首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We developed an in vitro organ bath method to measure permeability and contractility simultaneously in murine intestinal segments. To investigate whether permeability and contractility are correlated and influenced by mucosal damage owing to inflammation, BALB/c mice were exposed to a 10% dextran sulphate sodium (DSS) solution for 8 days to induce colitis. The effect of pharmacologically induced smooth muscle relaxation and contraction on permeability was tested in vitro. Regional permeability differences were observed in both control and 10% DSS-treated mice. Distal colon segments were less permeable to 3H-mannitol and 14C-PEG 400 molecules compared with proximal colon and ileum. Intestinal permeability in control vs. 10% DSS mice was not altered, although histologic inflammation score and IFN-gamma pro-inflammatory cytokine levels were significantly increased in proximal and distal colon. IL-1beta levels were enhanced in these proximal and distal segments, but not significantly different from controls. Any effect of pharmacologically induced contractility on intestinal permeability could not be observed. In conclusion, intestinal permeability and contractility are not correlated in this model of experimentally induced colitis in mice. Although simultaneous measurement in a physiological set-up is possible, this method has to be further validated.  相似文献   

2.
Increased colonic Cl(-) secretion was supposed to be a causative factor of diarrhea in inflammatory bowel diseases. Surprisingly, hyporesponsiveness to Cl(-) secretagogues was later described in inflamed colon. Our aim was to evaluate changes in secretory responses to cholinergic agonist carbachol in distal and proximal colon during colitis development, regarding secretory activity of enteric nervous system (ENS) and prostaglandins. Increased responsiveness to carbachol was observed in both distal and proximal colon after 3 days of 2 % dextran sodium sulfate (DSS) administration. It was measured in the presence of mucosal Ba(2+) to emphasize Cl(-) secretion. The described increase was abolished by combined inhibitory effect of tetrodotoxin (TTX) and indomethacin. Indomethacin also significantly reduced TTX-sensitive current. On the 7th day of colitis development responsiveness to carbachol decreased in distal colon (compared to untreated mice), but did not change in proximal colon. TTX-sensitive current did not change during colitis development, but indomethacin-sensitive current was significantly increased the 7th day. Decreased and deformed current responses to serosal Ba(2+) were observed during colitis induction, but only in proximal colon. We conclude that besides inhibitory effect of DSS on distal colon responsiveness, there is an early stimulatory effect that manifests in both distal and proximal colon.  相似文献   

3.
We have previously found that CD30 ligand (CD30L; CD153)/CD30 signaling executed by the T-T cell interaction plays a critical role in Th17 cell differentiation, at least partly via downregulation of IL-2 production. In this study, we investigated the role of CD30L in the development of colitis experimentally induced by dextran sulfate sodium (DSS), in which IL-17A is involved in the pathogenesis. CD30L(-/-) mice were resistant to both acute colitis induced by administration of 3 to ~ 5% DSS and to chronic colitis induced by administration of 1.5% DSS on days 0-5, 10-15, and 20-25 as assessed by weight loss, survival rate, and histopathology. The levels of IFN-γ, IL-17A, and IL-10 were significantly lower but the IL-2 level higher in the lamina propria T lymphocytes of CD30L(-/-) mice than those in lamina propria T lymphocytes of wild-type mice after DSS administration. Soluble murine CD30-Ig fusion protein, which was capable of inhibiting Th17 cell differentiation in vitro, ameliorated both types of DSS-induced colitis in wild-type mice. Modulation of CD30L/CD30 signaling by soluble CD30 could be a novel biological therapy for inflammatory diseases associated with Th17 responses.  相似文献   

4.
5.

Objective

Infiltration of activated immune cells and increased cytokine production define the immunophenotype of gastrointestinal (GI) inflammation. In addition, intestinal inflammation is accompanied by alteration in the numbers of serotonin (5-hydroxytryptamine; 5-HT) synthesizing enterochromaffin (EC) cells and in 5-HT amount. It has been established that EC cells express interleukin (IL)-13 receptor, additionally IL-13 has been implicated in the pathogenesis of ulcerative colitis. In this study, we investigated the role of IL-13 mediated 5-HT signaling in pathogenesis of colitis.

