect alleles, difficult to detect with studies of moderate power.  相似文献   

5.
Xu J  Sha T  Li YC  Zhao ZW  Yang ZL 《Molecular ecology》2008,17(5):1238-1247
Effective conservation and utilization strategies for natural biological resources require a clear understanding of the natural populations of the target organisms. Tricholoma matsutake is an ectomycorrhizal mushroom that forms symbiotic associations with plants and plays an important ecological role in natural forest ecosystems in many parts of the world. It is also an economically very important gourmet mushroom. Because no artificial cultivation is available, natural populations of this species are under increasing threats, primarily from habitat disturbance and destruction. Despite its economical and ecological importance, little is known about its genetics and population biology. Here, using 14 polymerase chain reaction–restriction fragment length polymorphism markers, we analysed 154 strains from 17 geographical locations in southwestern China, a region where over 25% of the global T. matsutake harvest comes from. Our results revealed abundant genetic variation within individual populations. The analyses of gene and genotype frequencies within populations indicated that most loci did not deviate from Hardy–Weinberg equilibrium in most populations and that alleles among loci were in linkage equilibrium in the majority of the local populations. These results are consistent with the hypothesis that sexual reproduction and recombination play an important role in natural populations of this species. Our analyses indicated low but significant genetic differentiation among the geographical populations, with a significant positive correlation between genetic distance and geographical distance. We discuss the implications of our results to the ecology and resource management of this species.  相似文献   

6.
Theory predicts that reproductive isolation may be due to intrinsic genetic incompatibilities or extrinsic ecological factors. Therefore, an understanding of the genetic basis of isolation may require analyses of evolutionary processes in situ to include environmental factors. Here we study genetic isolation between populations of sculpins ( Cottus ) at 168 microsatellites. Genomic clines were fit using 480 individuals sampled across independent natural hybrid zones that have formed between one invading species and two separate populations of a resident species. Our analysis tests for deviations from neutral patterns of introgression at individual loci based on expectations given genome-wide admixture. Roughly 51% of the loci analysed displayed significant deviations. An overall deficit of interspecific heterozygotes in 26% and 21% of the loci suggests that widespread underdominance drives genomic isolation. At the same time, selection promotes introgression of almost 30% of the markers, which implies that hybridization may increase the fitness of admixed individuals. Cases of overdominance or epistatic interactions were relatively rare. Despite the similarity of the two hybrid zones in their overall genomic composition, patterns observed at individual loci show little correlation between zones and many fit different genotypic models of fitness. At this point, it remains difficult to determine whether these results are due to differences in external selection pressures or cryptic genetic differentiation of distinct parental populations. In the future, data from mapped genetic markers and on variation of ecological factors will provide additional insights into the contribution of these factors to variation in the evolutionary consequences of hybridization.  相似文献   

7.
Highly endangered plants that are also narrow endemics are generally found to be genetically depauperate and thus are exceedingly susceptible to ecological and anthropological threats that can lead to their extinction. Piperia yadonii is restricted to a single California county within a biodiversity hotspot. We used nine primers to generate intersimple sequence repeat (ISSR) data to assess its genetic diversity and structure. Within each population, 99% of the loci were polymorphic, expected heterozygosity was low, and a majority of the loci were shared with few other populations. Forty percent of the total variation could be attributed to population differentiation while the rest (60%) resides within populations, and the genetic distances between populations were independent of the corresponding geographical distances. High divergence among populations is likely due to fragmentation and limited gene flow. Each population contains several private loci, and ideally, each should be protected to preserve the overall diversity of the species. Because P. yadonii currently retains a modest amount of genetic variation among individuals within populations, preserving and expanding the habitat at each site to allow natural expansion of populations would be additional strategies for its conservation before populations become too small to persist naturally.  相似文献   

8.
The estimation of levels of genetic variation has received considerable attention because it is generally thought to be indicative of overall species vitality and the potential for evolutionary responses to environmental changes. Here, we use allozymes markers and two distinct collections of Cakile maritima, an annual species from sandy coastal habitats (2000 generation and 2005 generation collected from 9 populations in their natural habitats), to assess the magnitude of expected genetic change. We compared genetic diversity between generations (all populations combined), and then between populations at each generation. Based on 13 loci scored from the eight enzymes examined, a high genetic diversity was detected at both the population and generation level as compared to other herbaceous species. However, allelic richness reduction in the 2005 generation suggested restricted gene flow and a high risk of future genetic bottlenecks, if larger tracts of coastal areas disappear. Most loci showed deviation from Hardy‐Weinberg equilibrium due to excess of heterozygotes in all populations suggesting that this species has an allogamic mode of reproduction. It appears most likely that this species has experienced a recent decrease in population size, and that genetic drift in small populations has resulted in a loss of alleles occurring at low frequency. Despite the deterioration process, maintenance of high genetic diversity suggests that there are some ecological factors determining population structure.  相似文献   

