首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fenoxycarb (FC) effects were studied on juvenile hormone (JH) titers and JH‐esterase activities in the silkworm, B. Mori. In the literature, FC was observed to induce high JH titers but also to act without corpora allata (CA). These contradictory results did not permit us to conclude whether FC was a potent JH mimic or it was acting through the enhancement of JH titers in the hemolymph. Analysis of hemolymph JH‐esterase activities during the last larval instar reveals that FC was not a JH‐esterase inhibitor. Considering JHs, only JH II was detected in the European hybrid 200×300. Furthermore, JH titer was exactly identical in control and FC‐treated larvae, i.e., it dropped during the first 2 days of the last larval instar and became undetectable after day 2. This result is important since it contradicts the generally admitted concept that FC was acting by increasing the titer of JH. On the contrary, it was found that, despite its non‐terpenoid chemical structure, FC might be a JH mimic. In addition, FC suspected contamination of mulberry leaves was analyzed from a physiological viewpoint. We observed that "contaminated" mulberry leaves‐fed larvae became permanent larvae through the inhibition of their prothoracic glands (PG) activity and without any modification of their JH titers, i.e., exactly as for FC‐treated larvae. This last point adds information concerning the suspected implication of FC in the induction of the non‐spinning syndrome. Arch. Insect Biochem. Physiol. 40:141–149, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

2.
The sterile insect technique (SIT) has been used successfully for the control of fruit flies. The efficiency of this technique can be significantly reduced when sterile released insects are exposed to adverse conditions and predators, as a great number of sterile insects die before reaching sexual maturity and thus fail to mate with wild females. Treatments with juvenile hormone (JH) analogues such as methoprene (M) significantly reduce the time to reach sexual maturity by sterile Anastrepha ludens (Loew) (Diptera: Tephritidae) males. In this study, we compared the sexual performance of non‐treated sexually mature males with young males that had been sexually accelerated with M. Furthermore, we compared the ability of M‐fed males in inhibiting female remating compared with sexually mature males. Results showed that at 5 days M‐fed males had lower mating success than mature males; however, 6‐day‐old (0.1%) M‐fed males had the same amount of matings as mature 13‐day‐old males. Young 5‐ to 10‐day‐old M‐fed males also had similar number of matings as mature non‐treated 12‐ to 17‐day‐old males. There were no differences in copula duration between treatments. Moreover, there were no differences between the fertility, fecundity or refractory period of females mated with either young male fed M or normal sexually mature males. These results indicated that young males that were sexually accelerated with M have the same sexual performance as non‐treated sexually mature males. Implications of using M as a pre‐release treatment for A. ludens controlled through SIT are discussed.  相似文献   

3.
Juvenile hormone (JH I) stimulates specific morphological and biochemical changes in the follicular epithelium surrounding the terminal oöcytes in Leucophaea maderae. These include extracellular and intracellular structural changes, increased rates of follicle cell DNA synthesis, and elevated follicle cell DNA concentrations.Using females decapitated 24 hr after ecdysis, we have shown that JH I injections stimulate the following structural changes in the follicular epithelium: the appearance of channels between adjacent follicle cells and of spaces between the follicular epithelium and the maturing oöcyte; an increase in follicle cell size; the development of an extensive rough endoplasmic reticulum system; and an enlarged nucleus within each follicle cell. No increase in the number of follicle cells surrounding the developing terminal follicles is found in 7-day JH I-treated females, although the terminal follicles are almost twice as long as those in untreated females.In addition, we have demonstrated that JH stimulates the following biochemical events in the ovary: a 3.5 fold increase in thymidine incorporation into follicle cell DNA, with no subsequent transfer of such DNA to the developing oöcyte, and a 1.4 fold increase in ovarian DNA in 7-day JH-treated females. These data indicated that JH stimulates follicle cell DNA synthesis. The absence of any corresponding division of follicle cells suggests that JH I may induce polyploidy in follicle cells.Extended exposure of decapitated females to JH I does not result in complete ovarian maturation. Although fat bodies in the treated insects continue to display an increasing rate of vitellogenin synthesis, DNA synthesis in the terminal follicles declines rapidly after day 9, and the terminal follicles ultimately degenerate.  相似文献   