Methodology

Colitis was induced in IL-13 deficient (IL-13−/−) and wild-type (WT) mice with dextran sulfate sodium (DSS) and dinitrobenzene sulfonic acid (DNBS), as well as in IL-13−/− mice given recombinant mouse IL-13 (rmIL-13) and 5-hydroxytryptamine (5-HTP), the direct precursor of 5-HT.

Principal Findings and Conclusion

Elevated colonic IL-13 levels were observed in WT mice receiving DSS in comparison to control. IL-13−/− mice administered DSS exhibited significantly reduced severity of colitis compared to WT mice as reflected by macroscopic and histological damage assessments. Following DSS administration, significantly lower pro-inflammatory cytokine production and fewer infiltrating macrophages were observed in IL-13−/− mice compared to WT. The reduced severity of colitis observed in IL-13−/− mice was also accompanied by down-regulation of EC cell numbers and colonic 5-HT content. In addition, increasing colonic 5-HT content by administration of rmIL-13 or 5-HTP exacerbated severity of DSS colitis in IL-13−/− mice. IL-13−/− mice also exhibited reduced severity of DNBS-induced colitis. These results demonstrate that IL-13 plays a critical role in the pathogenesis of experimental colitis and 5-HT is an important mediator of IL-13 driven intestinal inflammation. This study revealed important information on immune-endocrine axis in gut in relation to inflammation which may ultimately lead to better strategy in managing various intestinal inflammatory conditions including inflammatory bowel disease.  相似文献   

6.

Background

Inflammatory bowel diseases (IBD), including mainly ulcerative colitis (UC) and Crohn''s disease (CD), are inflammatory disorders of the gastrointestinal tract caused by an interplay of genetic and environmental factors. Murine colitis model induced by Dextran Sulfate Sodium (DSS) is an animal model of IBD that is commonly used to address the pathogenesis of IBD as well as to test efficacy of therapies. In this study we systematically analyzed clinical parameters, histological changes, intestinal barrier properties and cytokine profile during the colitic and recovery phase.

Methods

C57BL/6 mice were administered with 3.5% of DSS in drinking water for various times. Clinical and histological features were determined using standard criteria. Myeloperoxidase (MPO) activity, transepithelial permeability and proinflammatory mediators were determined in whole colon or proximal and distal parts of colon.

Results

As expected after administration of DSS, mice manifest loss of body weight, shortening of colon length and bloody feces. Histological manifestations included shortening and loss of crypts, infiltration of lymphocytes and neutrophil, symptoms attenuated after DSS withdrawal. The MPO value, as inflammation indicator, also increases significantly at all periods of DSS treatment, and even after DSS withdrawal, it still held at very high levels. Trans-mucosal permeability increased during DSS treatment, but recovered to almost control level after DSS withdrawal. The production of proinflammatory mediators by colonic mucosa were enhanced during DSS treatment, and then recovered to pre-treated level after DSS withdrawal. Finally, enhanced expression of proinflammatory mediators also revealed a different profile feature in proximal and distal parts of the colon.

Conclusion

Experimental colitis induced by DSS is a good animal model to study the mechanisms underlying the pathogenesis and intervention against IBD, especially UC.  相似文献   

7.
Psychological stress is an environmental factor considered to be a precipitating factor of inflammatory bowel disease. Interleukin (IL)-18 plays a role in stress-induced aggravation in some diseases. The aim of this study was to establish a model of murine colitis exacerbated by psychological stress and to clarify the role of IL-18 in this model. Male C57Bl/6 mice and IL-18(-/-) mice were used for this study. The mice received dextran sulfate sodium (DSS) for induction of colitis. Some mice were exposed to psychological stress using a communication box. Body weight, colonic length, and histological inflammation were measured for assessment of colitis. Tumor necrosis factor (TNF)-α and IL-18 expression in the colon and IL-18 expression in the adrenal gland were analyzed using real-time PCR. The effect of anti-IL-18 antibody was also investigated. Effects of TNF-α and IL-18 on cytokine expressions were studied using the colonic epithelial cell line LS174T. Induction of psychological stress in DSS-treated wild-type mice significantly exacerbated colitis with enhanced expression of proinflammatory cytokines and IL-18. However, induction of psychological stress in DSS-treated IL-18(-/-) mice did not aggravate colitis compared with that in the IL-18(-/-) group given only DSS treatment. Stress-induced aggravation of colitis was ameliorated significantly by anti-IL-18 antibody treatment. IL-18 did not enhance TNF-α-induced expression of intercellular adhesion molecule-1 or IL-8 in LS174T. We established a model of colitis exacerbated by psychological stress. Psychological stress enhanced IL-18 expression and plays a proinflammatory role in stress-induced aggravation of colitis.  相似文献   

