共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanical forces are important signals in the development and function of the heart and lung, growth of skin and muscle, and maintenance of cartilage and bone. The specific mechanical force “shear stress” has been implicated as playing a critical role in the physiological responses of blood vessels through endothelial cell signaling. More recently, studies have shown that shear stress can induce differentiation of stem cells toward both endothelial and bone‐producing cell phenotypes. This review will highlight current data supporting the role of shear stress in stem cell fate and will propose potential mechanisms and signaling cascades for transducing shear stress into a biological signal. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 相似文献
2.
Russell SM 《Immunology and cell biology》2008,86(5):423-427
The production, from a single naive T cell, of the many different activated T cell types required for an effective immune response has fascinated immunologists for decades. This process underpins the development of vaccines, immunosuppressive regimes in transplant patients, and immunotherapy in cancer among other things. Despite the enormous advances in detailing the mechanisms and influencing factors in the differentiation of each T-cell subtype, it is still not clear how the different T-cell progeny are produced in proportions that are appropriate for each situation. This review discusses the notion that asymmetric cell division might allow for the regulated generation of different cell populations. 相似文献
3.
Henckel A Tóth S Arnaud P 《BioEssays : news and reviews in molecular, cellular and developmental biology》2007,29(6):520-524
It is generally assumed that the developmental program of embryogenesis relies on epigenetic mechanisms. However, a mechanistic link between epigenetic marks and cell fate decisions had not been established so far. In a recent article, Torres-Padilla and colleagues show that epigenetic information and, more precisely, histone arginine methylation mediated by CARM1 could contribute to cell fate decisions in the mouse 4-cell-stage embryo. It provides the first indications that global epigenetic information influences allocation of pluripotent cells toward the first cell lineages. 相似文献
4.
Asymmetric cell division generates cell types with different fates. Recent studies have improved our understanding of the molecular mechanisms involved in asymmetric cell division in Arabidopsis thaliana. Genetic approaches have identified candidate intrinsic factors and signaling components that mediate extrinsic cues. WOX genes appear to be putative intrinsic determinants acting in early embryonic asymmetric divisions. A non-canonical mechanism involving specific SHORT ROOT (SHR)-SCARECROW (SCR) nuclear complexes is implicated in ground tissue asymmetric divisions. Asymmetric stem cell division requires extrinsic organizer signaling, whereas the involvement of intrinsic stem cell segregants is unknown. Finally, new studies on stomatal development have identified several intrinsic acting factors that specify cell fate and an extrinsic signaling cascade that controls the number and plane of asymmetric divisions. 相似文献
5.
6.
CD123bright plasmacytoid predendritic cells: progenitors undergoing cell fate conversion? 总被引:4,自引:0,他引:4
Comeau MR Van der Vuurst de Vries AR Maliszewski CR Galibert L 《Journal of immunology (Baltimore, Md. : 1950)》2002,169(1):75-83
CD123(bright) plasmacytoid cells (PC) and CD1c(+) peripheral blood myeloid dendritic cells (DC) are two human DC precursors that can be expanded in vivo by Fms-like tyrosine kinase 3 ligand (FL). It has been proposed that PC and myeloid CD1c(+) DC may represent two distinct lineages of DC. However, the phylogenetic affiliation of PC and its relationship with myeloid DC remain controversial. Here we show that CD123(bright)HLA-DR(+) PC from FL-treated healthy volunteers can be divided into mutually exclusive subsets that harbor either lymphoid or myeloid features. Lymphoid-like PC represent the majority of PC and include pTalpha-, CD3epsilon-, and CD7-expressing cells. They exhibit TCR-beta gene loci in germline configuration and show low allostimulatory capacity, but produce type I IFN upon virus infection and can be differentiated in vitro into potent APC. Myeloid-like PC represent a minor fraction of the total PC population. They exhibit a striking PC/myeloid DC intermediate phenotype (CD5(+)CD11c(low)CD45RA(low)CD45RO(-)CD101(+)), produce proinflammatory cytokines, and do not require in vitro maturation to act as potent APCs. We propose that, rather than forming a lineage, PC might represent a population of lymphoid cells undergoing an in vivo cell fate conversion from a lymphoid to a myeloid cell type. 相似文献
7.
8.
9.
In crustaceans, invariant cell lineages have been shown to occur (i) in early cleavages of several taxa and (ii) in the course of formation and differentiation of the post-naupliar germ bands in malacostracans. Work on early cleavages is still in its infancy. In contrast, the generation and proliferation of mesoteloblasts and ectoteloblasts and the subsequent proliferation and differentiation of bandlet cells have been studied in members of several subgroups of Malacostraca. Similarities and differences have been determined in order to interpret the interdependencies of the steps in the differentiation process. Some of these steps are highly conserved, as in the case of the generation of four pairs of mesoteloblasts, others are prone to phylogenetic change, as in the case of the primary ring of 19 ectoteloblasts which has been altered at least twice in evolution. A stereotyped cleavage pattern in the germ band has been shown to be independent of the origin of the precursor cells. The question whether neuroblasts in crustaceans and insects are homologous or are the result of convergent evolution is still open. However, the homology of early differentiating neurons in crustaceans and insects seems to be well established. In addition, similarities in the expression patterns of the engrailed gene are likely to be homologous and point to a close relationship between these two groups. 相似文献
10.