9.
Firmly rooted as we are in the genomic era, it can seem incredible that as recently as 1974, Lewontin declared, 'we know virtually nothing about the genetic changes that occur in species formation'. To the contrary, we now know the genetic architecture of phenotypic differences and reproductive isolation between species for many diverse groups of plants, animals, and fungi. In recent years, detailed genetic analyses have produced a small but growing list of genes that cause reproductive isolation, several of which appear to have diverged by natural selection. Yet, a full accounting of the speciation process requires that we understand the reproductive and ecological properties of natural populations as they begin to diverge genetically, as well as the dynamics of newly evolved barriers to gene flow. One promising approach to this problem is the study of natural hybrid zones, where gene exchange between divergent populations can produce recombinant genotypes in situ . In such individuals, genomic variation might be shaped by introgression at universally adaptive or neutral loci, even as regions associated with local adaptation or reproductive isolation remain divergent. In Nolte et   al . (2009) , the authors take advantage of two independent, recently formed hybrid zones between sculpin species to investigate genome-wide patterns of reproductive isolation. Using a recently developed genomic clines method, the authors identify marker loci that are associated with isolation, and those that show evidence for adaptive introgression. Remarkably, Nolte et   al . (2009) find little similarity between the two hybrid zones in patterns of introgression, a fact that might reflect genetic variation within species or heterogeneous natural selection. In either case, their study system has the potential to provide insight into the early stages of speciation.  相似文献   

10.
We have studied genetic variation at 30-32 loci coding for enzymes in natural populations of five species of Drosophila. The average proportion of heterozygous loci per individual is 17.7 +/- 0.4%. The average proportion of polymorphic loci per population is 69.2 +/- 2.6% or 49.8 +/- 2.2%, depending on what criterion of polymorphism is used. The following generalizations are advanced: (1) The amount of genetic polymorphism varies considerably from locus to locus. (2) At a given locus, populations of the same species are very similar in the amount and pattern of genetic variation. (3) However, at some loci large differences sometimes occur between local populations of the same species. (4) The amount of variation at a given locus is approximately the same in all five species. (5) When different species are compared, the pattern of the variation is either essentially identical or totally different at a majority of loci. We have tested the hypothesis that protein polymorphisms are selectively neutral by examining four predictions derived from the hypothesis. Our results are at variance with every one of the predictions. We have measured the amount of genetic differentiation, D, between taxa of various degrees of evolutionary divergence. The average value of D is 0.033 for local populations, 0.228 for subspecies, 0.226 for semispecies, 0.538 for sibling species, and 1.214 for morphologically distinguishable species. Our results indicate that a substantial degree of genetic differentiation (22.8 allelic substitutions for every 100 loci) occurs between allopatric populations that have diverged to the point where they might become different species if they were to become sympatric. However, very little additional genetic change is required for the development of complete reproductive isolation. After the speciation process is completed, species continue to diverge genetically from each other.  相似文献   

11.
The genus Boechera is a widespread North American group with great potential for studies of ecology and evolution: Boechera is closely related to Arabidopsis and exhibits different ecological and reproductive strategies. Boechera stricta (previously Arabis drummondii) is a morphologically and genetically well-defined, perennial crucifer species. Fifteen natural populations of diploid individuals from the Rocky Mountains were analysed using 21 microsatellite loci. In accordance with our expectation for this predominately inbreeding species, a high F IS value (0.89) was observed. Furthermore, populations of B. stricta were highly differentiated, as indicated by F ST = 0.56. Three clusters were identified using structure- the majority of populations belonged to either the Northern or Southern cluster. Together, the north-south partitioning and evenness of genetic variation across the two clusters suggested multiple refugia for this perennial herb in the Rocky Mountains. Pleistocene glaciation, together with the topographically and climatologically heterogeneous cordillera, has profoundly influenced the genetic architecture of B. stricta. Genetic population structure was also influenced by relatively recent genome admixture at two levels: within species (involving individuals from the Northern and Southern clusters) and between species (with the hybridization of B. stricta and Boechera holboellii). This complexity of population structure at presumably neutral microsatellite loci located throughout the genome in B. stricta provides a baseline against which to test whether functional genetic variation is undergoing local adaptive evolution throughout the natural species range.  相似文献   