8.
Exposure to dextran sulfate sodium (DSS) induces acute colitis, which is normally resolved after DSS removal. To study chronicity, mice are typically subjected to three to five cycles of weekly DSS exposures, each followed by a 1- to 2-wk rest period. Here, we describe a novel and convenient way of inducing chronic, progressive colitis by a single exposure to DSS. C57BL/6 mice exposed to DSS for 5 days developed acute colitis that progressed to severe chronic inflammation. The plasma haptoglobin levels remained high during the chronic phase, showing that the inflammation was active. Surprisingly, the mice regained their original weight along with the progression of colitis, and the only apparent symptom was loose feces. Histopathological changes 4 wk after DSS removal were dense infiltrates of mononuclear cells, irregular epithelial structure, and persistent deposits of collagen. A progressive production of the cytokines IL-1beta, IL-12 p70, and IL-17 correlated with the extensive cellular infiltration, whereas high IFN-gamma production was mainly found late in the chronic phase. Similar to C57BL/6 mice, BALB/c mice exposed to 5 days of DSS developed acute colitis as previously described. The acute colitis was accompanied by elevated plasma levels of haptoglobin and increased colonic levels of IL-1alpha/beta, IL-6, IL-18, and granulocyte colony-stimulating factor. However, soon after DSS removal, BALB/c mice recovered and were symptom free within 2 wk and completely recovered 4 wk after DSS removal in terms of histopathology, haptoglobin levels, and local cytokine production. In summary, these data stress the effect of genetic background on the outcome of DSS provocation. We believe that the present protocol to induce chronic colitis in C57BL/6 mice offers a robust model for validating future therapies for treatment of inflammatory bowel disease.  相似文献   

9.
Inflammatory bowel disease (IBD) is an immunologically mediated disorder that is characterized by chronic, relapsing, and inflammatory responses. Dextran sulfate sodium (DSS)-induced experimental colitis in mice has been recognized as a useful model for human IBD and interleukin (IL)-1beta is a key cytokine in the onset of IBD. The purpose of the present study was to clarify which pro-inflammatory mediators are targeted by IL-1beta in mice with DSS-induced colitis. First, we found that DSS markedly induced IL-1beta production in both dose- and time-dependent manners (P < 0.05 and P < 0.01, respectively) in murine peritoneal macrophages (pMphi), while that of tumor necrosis factor-alpha was insignificant. Further, the expressions of mRNA and protein for IL-1beta were increased in colonic mucosa and pMphi from mice that received drinking water containing 5% DSS for 7 days (P < 0.01, each). In addition, the expressions of IL-6, granulocyte macrophage-colony stimulating factor, inducible nitric oxide synthase, and cyclooxygenase-2 mRNA were also time dependently increased (P < 0.01, each). Furthermore, administration of rIL-1beta (10 microg/kg, i.p.) significantly induced the expressions of IL-1beta and IL-6 mRNA in colonic mucosa from non-treated mice (P < 0.01). Anti-mIL-1beta antibody treatments (50 microg/kg, i.p.) attenuated DSS-induced body weight reduction and shortening of the colorectum (P < 0.05, each), and abrogated the expressions of IL-1beta and IL-6 mRNA in colonic mucosa (P < 0.01, each). Our results evidently support the previous findings that IL-1beta is involved in the development of DSS-induced experimental colitis in mice, and strongly suggest that IL-1beta targets itself and IL-6 for progressing colonic inflammation.  相似文献   

