首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
KUMAR  A; ELSTON  J 《Annals of botany》1992,70(1):3-9
Various kinds of measurement of tissue water status were madeseveral times during water stress and recovery in Brassica juncea(cv Canadian Black) and B napus (cv Drakkar) Unstressed plantsof the two species had similar leaf water potentials (w), solute(s) and turgor potentials (p) Values of relative water content(RWC) and the slope of the linear relationship between p andRWC (p/RWC) were greater in B napus than in B juncea Statistical correlations of pooled data for the watered andstressed treatments differentiated the relationships among RWC,w and its components in the two species The major statisticaldifference was that p/RWC was related to RWC in B napus andto w and s in B juncea A decline in p/RWC with decreasing sin B juncea may be a mechanism for maintaining p at low soilwater potentials through maintenance of more elastic cell walls. Brassica juncea, Brassica napus, osmotic adjustment, tissue elasticity, water relations  相似文献   

2.
HENSON  I. E. 《Annals of botany》1982,50(1):9-24
Water stress was imposed by withholding water at an early vegetativestage from plants of two rice cultivars (IR20 and 63–83)grown in pots. As stress intensified the following sequenceof responses of the leaves was observed: (i) rise in abscisicacid (ABA) content, (ii) closure of stomata, (iii) initiationof leaf rolling. In both cultivars, turgor (p) declined linearly with total waterpotential () of the leaf. Bulk leaf ABA content increased linearlyas p declined, and attained twice the control (unstressed) levelfollowing a reduction in p of about 0.12 MPa. Stomatal conductance exhibited a sigmoidal relationship to p,declining abruptly when a particular ‘critical’p was reached (threshold response). The critical potentialsvaried considerably between experiments, but were closely correlatedwith control potentials and with the potentials at which ABAconcentration doubled relative to controls. Leaf rolling was initiated at s near to zero p. Increases inthe ratio of adaxial to abaxial conductance were associatedwith rolling. Variations in the above responses could be accounted for byvariations in the rate of stress development, which in termsof reduction ranged from 0.38 to 0.86 MPa day–1. Fastdrying rates resulted in: (a) reduced osmotic adjustment, (b)increased amounts of ABA in the leaf at a given level of orp, (c) an increase in the ABA concentration present at 50 percent stomatal closure, and (d) initiation of leaf rolling ata higher . Oryza sativa L., rice, water stress, stomata, leaf rolling, abscisic acid  相似文献   

3.
HENSON  I. E. 《Annals of botany》1983,52(2):247-255
The effects of a period of water stress (drought conditioning)on responses to a second (challenge) stress were examined inyoung vegetative rice (Oryza sativa L.) plants. Drought conditioningdid not affect the rate of subsequent stress development, nor,in a first experiment, did it influence relations between turgor(p) and total () leaf water potential. However, conditioningdid extend the range of p over which stomata remained open andsignificantly reduced the amount of ABA which accumulated inthe leaf at a given p. The change in stomatal behaviour (stomataladjustment) was quantitatively accounted for by the change inleaf ABA accumulation. The reduction in ABA accumulation due to conditioning did notinvolve a change in the potential capacity to produce ABA, asABA accumulation in partially dehydrated detached leaves wasnot reduced by conditioning. It is suggested that effects ofconditioning on leaf ABA content in the intact plant involvechanges in the rate of ABA export from the leaf. Oryza sativa L, rice, drought conditioning, stomata, water stress, abscisic acid  相似文献   

4.
VOS  J.; OYARZN  P. J. 《Annals of botany》1988,62(5):449-454
Water relations characteristics of potato (Solanum tuberosumL. cv. Bintje) leaves were determined from pressure—volumeanalysis using a pressure chamber. Turgor was 077 MPa and thebulk volumetric modulus of elasticity 81 MPa at full turgidity;turgor loss occurred when water potential () had declined to–087 MPa at a relative water content (RWC) of 0912;the apoplastic water fraction (A) was 0235. As is usually found,there was a linear relation between 1/ and RWC beyond turgorloss. This finding supports the assumptions of the constancyof A during leaf dehydration. Beyond turgor loss the difference between and [measured afterfreezing and thawing (d)] was about 01 MPa. This differencedid not increase as the leaf water content decreased. This resultcontradicts the constancy of A. It was concluded from calculations with a simple model of leafdehydration that analysis of the relation between and d providesmore insight in the changes in the apoplastic fraction thanthe relation between 1/ and RWC. Research on the size of theapoplastic fraction and its changes with water potential wouldcomplement current understanding of leaf water relations. Solanum tuberosum, L., water potential, pressure chamber, osmotic potential, pressure potential, relative water content, apoplast, symplast  相似文献   