12.
Piertney SB  Webster LM 《Genetica》2010,138(4):419-432
Over the past two decades the fields of molecular ecology and population genetics have been dominated by the use of putatively neutral DNA markers, primarily to resolve spatio-temporal patterns of genetic variation to inform our understanding of population structure, gene flow and pedigree. Recent emphasis in comparative functional genomics, however, has fuelled a resurgence of interest in functionally important genetic variation that underpins phenotypic traits of adaptive or ecological significance. It may prove a major challenge to transfer genomics information from classical model species to examine functional diversity in non-model species in natural populations, but already multiple gene-targeted candidate loci with major effect on phenotype and fitness have been identified. Here we briefly describe some of the research strategies used for isolating and characterising functional genetic diversity at candidate gene-targeted loci, and illustrate the efficacy of some of these approaches using our own studies on red grouse (Lagopus lagopus scoticus). We then review how candidate gene markers have been used to: (1) quantify genetic diversity among populations to identify those depauperate in genetic diversity and requiring specific management action; (2) identify the strength and mode of selection operating on individuals within natural populations; and (3) understand direct mechanistic links between allelic variation at single genes and variance in individual fitness.  相似文献   

13.
Abstract Enzyme electrophoresis was used to measure genetic variation in five populations of the rare diploid species Coreopsis latifolia which appears to be a relict taxon endemic to a small area of the southeastern United States. Gene diversity within the species as a whole is low compared to other species with similar ecological and life history traits. Also, gene diversity in C. latifolia is lower than nearly all other species of Coreopsis that have been examined. Larger populations contain significantly more variation at isozyme loci than do smaller populations. Populations of C. latifolia are deficient in heterozygotes relative to expected equilibrium values.  相似文献   

14.
15.
Recent advances in the quantitative genetics of traits in wild animal populations have created new interest in whether natural selection, and genetic response to it, can be detected within long-term ecological studies. However, such studies have re-emphasized the fact that ecological heterogeneity can confound our ability to infer selection on genetic variation and detect a population''s response to selection by conventional quantitative genetics approaches. Here, I highlight three manifestations of this issue: counter gradient variation, environmentally induced covariance between traits and the correlated effects of a fluctuating environment. These effects are symptomatic of the oversimplifications and strong assumptions of the breeder''s equation when it is applied to natural populations. In addition, methods to assay genetic change in quantitative traits have overestimated the precision with which change can be measured. In the future, a more conservative approach to inferring quantitative genetic response to selection, or genomic approaches allowing the estimation of selection intensity and responses to selection at known quantitative trait loci, will provide a more precise view of evolution in ecological time.  相似文献   

16.
Tree species with wide distributions often exhibit different levels of genetic structuring correlated to their environment. However, understanding how environmental heterogeneity influences genetic variation is difficult because the effects of gene flow, drift and selection are confounded. We investigated the genetic variation and its ecological correlates in a wind-pollinated Mediterranean tree species, Fraxinus angustifolia Vahl, within a recognised glacial refugium in Croatia. We sampled 11 populations from environmentally divergent habitats within the Continental and Mediterranean biogeographical regions. We combined genetic data analyses based on nuclear microsatellite loci, multivariate statistics on environmental data and ecological niche modelling (ENM). We identified a geographic structure with a high genetic diversity and low differentiation in the Continental region, which contrasted with the significantly lower genetic diversity and higher population divergence in the Mediterranean region. The positive and significant correlation between environmental and genetic distances after controlling for geographic distance suggests an important influence of ecological divergence of the sites in shaping genetic variation. The ENM provided support for niche differentiation between the populations from the Continental and Mediterranean regions, suggesting that contemporary populations may represent two divergent ecotypes. Ecotype differentiation was also supported by multivariate environmental and genetic distance analyses. Our results suggest that despite extensive gene flow in continental areas, long-term stability of heterogeneous environments have likely promoted genetic divergence of ashes in this region and can explain the present-day genetic variation patterns of these ancient populations.  相似文献   