10.
The mucin Muc2 is the structural component of the colonic mucus layer. Adult Muc2 knockout (Muc2(-/-)) mice suffer from severe colitis. We hypothesized that Muc2 deficiency induces inflammation before weaning of mother's milk [postnatal day (P) 14] with aggravation of colitis after weaning (P28). Muc2(-/-) and wild-type mice were killed at embryonic day 18.5 and P1.5, P7.5, P14, P21, and P28. Colonic morphology, influx of T cells, and goblet cell-specific protein expression was investigated by (immuno)histochemistry. Cytokine and Toll-like receptor (TLR) profiles in the colon were analyzed by quantitative RT-PCR. Muc2(-/-) mice showed an increased and persistent influx of Cd3ε-positive T cells in the colonic mucosa as of P1.5. This was accompanied by mucosal damage at P28 in the distal colon but not in the proximal colon. At P14, the proinflammatory immune response [i.e., increased interleukin (IL)-12 p35, IL-12 p40, and tumor necrosis factor-α, expression] in the distal colon of Muc2(-/-) mice presented with an immune suppressive response [i.e., increased Foxp3, transforming growth factor (TGF)-β1, IL-10, and Ebi3 expression]. In contrast, at P28, a proinflammatory response remained in the distal colon, whereas the immune suppressive response (i.e., Foxp3 and TGF-β1 expression) declined. The proximal colon of Muc2(-/-) mice did not show morphological damage and was dominated by an immune suppressive response at P14 and P28. Interestingly, changes in expression of TLRs and TLR-related molecules were observed in the distal colon at P14 and P28 and in the proximal colon only at P28. Colitis in Muc2(-/-) mice is limited before weaning by immune suppressive responses and exacerbates in the distal colon after weaning because of the decline in the immune suppressive response.  相似文献   

11.
Myeloid differentiation 1 (MD-1), also known as lymphocyte antigen 86 (Ly86), is a soluble protein homologous to MD-2 and forms a complex with radioprotective 105 (RP105). RP105/MD-1 complex negatively regulates toll-like receptor 4 (TLR4) signaling and is involved in several immune disorders. However, the precise role of MD-1 in inflammatory bowel diseases (IBD) remains poorly understood. To further investigate the involvement of MD-1 in IBD, we inhibited MD-1 in colon with antisense oligonucleotide (AS-ODN) and assessed the effect of MD-1 inhibition on dextran sodium sulfate (DSS)-induced colitis. We discovered that MD-1 protein expression was remarkably decreased in both patients with ulcerative colitis and mice with DSS-induced colitis. For the first time, we showed that oral administration of MD-1 AS-ODN to mice significantly suppressed the MD-1 protein levels in colon rather than systemic tissues. Subsequently, we found that MD-1 AS-ODN treated mice were more susceptible to DSS-induced colitis based on loss of body weight, colon length, histological scores, and disease activity index. MD-1 inhibition also significantly enhanced inflammatory cytokines production such as IL-6 and IL-1β in colons. Finally, mice treated with MD-1 AS-ODN exhibited increased messenger RNA levels of TLR4 and MyD88 after DSS exposure and showed enhanced nuclear factor (NF)-κB activation compared with the control. Taken together, specifically suppression of MD-1 in colon tissues with AS-ODN exacerbates DSS-induced experimental colitis in mice, which is possibly related to activation of TLR4/NF-κB signaling.  相似文献   

12.
The netrin-1 administration or overexpression is known to protect colon from acute colitis. However, the receptor that mediates netrin-1 protective activities in the colon during colitis remains unknown. We tested the hypothesis that UNC5B receptor is a critical mediator of protective function of netrin-1 in dextran sodium sulfate (DSS)-induced colitis using mice with partial deletion of UNC5B receptor. DSS colitis was performed in mice with partial genetic UNC5B deficiency (UNC5B+/− mice) or wild-type mice to examine the role of endogenous UNC5B. These studies were supported by in vitro models of DSS-induced apoptosis in human colon epithelial cells. WT mice developed colitis in response to DSS feeding as indicated by reduction in bw, reduction in colon length and increase in colon weight. These changes were exacerbated in heterozygous UNC5B knockout mice treated with DSS. Periodic Acid-Schiff stained section shows damages in colon epithelium and mononuclear cell infiltration in WT mice, which was further increased in UNC5B heterozygous knockout mice. This was associated with large increase in inflammatory mediators such as cytokine and chemokine expression and extensive apoptosis of epithelial cells in heterozygous knockout mice as compared to WT mice. Overexpression of UNC5B human colon epithelial cells suppressed DSS-induced apoptosis and caspase-3 activity. Moreover, DSS induced large amount of netrin-1 and shRNA mediated knockdown of netrin-1 induction exacerbated DSS-induced epithelial cell apoptosis. Our results suggest that UNC5B is a critical mediator of cell survival in response to stress in colon.  相似文献   