5.
The pressure-volume technique was employed to compare waterrelations and moisture stress-induced osmotic adjustment ofPeriwinkle (Catharanthus roseus) cv. Pink (PC), Oscillatus (REC)and White (WC). Leaf water potential (w), osmotic potential(s), turgor potential (p), bulk modulus of elasticity (), boundwater (RWCw) and leaf hydration (H), were estimated by exposingthe plants to a drying cycle during which well watered plantswere dehydrated to zero turgor, and then irrigated. Osmoticadjustment (w 100) was calculated by comparing a at full hydration(a 100) in stressed plants after recovery, with a 100 in controlplants. Values of 2100 were 0.76, 0.33 and 0.11 MPa in cv. PC,REC and WC, respectively. Maintenance of p at lower 3 and relativeleaf water content (RWC) in prestressed PC was attributableto a higher alkaloid content and greater leaf cell wall elasticity.RWCW was plotted against p to determine its contribution tohydration maintenance at lower p. Genotype PC showed greaterRWCw at lower p compared with REC and WC. The present studyhas demonstrated that there are cultivar differences in alkaloidaccumulation and water relations in acclimated plants and thatthe relative ranking for drought resistance within periwinkleappeared to correspond with the changes in osmotic properties. Medicinal plant, drought resistance, alkaloids, periwinkle [Catharanthus roseus (L.) G. Don]  相似文献   

6.
KASSAM  A. H. 《Annals of botany》1975,39(2):265-271
Wilting of leaves of Vicia faba L., which occurs when the pressurepotential (p) is zero, and the leaf-water potential () at wiltingboth depend entirely upon the solute potential at incipientplasmolysis (so) and not on soil-water status. Wilting in V.faba is acropetal; this is consistent with the hypothesis thatthere is a gradient of decreasing so up the plant and that wateris transferred from the lower to the upper leaves, hasteningthe overall water loss from the lower leaves to the point whenp is zero. The gradient in so up the plant is of the order of3–8 bar. It is proposed that wilting when p>0 (i.e. > so) shouldbe ‘apparent wilting’ and that when p0 (i.e. so),‘true wilting’.  相似文献   

7.
COUTTS  M. P. 《Annals of botany》1982,49(5):661-668
Sitka spruce[Picea sitchensis(Bong.) Carr] seedlings were subjectedto varying degrees of root damage in a growth room, rangingfrom careful transplanting to exposure of the root system toair for up to 3 h. After replanting, transpiration (E), leafwater potential (1) and growth of the shoot and root were measuredand observations made on plant survival. Some plants in the root exposure treatments died 20–85days after planting. In plants which eventually died, E wasdepressed directly after treatment, but 1 showed a variableresponse. In some plants 1 decreased from —8·0x 105 to —30 x 105 Pa after only 10 days but in othersthere was little change in 1 for 50 days. In spite of the maintenanceof a high water potential in some of the latter plants for longperiods, no root or shoot growth occurred. In plants which lived, the root damage reduced root and shootgrowth relative to untreated controls, and most treatments stronglydepressed E but had little or no effect on 1. The changes of E and 1 in treated plants suggest that the suppressionof E was often independent of 1 although water stress eventuallydeveloped in some of the severely treated plants. Sitka spruce, Picea sitchensis (Bong.)Carr, water relations, root damage, transpiration, leaf water potential  相似文献   

8.
9.
The response of leaf area expansion to atmospheric saturationdeficit (SD) and soil moisture deficit was examined in termsof leaf water potential (1) and turgor potential (p), as partof a wider study of the effects of SD on groundnut growth. Standsof plants were grown at four levels of SD and without irrigationin controlled environment glasshouses. A fifth stand was grownat low SD on soil kept irrigated to field capacity. Large saturation deficits accelerated the depletion of soilmoisture reserves in the unirrigated stands and greatly reducedleaf area index, particularly in the driest treatment. Leafnumber per plant and leaf size both decreased as SD increased,but the effect on leaf size was greater than on number. SD hadless effect than soil water deficit on leaf production. Turgorpotential and leaf extension rate (R) were both reduced at highsaturation deficits and R was linearly related to p between0900 and 1600 h. However, leaf extension rate and turgor potentialwere poorly correlated between 0400 and 0700 h in the driesttreatment. Arachis hypogaea L., groundnut, saturation deficit, leaf growth, canopy development  相似文献   