11.
Duncan JG 《Journal of lipid research》2008,49(7):1375-1376
12.
Eukaryotic elongation factor-2 (eEF-2) kinase, also known as calmodulin-dependent protein kinase III, is a unique calcium/calmodulin-dependent enzyme. eEF-2 kinase can act as a negative regulator of protein synthesis and a positive regulator of autophagy under environmental or metabolic stresses. Akt, a key downstream effector of the PI3K signaling pathway that regulates cell survival and proliferation, is an attractive therapeutic target for anticancer treatment. Akt inhibition leads to activation of both apoptosis, type I programmed cell death and autophagy, a cellular degradation process via lysosomal machinery (also termed type II programmed cell death). However, the underlying mechanisms that dictate functional relationship between autophagy and apoptosis in response to Akt inhibition remain to be delineated. Our recent study demonstrated that inhibition of eEF-2 kinase can suppress autophagy but promote apoptosis in tumor cells subjected to Akt inhibition, indicating a role of eEF-2 kinase as a controller in the crosstalk between autophagy and apoptosis. Furthermore, inhibition of eEF-2 kinase can reinforce the efficacy of a novel Akt inhibitor, MK-2206, against human glioma. These findings may help optimize the use of Akt inhibitors in the treatment of cancer and other diseases. 相似文献
13.
14.
15.
Aberdam D 《Cell and tissue research》2008,331(1):103-107
Because of its constant renewal and high propensity for repair, the epidermis is, together with the gut and the hematopoietic
system, a tissue of choice to explore stem cell biology. Previous research over many years has revealed the complexity of
the epidermis: the heterogeneity of the stem cell compartment, with its rare, slowly cycling, multipotent, hair-follicle,
“bulge” stem cells and the more restricted interfollicular, follicle-matrix, and sebaceous-gland stem cells, which in turn
generate the large pool of transit-amplifying progeny. Stem cell activity has been used for some considerable time to repair
skin injuries, but ex-vivo keratinocyte amplification has its limitations, and grafted skin homeostasis is not totally satisfactory.
Human embryonic stem cells raise the hope that the understanding of the developmental steps leading to the generation of epidermal
stem cells and the characterization of the key signaling pathways involved in skin morphogenesis (such as p63) will be translated
into therapeutic benefit. Our recent results suggest the feasibility not only of identifying but also of amplifying human
ES cells, early ectodermal progenitors with an intact multipotent potential that might improve the quality and functionality
of grafts, provided that preclinical in vivo studies confirm our expectations from in vitro analysis.
The work described here was supported by funds from the Sixth EEC Framework Program under the EPISTEM project, l’Agence Nationale
pour la Recherche (ANR projets blancs), INSERM, and the Institut National Contre le Cancer (INCa). 相似文献
16.
Wagner A 《BioEssays : news and reviews in molecular, cellular and developmental biology》1998,20(10):785-788
Gene duplication events are important sources of novel gene functions. However, more often than not, a duplicate gene may lose its function and become a pseudogene. What is the relative frequency of these two scenarios: functional divergence versus gene loss? Given that most non-neutral mutations are deleterious, gene loss should be far more frequent than divergence. However, a recent empirical study suggests that about 50% of all gene duplications will lead to functional divergence. The study infers the frequency of functional divergence from the size distribution of gene families produced by two successive genome duplications early in vertebrate evolution. Reasons for this unexpectedly high frequency of functional divergence are discussed. 相似文献
17.
18.
19.
The skeletal muscle satellite cell: stem cell or son of stem cell? 总被引:18,自引:0,他引:18
P.S. Zammit · J.R. Beauchamp 《Differentiation; research in biological diversity》2001,68(4-5):193-204
The concept of the adult tissue stem cell is fundamental to models of persistent renewal in functionally post-mitotic tissues. Although relatively ignored by stem cell biology, skeletal muscle is a prime example of an adult tissue that can generate terminally differentiated cells uniquely specialized to carry out tissue-specific functions. This capacity is attributed to satellite cells, a population of undifferentiated, quiescent precursors that become activated to divide and differentiate in response to the demands of growth or damage. The aim of this review is to discuss the role of the satellite cell as an adult tissue-specific stem cell. We examine evidence for the presence of behaviourally and phenotypically distinct subpopulations of precursor within the satellite cell pool. Further, we speculate on the possible identity, origins and relevance of multipotent muscle stem cells, a population with both myogenic and hematopoietic potentials that has been isolated from whole muscle. Taken together, current evidence suggests the possibility that the regenerative compartment of adult skeletal muscle may conform to an archetypal stem cell-based hierarchy, maintained within a stem cell niche. It therefore remains to be seen whether all satellite cells are skeletal muscle-specific stem cells, or whether some or all are the progeny of an as yet unidentified muscle stem cell. 相似文献