13.
T-helper (Th) cells play a major role in initiating and shaping the pathologic response in inflammatory bowel disease (IBD). Glutamine (GLN) is a nutrient with immune-modulating effects. This study investigated the effect of GLN on cytokine expressions and inflammatory responses of three subsets of Th cells in dextran sulfate sodium (DSS)-induced IBD. There were one normal control (NC) and two DSS groups. Mice in the DSS groups drank distilled water containing 3% DSS for 5 days, whereas the NC group received distilled water. Mice in the G-DSS group were given intraperitoneal injection of 0.5 g GLN/kg/d for 3 days before receiving DSS water. The other DSS group (C-DSS) received an identical amount of amino acid solution without GLN. After induction of IBD, the mice were allowed to recover for 3 days and then were sacrificed. Blood and colon samples were collected for further analysis. The C-DSS group had higher percentages of blood interleukin (IL)-17A, IL-17F, IL-22, IL-4 and interferon-γ than the NC group. The G-DSS group had lower Th1/Th17/Th2 cytokine expressions, which showed no differences from the NC group. Plasma haptoglobin, colon immunoglobin G and chemokine levels and myeloperoxidase activities were higher in the DSS groups than the NC group. These parameters were significantly lower in the G-DSS than the C-DSS group. These results suggest that pretreatment with GLN suppressed Th-associated cytokine expressions and may consequently reduce inflammatory mediator production and leukocyte infiltration into tissues, thus ameliorating the severity of acute DSS-induced colitis.  相似文献   

14.
The role of TLRs and MyD88 in the maintenance of gut integrity in response to dextran sodium sulfate (DSS)-induced colitis was demonstrated recently and led to the conclusion that the innate immune response to luminal commensal flora provides necessary signals that facilitate epithelial repair and permits a return to homeostasis after colonic injury. In this report, we demonstrate that a deficit in a single neutrophil chemokine, CXCL1/KC, also results in a greatly exaggerated response to DSS. Mice with a targeted mutation in the gene that encodes this chemokine responded to 2.5% DSS in their drinking water with significant weight loss, bloody stools, and a complete loss of gut integrity in the proximal and distal colon, accompanied by a predominantly mononuclear infiltrate, with few detectable neutrophils. In contrast, CXCL1/KC(- /-) and wild-type C57BL/6J mice provided water showed no signs of inflammation and, at this concentration of DSS, wild-type mice showed only minimal histopathology, but significantly more infiltrating neutrophils. This finding implies that neutrophil infiltration induced by CXCL1/KC is an essential component of the intestinal response to inflammatory stimuli as well as the ability of the intestine to restore mucosal barrier integrity.  相似文献   

15.
Tumour necrosis factor (TNF) is important in the development of inflammatory bowel disease. TNF-alpha-deficient mice show more severe colonic inflammation than wild-type (Wt) mice, but the underlying mechanism remains unclear. Using immunohistochemistry, enzyme-linked-immunosorbent assay and histopathology, we found that there was a higher level of macrophage infiltration in TNF-alpha(-/-) compared to Wt mice. This is consistent with higher levels of monocyte chemotactic protein-1, interleukin (IL)-6 and granulocyte monocyte colony-stimulating factor (GM-CSF) in the inflamed colon from the TNF-alpha(-/-) mice, compared to the Wt mice, following dextran sulphate sodium (DSS) challenge. There was close correlation between clinical observations and histopathological findings in both Wt and TNF-alpha(-/-) mice. The expression of mucosal addressin cell adhesion molecule 1 (MAdCAM-1) was upregulated in the colon of Wt and TNF-alpha(-/-) mice following DSS challenge. Interestingly, the induction of MAdCAM-1 was relatively lower in the inflamed colon of TNF-alpha(-/-) mice, despite the higher inflammatory cell infiltrate, compared to their Wt counterparts. On the other hand, TNF-alpha(-/-) mice had significantly lower baseline levels of colonic IL-4, IL-6 and GM-CSF. Furthermore, there was a reduction of both immunoglobulin A (IgA) and IgG in the gut from TNF-alpha(-/-) mice following DSS challenge. These data indicate that TNF-alpha deficiency alters homoeostasis of the colonic chemokine/cytokine environment and humoral immune response, resulting in an exacerbation of acute DSS-induced colitis in TNF-alpha(-/-) mice. These findings support the idea that TNF-alpha plays a role in the acute stage of intestinal inflammation.  相似文献   