10.
The water content and osmotic potential (2) of the differentparts of the pea fruit have been measured during developmentof the seed in two lines near-isogenic except for the r locus.During the early development of both genotypes, the testa possesseda more negative 2 than either embryo, endosperm or pod while,at stages when liquid endosperm was present, the embryo alwaysmaintained 2, more negative than the endosperm. A clear effectof the r locus on water content and 2 was only observed in embryotissue — wrinkled (rr) embryos possessing more water andmaintaining a more negative 2 than round (RR) for most of thedevelopmental period studied. The more negative 2 of wrinkledembryos correlated with their greater uptake of water in vivo. When cultured in vitro, the embryos of both genotypes showedmaximum growth (fresh or dry weight) if 10 per cent sucrosewas added to the medium (equivalent to about — 1.2 MPa).Round embryos, however, increased in weight more than wrinkledat all sucrose concentrations examined. Cultured embryos maintaineda similar or more negative 2 than their surrounding medium;wrinkled more negative than round. Embryo culture, osmotic potential, Pisum sativum, pea, r locus, seed development, tissue culture, water content  相似文献   

11.
Stomatal sensitivity to water stress was investigated in pearlmillet [Pennisetum americanum (L.) Leeke] in relation to stageof plant development, leaf water status and ABA content by samplingplants at midday. For the same leaf water potential (), droughtedplants with emerged panicles were found to have a greater leafconductance (gL), indicative of greater stomatal opening, thanplants sampled prior to panicle emergence. The difference betweensuch flowering (F) and non-flowering (NF) plants in at stomatalclosure was estimated to be at least 0.6 MPa. This differencewas considered unlikely to be the result of differential bulkleaf osmotic adjustment, and for most samples from both F andNF plants, bulk leaf turgor potential (p) was estimated to bezero. Stomatal closure in NF plants was associated in two genotypes(BJ 104 and line 112) with higher leaf ABA levels. Differencesin ABA levels between F and NF plants were, however, smalleror absent in genotypes Serere 39 and B282. These genotypes wereat lower than BJ 104 and line 112 when sampled and showed smallerdifferences between F and NF plants in conductance. Lower ABA levels in F plants are ascribed either to effectsof leaf ageing or to effects of flowering on ABA content ofthe leaf. Significant differences in gL in the absence of differencesin ABA content are taken to imply changes in stomatal sensitivityto the hormone or in its access to the stomatal complex. Pennisetum americanum (L.) Leeke, pearl millet, flowering, stomata, water stress, abscisic acid  相似文献   

12.
Leaf-water potential () and relative water content (R) of leavesat different position on the plant were different on any oneday. This was because the effect of environment on and R andof age on physical and chemical properties of tissues variedwith the position of the leaf. Changes with age in the physicaland chemical properties of a leaf depended on the time it emergedin the life of the plant.  相似文献   

13.
The hypothesis that soil water potential (s) is better correlatedto heliotropic leaf orientation, photosaturated photosyntheticCO2 assimilation and stomatal conductance during periods oflimited water availability than is bulk leaf water potential(1) was examined in greenhouse-grown soybean (Glycine max) plants,submitted to a progressive drought. Paired plants were exposedto either 1000 or 100 µmol m–2 s–1 photonflux densities (PFD) for 45–60 mins. The higher irradianceinduced short-term decreases in 1, due to increased transpiration,while l in the plant exposed to low PFD did not decrease. Thesechanges in 1 occurred independently of changes in soil waterstatus. Concurrent to the light treatments, a single attachedleaf from each of the two plants was isolated from the restof the plant by shading, and the pulvinus of its terminal leafletwas exposed to a perpendicular PFD of 500 µmol m–2S–1. Leaf movement of this leaflet was recorded in responseto this light, until a stable leaflet angle was achieved. Valuesof s and l (before and after light treatment), and photosaturatedrates of photosynthesis and stomatal conductance, were thenmeasured on these leaves. Leaflet angle and gas exchange werebetter correlated with s (r2 = 0.50, 0.50 and 0.57 for angle,photosynthesis and conductance, respectively) than with l especiallywhen l was the result of short-term, high-light induced changesin leaf water status (r2 = 0.36, 0.32 and 0.49, for the sameparameters). Leaflet angle was also correlated with stomatalconductance (r2 = 0.61) and photosynthetic rate (r2 = 0.60),suggesting a close association between leaf orientation, leafmetabolism and soil water availability. Glycine max (L.) Merr. cv. Essex, soybean, heliotropism, water potential, photosynthesis, stomatal conductance, solar tracking  相似文献   