17.
Biochemical methods can detect variation at individual genetic loci, making possible the direct assessment of natural hybridization and introgression between fish populations. Protein electro-phoresis has been used to confirm and extend knowledge of many situations where species hybrids have been detected by morphological analyses. New cases of natural hybridization, including some at the subspecies level, have also been identified. Biochemical studies have provided the first conclusive evidence of natural post F1 hybrids and of introgression between fish taxa. The strongest cases for introgression have used a combined analysis of nuclear protein genes and taxaspecific maternally inherited mitochondrial DNA variation. Information on the significance of introgression as a source of gene flow between taxa, particularly below the species level where sympatric subspecies and sibling species are involved, should expand in the future as the numbers and types of nuclear and mitochondrial DNA loci which can be assayed for variation increase. The full importance of introgressive hybridization in speciation may then be understood.  相似文献   

18.
For conservation purposes islands are considered safe refuges for many species, particularly in regions where introduced predators form a major threat to the native fauna, but island populations are also known to possess low levels of genetic diversity. The New Zealand archipelago provides an ideal system to compare genetic diversity of large mainland populations where introduced predators are common, to that of smaller offshore islands, which serve as predator-free refuges. We assessed microsatellite variation in South Island robins (Petroica australis australis), and compared large mainland, small mainland, natural island and translocated island populations. Large mainland populations exhibited more polymorphic loci and higher number of alleles than small mainland and natural island populations. Genetic variation did not differ between natural and translocated island populations, even though one of the translocated populations was established with five individuals. Hatching failure was recorded in a subset of the populations and found to be significantly higher in translocated populations than in a large mainland population. Significant population differentiation was largely based on heterogeneity in allele frequencies (including fixation of alleles), as few unique alleles were observed. This study shows that large mainland populations retain higher levels of genetic diversity than natural and translocated island populations. It highlights the importance of protecting these mainland populations and using them as a source for new translocations. In the future, these populations may become extremely valuable for species conservation if existing island populations become adversely affected by low levels of genetic variation and do not persist.  相似文献   

19.
Genetic diversity is low in natural populations of red pine, Pinus resinosa, a species that has a vast range across north-eastern North America. In this study, we examined 10 chloroplast microsatellite or simple sequence repeats (cpSSR) loci in 136 individuals from 10 widespread populations. Substantial variation for the cpSSR loci was observed in the study populations. The contrast with red pine's lack of variation for other types of loci is likely to be due to the higher mutation rates typical of SSR loci. The amount of variation is lower than that generally found for cpSSR loci in other pine species. In addition, the variation exhibits a striking geographical pattern. Most of the genetic diversity is among populations, with little within populations, indicating substantial isolation of and genetic drift within many populations in the southern half of the species distribution. The greatest diversity now occurs in the north-eastern part of New England, which is especially intriguing because this entire area was glaciated. Thus the centre of diversity cannot be the origin of postglacial populations, rather it is likely caused by admixture, most probably because of influences from two separate refugia. Furthermore, the pattern indicates that the spread of red pine since the last glaciation is rather more complex than usually described, and it likely includes more than one refugia, complex migration routes, and postglacial-retreat isolation and genetic drift among shrinking populations in regions of the present southern range.  相似文献   

20.
Inferences about the role of epigenetics in plant ecology and evolution are mostly based on studies of cultivated or model plants conducted in artificial environments. Insights from natural populations, however, are essential to evaluate the possible consequences of epigenetic processes in biologically realistic scenarios with genetically and phenotypically heterogeneous populations. Here, we explore associations across individuals between DNA methylation transmissibility (proportion of methylation‐sensitive loci whose methylation status persists unchanged after male gametogenesis), genetic characteristics (assessed with AFLP markers), seed size variability (within‐plant seed mass variance), and realized maternal fecundity (number of recently recruited seedlings), in three populations of the perennial herb Helleborus foetidus along a natural ecological gradient in southeastern Spain. Plants (sporophytes) differed in the fidelity with which DNA methylation was transmitted to descendant pollen (gametophytes). This variation in methylation transmissibility was associated with genetic differences. Four AFLP loci were significantly associated with transmissibility and accounted collectively for ~40% of its sample‐wide variance. Within‐plant variance in seed mass was inversely related to individual transmissibility. The number of seedlings recruited by individual plants was significantly associated with transmissibility. The sign of the relationship varied between populations, which points to environment‐specific, divergent phenotypic selection on epigenetic transmissibility. Results support the view that epigenetic transmissibility is itself a phenotypic trait whose evolution may be driven by natural selection, and suggest that in natural populations epigenetic and genetic variation are two intertwined, rather than independent, evolutionary factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号