16.
Tissue factor (TF) is traditionally known as the initiator of blood coagulation, but TF also plays an important role in inflammatory processes. Considering the pivotal role of coagulation in inflammatory bowel disease, we assessed whether genetic ablation of TF limits experimental colitis. To this end, wild-type and TF-deficient (TFlow) mice were treated with 1.5% dextran sulfate sodium (DSS) for 7 d, and effects on disease severity, cytokine production and leukocyte recruitment were examined. Clinical and histological parameters showed that the severity of colitis was reduced in both heterozygous and homozygous TFlow mice compared with controls. Most notably, edema, granulocyte numbers at the site of inflammation and cytokine levels were reduced in TFlow mice. Although anticoagulant treatment with dalteparin of wild-type mice reduced local fibrin production and cytokine levels to a similar extent as in TFlow mice, it did not affect clinical and histological parameters of experimental colitis. Mechanistic studies revealed that TF expression did not influence the intrinsic capacity of granulocytes to migrate. Instead, TF enhanced granulocyte migration into the colon by inducing high levels of the granulocyte chemoattractant keratinocyte-derived chemokine (KC). Taken together, our data indicate that TF plays a detrimental role in experimental colitis by signal transduction-dependent KC production in colon epithelial cells, thereby provoking granulocyte influx with subsequent inflammation and organ damage.  相似文献   

17.
Mice deficient in the G-protein alpha subunit G(i)alpha(2) spontaneously develop colitis and colon cancer. IL-11 is a pleiotropic cytokine known to protect the intestinal epithelium from injury in animal models of colitis and is produced by subepithelial myofibroblasts in response to inflammatory mediators including TGF-beta, IL-1beta, and PGE(2). Arachidonic acid release and subsequent PGE(2) production is significantly decreased in the colonic mucosa of G(i)alpha(2)-/- mice, and we hypothesized that this would affect mucosal IL-11 production. Mucosal levels of IL-11 were found to be significantly decreased in G(i)alpha(2)-/- mice despite the presence of mild colitis. Primary cultures of G(i)alpha(2)-/- intestinal and colonic myofibroblasts (IMF and CMF, respectively) produced less basal and TGF-beta or IL-1beta-stimulated IL-11 mRNA and protein than wild-type cells. Inhibitors of ERK or p38 MAPK activation dose dependently inhibited IMF and CMF IL-11 production in response to TGF-beta stimulation, whereas 16,16 dimethyl-PGE(2) and prostanoid receptor subtype-selective agonists induced IL-11 production. Treatment of animals with the EP4-specific agonist ONO-AE1-329 resulted in enhanced mucosal levels of IL-11, and increased IL-11 production by ex vivo cultured CMF. Modulation of cAMP levels produced diverging results, with enhancement of TGF-beta-induced IL-11 release in IMF pretreated with 8-Br-cAMP and inhibition in cells treated either with pertussis toxin or the PKA inhibitor H-89. These data suggest a physiological role for prostaglandins, MAPK signaling, and cAMP signaling for the production of myofibroblast-derived IL-11 in the mouse intestinal mucosa.  相似文献   