14.
Changes in components of leaf water potential during soil waterdeficits influence many physiological processes. Research resultsfocusing on these changes during desiccation of peanut (Arachishypogeae L.) leaves are apparently not available. The presentstudy was conducted to examine the relationships of leaf waterl, solute s and turgor p potentials, and percent relative watercontent (RWC) of peanut leaves during desiccation of detachedleaves and also during naturally occurring soil moisture deficitsin the field. The relationship of p to l and RWC was evaluated by calculatingp from differences in l and s determined by thermocouple psychrometryand by constructing pressure-volume (P-V) curves from the land RWC measurements. Turgor potentials of ‘Early Bunch’and ‘Florunner’ leaves decreased to zero at l of–1.2 to –1.3 MPa and RWC of 87%. There were no cultivardifferences in the l at which p became zero. P-V curves indicatedthat the error of measuring s after freezing due to dilutionof the cellular constituents was small but resulted in artefactualnegative p values. Random measurements on two dates of l, s, and calculation ofp from well-watered and water-stressed field plots consistingof several genotypes indicated that zero p occurred at l of–1.6 MPa. It was concluded that the relationships of p,l, s, and RWC of peanut leaves were similar to leaves of othercrops and that these relationships conferred no unique droughtresistance mechanism to peanut.  相似文献   

15.
THOMAS  HENRY 《Annals of botany》1990,66(5):521-530
Plants derived from Lolium perenne L. cv. ‘Melle’were selected on the basis of extreme high or low lamina solutepotential (s) and pair-crossed to produce divergent G2 lines.The high and low lines had mean lamina s values significantlydifferent from each other and from ‘Melle’, andshowed an enhanced range of phenotypic expression of s duringdrought. Both mature lamina s and meristem s values of droughtedplants were highly heritable. Extreme G2 genotypes were selectedand clonally replicated for further study. During drought mean 2 values fell from –1·21 to–1·80 MPa. Fructans of large molecular weight,and total free amino acids, especially proline, all accumulatedwhen estimated on a dry-matter (DM) or plant-water (PW) basis.Oligosaccharide content was largely unchanged. Minerals declinedwhen estimated on a DM basis but accumulated on a PW basis becausehydration (g water in turgid tissue per g DM) declined morerapidly. In comparison with genotypes having high constitutive s, low-sgenotypes (a) were larger, had faster leaf extension rate, hadfewer tillers, and were proportionally more affected by drought,(b) showed greater osmotic adjustment, (c) contained and accumulatedmuch more fructan (but not oligosaccharides), and amino acids,especially proline, and (d) accumulated more mineral ions ona PW basis, but less on a DM basis. The relatively high repeatabilitiesfor organic solutes in particular show that further divergentselection for individual solutes would not be difficult. Solutes accumulated, probably because they were not consumedin growth. There was no evidence of ‘competition’between growth and osmotic adjustment for metabolites, or thatplants which accumulated more solutes were better able to recoverwhen water deficits were relieved. Perennial ryegrass, drought, genetic variation, carbohydrate, amino acids, proline, mineral uptake, Lolium perenne L. cv. ‘Melle’  相似文献   

16.
KAUL  R.; REISENER  H. J. 《Annals of botany》1981,47(3):335-338
Winter wheat and winter barley were tested for their photochemicaland osmotic potentials during the course of one growth cyclein the field. Prolonged winter conditions induced an absolutehigh in potential net photosynthesis (PN) of winter wheat. Barleyexhibited relatively low PN rates, which may explain the inferiorfrost hardiness of this species. Osmotic potentials () in bothspecies were quite similar, followed rather uniform trends andwere never extreme. There are doubts, however, whether the assessments truly reflected the osmotic stress on cell membranesin frost-hardened leaves. Increased deposition of cryoprotective assimilates in wheatas the cause of continued frost hardiness is discussed. Triticum aestivum, Hordeum sativum, wheat, barley, potential photosynthesis, winter hardiness  相似文献   