4.
5.
Microsporidia (M) is a phylum of protists parasitizing obligatory in animal cells. Long way of adaptation of M to intracellular parasitism resulted in establishment of quite close relationships between the parasite and its host. Different species of M induce in their hosts symptoms similar to those caused by misbalance of juvenile hormone (JH) and ecdysone. M infection leads to pathology of different hormone-dependent functions such as cell differentiation and specialization, molting, metamorphosis, diapause and reproduction of insects. The signs of hormonal dysfunction evidence for elevated titer of JH in M-infected insects. Two possible explanation of this could be offered: JH secretion by M or specific influence of the parasites on the insect endocrine systems. Impact on insect endogenous JH titer by M could be mediated by affection of secretory activity of corpora allata or by suppression of enzymatic degradation of JH. According to different hypotheses, insect hormonal status during microsporidiosis could be modified by a) insect host stress-reaction, b) exhaustion of insect host reserves, characteristic for acute phase of the disease, c) destruction of infected insect cells and tissues during mass sporogenesis of M. Data found in literature and provided by our experiments evidence for presence of JH analogues or juvenilizing substance in the extracts of M spores. From detailed examination of pathological process it is also seen that juvenilizing effect of M infection is usually restricted to the invaded regions of tissues (i.e. expressed locally) but not a systemic one. Ability of M to modify morpho-functional features of infected tissues at the level of hormonal regulation is undoubtfully a prominent adaptation for stabilizing "microsporidia-insect" parasite-host systems.  相似文献   

6.
The physiological balance of juvenile hormone (JH) in insects depends on its biosynthesis and degradation pathway. Three key enzymes namely, juvenile hormone esterase (JHE), juvenile hormone epoxide hydrolase (JHEH) and juvenile hormone diol kinase (JHDK) are required for degradation in insects. Our present results showed that JHE and JHEH exhibited expression in almost all the tissues. This indicated that JHE and JHEH might degrade JH simultaneously. In addition, the highest levels of JHDK were observed in the midgut, with trace level being found in the malpighian tubule and haemocytes. Since the midgut is a digestive organ and not a JH target, it was hypothesized that both JHE and JHEH hydrolyzed JH to JH diol (JHd) which was then transported to midgut and hydrolyzed further by JHDK, to be finally excreted out of the body. Also the expression studies on JH degradation enzymes in different tissues and stages indicated that the activities of the three enzymes are specific and coincident with the JH functions in silkworm, Bombyx mori L.  相似文献   

7.
8.
The challenge hypothesis, conceived for testosterone and vertebrates, has recently been applied to juvenile hormone (JH) and insects. Scott [Scott, M.P., 2006a. Resource defense and juvenile hormone: the "challenge hypothesis" extended to insects. Horm. Behav. 49, 276-281] found that JH in the burying beetle Nicrophorus orbicollis increased in response to a social challenge in the presence of a breeding resource, while there was no such JH response in the purported brood parasite Nicrophorus pustulatus. Two important implications of the challenge hypothesis that need to be tested are whether JH affects dominance and why there are interspecific differences in the JH response to a social challenge. The effect of JH on dominance in burying beetles was examined by topical application of JH III to one of two competing females at 24 h and again at 1 h prior to presentation of a breeding resource (mouse carcass). JH supplementation had no effect on dominance in intraspecific interactions in N. orbicollis, as measured by possession of the carcass on Day 1, 3 or 7. Similarly, JH did not alter carcass ownership during competition between N. orbicollis and N. pustulatus nor did it affect reproductive success. Irrespective of JH supplementation, N. pustulatus became increasingly dominant as the trials progressed, rarely occupying the carcass on Day 1, but excluding N. orbicollis in nearly half the trials by Day 7. These findings, and a brief review of the burying beetle literature, suggest that the challenge hypothesis, as applied to testosterone and vertebrates, does not yet have an analogous model for JH and insects.  相似文献   

9.
近二十年来我国实验昆虫学的发展   总被引:4,自引:0,他引:4  
钦俊德 《昆虫学报》2000,43(3):318-326
叙述了近二十年来我国实验昆虫学在以下5方面的研究进展:①生殖和发育的激素调节,②感觉作用和行为特化,③扩散与迁飞,④抗药性机理,⑤免疫现象。  相似文献   

10.
Regulatory pathways in solitary species provide the raw materials for the evolution of sociality. Therefore, comparing the mechanisms that mediate reproductive plasticity in social species and their solitary ancestors can provide insight into the evolutionary origin of sociality. In many solitary insects, the effect of juvenile hormone (JH) on fertility is mediated through the fat body; individuals in good physical condition show a stronger fertility response to JH than individuals in poor physical condition. Here, we test whether a similar, condition-dependent JH response mediates fertility in workers of the primitively eusocial Polistes dominulus wasps. We test how body weight, JH, and adult nutrition influence worker ovarian development. Both JH-treatment and adult nutrition dramatically increased ovarian development. Body weight also influenced ovarian development, as large workers developed more eggs than smaller workers. Body weight and fat are strongly linked in P. dominulus workers, so these results suggest that the fat-dependent JH responsiveness common in solitary insects is conserved in social wasps. The simple, ancestral relationship between reproductive investment and physical condition may facilitate cooperation by allowing workers to adaptively allocate energy into reproduction based on their probability of successfully becoming a queen.  相似文献   