18.
Cho JY  Chang HJ  Lee SK  Kim HJ  Hwang JK  Chun HS 《Life sciences》2007,80(10):932-939
beta-Caryophyllene (BCP), a naturally occurring plant sesquiterpene, was examined for anti-inflammatory activity in a mouse model of experimental colitis induced by dextran sulfate sodium (DSS). Colitis was induced by exposing male BALB/c mice to 5% DSS in drinking water for 7 days. BCP in doses of 30 and 300 mg/kg was administered orally once a day, beginning concurrently with exposure to DSS. The body weight and colon length were measured, and histological damage and myeloperoxidase (MPO) activity as well as inflammatory cytokines were assessed in both serum and colonic tissue after 7 days of treatment with DSS. The DSS treatment damaged the colonic tissue, increased MPO activity and inflammatory cytokines, lowered the body weight, and shortened the length of the colon. Oral administration of BCP at 300 mg/kg significantly suppressed the shortening of colon length and slightly offset the loss of body weight. BCP treatment (300 mg/kg) also significantly reduced the inflammation of colon and reversed the increase in MPO activity that had been induced by exposure to DSS. Further, BCP significantly suppressed the serum level of IL-6 protein (a 55% reduction) as well as the level of IL-6 mRNA in the tissue. These results demonstrate that BCP ameliorates DSS-induced experimental colitis, and may be useful in the prevention and treatment of colitis.  相似文献   

19.
P-glycoprotein (P-gp) has been reported to increase stem cell proliferation and regulate apoptosis. Absence of P-gp results in decreased repair of intestinal epithelial cells after chemical injury. To further explore the mechanisms involved in the effects of P-gp on intestinal injury and repair, we used the well-characterized radiation injury model. In this model, injury repair is mediated by production of prostaglandins (PGE(2)) and lipopolysaccharide (LPS) has been shown to confer radioprotection. B6.mdr1a(-/-) mice and wild-type controls were subjected to 12 Gy total body X-ray irradiation and surviving crypts in the proximal jejunum and distal colon were evaluated 3.5 days after irradiation. B6.mdr1a(-/-) mice exhibited normal baseline stem cell proliferation and COX dependent crypt regeneration after irradiation. However, radiation induced apoptosis was increased and LPS-induced radioprotection was blunted in the C57BL6.mdr1a(-/-) distal colon, compared to B6 wild-type controls. The LPS treatment induced gene expression of the radioprotective cytokine IL-1α, in B6 wild-type controls but not in B6.mdr1a(-/-) animals. Lipopolysaccharid-induced radioprotection was absent in IL-1R1(-/-) animals, indicating a role for IL-1α in radioprotection, and demonstrating that P-gp deficiency interferes with IL-1α gene expression in response to systemic exposure to LPS.  相似文献   

20.
Control of IFN-alphaA by CD73: implications for mucosal inflammation   总被引:1,自引:0,他引:1  
Inflammatory diseases influence tissue metabolism, altering regulation of extracellular adenine nucleotides, with a resultant protective influence of adenosine. Ecto-5'-nucleotidase (CD73) is a central surface enzyme generating extracellular adenosine. Thus, we hypothesized that CD73 is protective in mucosal inflammation as modeled by trinitrobenzene sulfonate (TNBS) colitis. Initial studies revealed a >3-fold induction of CD73 mRNA levels after TNBS colitis. Additionally, the severity of colitis was increased, as determined by weight loss and colonic shortening, in cd73(-/-) mice relative to cd73(+/+) controls. Likewise, enteral administration of the selective CD73 inhibitor alpha,beta-methylene ADP to cd73(+/+) mice resulted in a similar increase in severity of TNBS colitis. Gene array profiling of cytokine mRNA expression, verified by real-time PCR, revealed a >90% down-regulation of IFN-alphaA in cd73(-/-) mice and alpha,beta-methylene ADP-treated cd73(+/+) mice, compared with cd73(+/+) mice. Exogenous administration of recombinant IFN-alphaA partially protected TNBS-treated cd73(-/-) mice. Cytokine profiling revealed similar increases in both IFN-gamma and TNF-alpha mRNA in colitic animals, independent of genotype. However, IL-10 mRNA increased in wild-type mice on day 3 after TNBS administration, whereas cd73(-/-) mice mounted no IL-10 response. This IL-10 response was restored in the cd73(-/-) mice by exogenous IFN-alphaA. Further cytokine profiling revealed that this IL-10 induction is preceded by a transient IFN-alphaA induction on day 2 after TNBS exposure. Together, these studies indicate a critical regulatory role for CD73-modulated IFNalphaA in the acute inflammatory phase of TNBS colitis, thereby implicating IFN-alphaA as a protective element of adenosine signaling during mucosal inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号