17.
We examined the importance and the mechanisms of the root systems'effect on leaf water status in two bean species: Phaseolus vulgarisL. cv. Redcloud (Pv) and P. acutifolius Gray MN cultivatedaccession 258/78 (Pa). Pa maintains a higher leaf water potential(1) than Pv. We used reciprocal grafts between the two species.We grew four plants (one of each graft combination) in one potso they experienced the same soil water potential. Shoot genotypedetermined 1 of well-watered plants. Root genotype determined1 of the most stressed plants. Stressed Pa root systems increased1 of Pv shoots by 0·1 MPa over Pv shoots on Pv roots.Pa roots did not maintain by affecting stomatal conductancenor by simply having more dry weight. Pa roots may have greaterhydraulic conductivity than Pv roots. Key words: Phaseolus acutifolius, Phaseolus vulgaris, leaf water potential, root-shoot communication  相似文献   

18.
Water-relations parameters were measured on sections of secondaryphloem from red oak (Quercus borealis michx. f.) and white ash(Fraxinus americana var. biltmoreana [Beadle] J. Wright) usinga linear displacement transducer. Changes in tissue thicknessin response to changes in the osmotic pressure of the bathingsolution were used to calculate the volumetric elastic modulusplus osmotic pressure (v + ) of the tissue, and an applied forcemethod was used to estimate the time constant for water equilibration(T). The hydraulic conductivity of the cell membranes (Lp) wascalculated utilizing v + and r values. The time-dependent behaviour of the tissue was much more complexthan originally expected. A correction for a time-dependentprocess that we call ‘drift’ was required to obtainnumbers for v + . Furthermore, v + was calculated on two assumptionsin order to relate changes in tissue dimensions to sieve elementparameters. In the first case, a lower limit for v + of thesieve elements was determined by attributing all changes intissue dimensions to these cells. For red oak the average v+ on this assumption is 72 bars. Assuming that all cell typeswere equally responsible for the changes in tissue dimensionsresulted in an v + value of 192 bars for oak. If v + and rare the same for all cells in the tissue, Lp for the sieve elementsof oak is 9.6 x 10–8 cm s–1 bar–1. Exudationfrom the sieve elements of white ash during excision of thephloem led to artificially high values of v + for that species. Quercus borealis michx. f., Fraxinus americana var, biltmoreana (Beadle) J. Wright, red oak, white ash, water relations, phloem, volumetric elastic modulus, membrane hydraulic conductivity  相似文献   

19.
Sitka spruce seedlings were subjected to drought in experimentsin a growthroom, a greenhouse, and out of doors. The plantswere grown in a double chamber with the bulk of the roots inthe upper part where they dried out the soil when water waswithheld. A few new roots penetrated into the lower part inwhich the soil remained moist. The double chamber system enabledthe plant to attain a high water psotential by night and theshoot was only periodically under mild water stress. Measurementswere made on soil water potential (solt), leaf water potential(1), transpiration (E), and stomatal conductance (ks). As soildecreased over a period of 4.5 d, E and ks decreased progressively.The decline in E and ks which indicated stomatal closure, occurredat a higher 1 than has been reported for Sitka spruce. The behaviourof the stomata appeared to be modified by conditions at theroot, and it is proposed that differences in the response to1,depend on Whether the latter is reduced by resistances in thexylem between root and leaf, as is known to occur in large treesin moist soil, or by stresses at the root itself.  相似文献   

20.
Data from pressure-volume (PV) analysis may be submitted totransformation I [i.e. leaf water potential (1) versus inverserelative water content (1/R)] or to transformation II (i.e.1/1 versus R). This may cause an essential distortion of theerror structure especially in transformation II due to the relativelylarge range which is to be covered by the 1/1 ratio. Similarly,logarithmic transformation of leaf turgor potential (P) whenderiving the sensitivity factor of elasticity (ß)by linear regression from values of In p and 1/R may distortthe error structure. In order to investigate the magnitude ofthe distortion effect on parameters derived from PV analysisby regression a non-linear regression procedure was comparedwith the common linear procedure when calculating p from ßin the turgid region and leaf osmotic potential (P) in boththe turgid and non-turgid region. As test plants we used fieldgrown species of spring barley (Hordeum distichum L., cvs Gunnarand Alis). The results show that transformations and applicationof linear regression procedures distort the error structureof p more than the error structure of ', which was only slightlyaffected. However, we recommend the use of the non-linear procedurein both cases. Furthermore, from PV analysis, obtained by thermocouple hygrometryon living and killed leaf tissue, respectively, we derived themathematical basis for calculating the apoplastic water fraction(Ra). Ra was 0.15 at R= 1 and decreased with dehydration. The equations describing the relation between and R and betweenp and R were extended to take into account the apoplastic waterfraction. Key words: Apoplastic water, distortion errors, non-linear regression, pressure-volume curves  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号