11.
It is well established in the literature that circulating high levels of juvenile hormone (JH) are responsible for the initiation of vitellogenesis and female reproduction in most insects studied so far. Exceptions include some Diptera, Lepidoptera and Hymenoptera. The current view is that JH also regulates yolk protein (vitellogenin, Vg) synthesis and female reproduction in mites. However, there is no published evidence that mites have the common insect JHs at any stage of their development. Also, research on the effects of exogenous applications of JH and JH analogs on the reproduction of mites is contradictory. Significant information is available on the life history of mite reproduction, and new information has become available on mite storage proteins including Vg. Although initial studies suggested that ticks may respond to exogenously applied juvenile hormone or anti-JHs, current research shows that ticks cannot synthesize the common insect JHs and have no detectable levels of these hormones in their hemolymph during female reproduction. In ticks, it appears that ecdysteroids, and not JH, regulate expression of the Vg gene and the synthesis and release of Vg protein into the hemolymph. In fact within the Arthropoda, JH has been found only in insects. Methyl farnesoate and not JH regulates Vg synthesis in the Crustacea, the sister group to the insects. Based on this evidence, a new working hypothesis is proposed, i.e., that ecdysteroids and not the JHs regulate vitellogenesis in the Acari including both ticks and mites. To the present, the role of neuropeptides in the regulation of female reproduction in mites is not known.  相似文献   

12.
Locating suitable feeding or oviposition sites is essential for insect survival. Understanding how insects achieve this is crucial, not only for understanding the ecology and evolution of insect–host interactions, but also for the development of sustainable pest‐control strategies that exploit insects' host‐seeking behaviours. Volatile chemical cues are used by foraging insects to locate and recognise potential hosts but in nature these resources usually are patchily distributed, making chance encounters with host odour plumes rare over distances greater than tens of metres. The majority of studies on insect host‐seeking have focussed on short‐range orientation to easily detectable cues and it is only recently that we have begun to understand how insects overcome this challenge. Recent advances show that insects from a wide range of feeding guilds make use of ‘habitat cues’, volatile chemical cues released over a relatively large area that indicate a locale where more specific host cues are most likely to be found. Habitat cues differ from host cues in that they tend to be released in larger quantities, are more easily detectable over longer distances, and may lack specificity, yet provide an effective way for insects to maximise their chances of subsequently encountering specific host cues. This review brings together recent advances in this area, discussing key examples and similarities in strategies used by haematophagous insects, soil‐dwelling insects and insects that forage around plants. We also propose and provide evidence for a new theory that general and non‐host plant volatiles can be used by foraging herbivores to locate patches of vegetation at a distance in the absence of more specific host cues, explaining some of the many discrepancies between laboratory and field trials that attempt to make use of plant‐derived repellents for controlling insect pests.  相似文献   

13.
14.
七星瓢虫(Coccmella septimpunctata)为了适应环境的变化,通过咽侧体产生保幼激素的活动调节其生殖作用。为了探索内外因素对咽侧体活动的影响,应用放射化学法及免疫电泳测定了食物、卵巢发育、脑神经肽、保幼激素类似物对卵黄发生期成虫保幼激素生物合成及血淋巴中卵黄原蛋白含量的影响。结果表明咽侧体活性受上述各种因子的影响。咽侧体活性与卵黄原蛋白含量及卵母细胞生长密切相关,说明有反馈作用。食物的质与量影响着咽侧体活性的变化。低剂量外源保幼激素类似物处理成虫则可促使咽侧体活性的变化。脑分泌的神经肽(allatotropin)可活化咽侧体。这些结果表明雌瓢虫保幼激素的生产主要是受起源于脑的促咽侧体信号的调节作用。  相似文献   

15.
Comparing thyroid and insect hormone signaling   总被引:1,自引:1,他引:0  
Transitions between different states of development, physiology,and life history are typically mediated by hormones. In insects,metamorphosis and reproductive maturation are regulated by aninteraction between the sesquiterpenoid juvenile hormone (JH)and the steroid 20-hydroxy-ecdysone (20E). In vertebrates andsome marine invertebrates, the lipophilic thyroid hormones (THs)affect metamorphosis and other life history transitions. Interestingly,when applied to insects, THs can physiologically mimic manyfacets of JH action, suggesting that the molecular actions ofTHs and JH/20E might be similar. Here we discuss functionalparallels between TH and JH/20E signaling in insects, with aparticular focus on the fruit fly, Drosophila melanogaster,a genetically and physiologically tractable model system. Comparingthe effects of THs with the well defined physiological rolesof insect hormones such as JH and 20E in Drosophila might provideimportant insights into hormone function and the evolution ofendocrine signaling.  相似文献   

16.
17.
Abstract Corpora allata are the defined site of juvenile hormone (JH) biosynthesis in reproductive adult insects and their activity is regulated by intrinsic and extrinsic factors. In the adult lady beetle Coccinella septempunctata , it has been well established that the development of ovaries is controlled by JH (Guan 1987). The present study aims at the elucidation of the influence of some factors regulating reproduction of the lady beetle. They include topical application of JH analogues, presence of neuropeptides in the extract from the brain, as well as the development of ovary and type of food on CA activity. JH synthesis in CA is monitored with radiochemical assay and immunoelectrophoresis.  相似文献   

18.
The hemolymph juvenile hormone (JH) titer was measured in over 500 flight-capable and flightless, adult female Gryllus firmus at 3-6 h intervals during each of days 2-8 of adulthood. The flight-capable morph exhibited a large-amplitude daily cycle in the hemolymph JH titer, while the flightless morph exhibited a barely perceptible cycle. The JH titer cycle was observed on all days in the flight-capable morph, but the large amplitude cycle (>15-20 fold increase in mean titer; >100-fold increase in some individuals), began on day 5. For both the large and small amplitude cycles, the JH titer peaked near the end of the photophase-beginning of the scotophase. The hemolymph ecdysteroid titer did not exhibit a corresponding large amplitude daily cycle, although a low amplitude cycle (1-3-fold change) was seen in both morphs. The large magnitude rise in the JH titer in the flight-capable morph during the photophase was not due to decreased hemolymph volume or JH degradation. Daily cycles in the JH titer may be common, but may have gone unnoticed in other insect species due to restricted temporal sampling. Failure to identify these cycles can result in substantial errors in inferring biological roles for JH. Because JH regulates flight behaviors, morph-specific daily cycles in the JH titer may be especially common in dispersal-polymorphic insects, in which flight is restricted to one morph during a limited period of the day or night. However, because JH regulates numerous biological traits, analogous cycles may be common in insects exhibiting other types of complex (e.g. caste or phase) polymorphism, in which morphs differ in a biological characteristic that is restricted to a specific period of the photophase or scotophase.  相似文献   

19.
The possible role of juvenile hormone (JH) in the induction and termination of larval diapause in the European corn borer, Ostrinia nubilalis, was investigated using topical applications of both JH I and a JH mimic as well as by monitoring JH titers with the Galleria bioassay. Neither JH nor the JH mimic ZR515 was capable of influencing diapause termination when administered topically. The Galleria bioassay revealed little or no JH in the hemolymph of mid diapause (>30 days) insects, indicating no demonstrable role for JH in diapause maintenance. When ZR515 was administered to nondiapause, newly ecdysed fifth instar larvae the pupal molting cycle was delayed. By use of photoperiodic regimes we were able to show that the molting delay was not equivalent to diapause induction. The Galleria bioassay showed differences in JH titer profiles between diapause and nondiapause animals during the final larval stadium. The nondiapause insects showed titers that decline rapidly to trace amounts following the molt to fifth instar then rose prior to pupation. The diapause insects had generally higher titers and exhibited a more gradual decline after the molt. No evidence was obtained to support the hypothesis that JH plays a key role in the induction, maintenance, or termination of larval diapause.  相似文献   

20.
In a finite environment, population growth can lead to crowding, increased densities and stress. Termites live in highly organized societies and densities can increase astronomically as colonies grow. However, little is known about juvenile hormone (JH) changes in these insects as numbers increase, despite the fact that JH is a critical caste regulator in this insect. Using Formosan subterranean termites as a model, we evaluated minimum group size requirements for soldier differentiation and the effect of density (50, 100, 500, and 1000 individuals/experimental unit) on worker JH titers either with or without initial soldiers being present. The minimum group size investigation indicated that groups initiated with 5 workers were insufficient for soldier differentiation. Soldiers were produced in groups initiated with 10 or more workers. As density increased from 50 to 1000 individuals per experimental unit, worker JH levels were elevated. Presence of soldiers lessened the effect of density on rising worker JH titers, indicating that soldiers have the ability to down-regulate worker JH. The study provides direct evidence of a population density effect on JH in eusocial insects and sheds light on understanding of the regulatory mechanisms associated with termite soldier caste differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号