首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The reactions of glyoxal with 2′-deoxyguanosine and calf thymus single- and double-stranded DNA in aqueous buffered solutions at physiological conditions resulted in the formation of two previously undetected adducts in addition to the known reaction product 3-(2′-deoxy-β-d-erythro-pentofuranosyl)-5,6,7-trihydro-6,7-dihydroxyimidazo[1,2-a]purine-9-one (Gx-dG). The adducts were isolated and purified by reversed-phase liquid chromatography and structurally characterised by UV absorbance, mass spectrometry, 1H and 13C NMR spectroscopy. The hitherto unknown adducts were identified as: 5-carboxymethyl-3-(2′-deoxy-β-d-erythro-pentofuranosyl)-5,6,7-trihydro-6,7-dihydroxyimidazo[1,2-a]purine-9-one (Gx2-dG) and N2-(carboxymethyl)-9-(2′-deoxy-β-d-erythro-pentofuranosyl)-purin-6(9H)-one (Gx1-dG). Both adducts were shown to arise from Gx-dG. Gx-dG and Gx2-dG were found to be unstable and partly transformed to Gx1-dG, which is a stable adduct and seems to be the end-product of the glyoxal reaction with 2′-deoxyguanosine. All adducts formed in the reaction of glyoxal with 2′-deoxyguanosine were observed in calf thymus DNA. Also in DNA, Gx1-dG was the only stable adduct. The transformation of Gx-dG to Gx1-dG seemed to take place in single-stranded DNA and therefore, Gx1-dG may be a potentially reliable biomarker for glyoxal exposure and may be involved in the genotoxic properties of the compound.  相似文献   

2.
Epichlorohydrin (a probable human carcinogen) was allowed to react with adenosine and the adducts were characterized by NMR and UV spectroscopy, and mass spectrometry. The adduct initially formed was 1-(3-chloro-2-hydroxypropyl)-adenosine, which subsequently ring closures to 1,N(6)-(2-hydroxypropyl)-adenosine at neutral and basic conditions. At acid conditions, the N-1 adduct undergoes a slow deamination to yield 1-(3-chloro-2-hydroxypropyl)-inosine. Minor adducts identified were 7-(3-chloro-2-hydroxypropyl)-adenosine and 3-(3-chloro-2-hydroxypropyl)-adenosine which are easily deglycosylated, and an adduct where the epichlorohydrin residue was attached to the sugar moiety of adenosine. A diadduct, 1,N(6)-(2-hydroxypropyl)-N(6)-(3-chloro-2-hydroxypropyl)-adenosine was also identified. The reaction of epichlorohydrin with calf thymus DNA gave 1,N(6)-(2-hydroxypropyl)-deoxyadenosine and 3-(3-chloro-2-hydroxypropyl)-adenine (major adduct).  相似文献   

3.
Acrolein (Acr), a ubiquitous environmental contaminant, is a human carcinogen. Acr can react with DNA to form mutagenic α- and γ-hydroxy-1, N(2)-cyclic propano-2'-deoxyguanosine adducts (α-OH-Acr-dG and γ-OH-Acr-dG). We demonstrate here that Acr-dG adducts can be efficiently repaired by the nucleotide excision repair (NER) pathway in normal human bronchial epithelia (NHBE) and lung fibroblasts (NHLF). However, the same adducts were poorly processed in cell lysates isolated from Acr-treated NHBE and NHLF, suggesting that Acr inhibits NER. In addition, we show that Acr treatment also inhibits base excision repair and mismatch repair. Although Acr does not change the expression of XPA, XPC, hOGG1, PMS2 or MLH1 genes, it causes a reduction of XPA, XPC, hOGG1, PMS2, and MLH1 proteins; this effect, however, can be neutralized by the proteasome inhibitor MG132. Acr treatment further enhances both bulky and oxidative DNA damage-induced mutagenesis. These results indicate that Acr not only damages DNA but can also modify DNA repair proteins and further causes degradation of these modified repair proteins. We propose that these two detrimental effects contribute to Acr mutagenicity and carcinogenicity.  相似文献   

4.
DNA kinase has been purified to homogeneity from calf thymus. The purified enzyme, with a specific activity of 16.7 units/mg protein at 25 degrees C, exhibited a sharp pH/activity curve with a pH optimum at 5.5 and low activity at alkaline pH. The molecular weight of the enzyme was estimated by dodecylsulfate/polyacrylamide gel electrophoresis to be 5.4 X 10(4). The enzyme has a sedimentation coefficient of 4.0 S. An apparent molecular weight of 5.6 X 10(4) and a Stokes' radius of 3.3 nm were estimated by gel-filtration on Sephadex G-100. The enzyme phosphorylates neither yeast RNA nor poly(A) instead of DNA. Compared with rat liver DNA kinase, calf thymus DNA kinase is relatively resistant to the inhibition by sulfate (Ki = 7 mM) and pyrophosphate (Ki = 5 mM). The enzyme activity is markedly stimulated by polyamines at the sub-optimal concentration of Mg2+ but not by monovalent cations.  相似文献   

5.
A simple and sensitive resonance Rayleigh scattering (RRS) spectra method was developed for the determination of calf thymus DNA (ctDNA). The enhanced RRS signals were based on the interactions between ctDNA and aminoglycoside antibiotics (AGs) including kanamycin (KANA), tobramycin (TOB), gentamicin (GEN) and neomycin (NEO) in a weakly acidic medium (pH 3.3–5.7). Parameters influencing the method were investigated. Under optimum conditions, increments in the scattering intensity (?I) were directly proportional to the concentration of ctDNA over certain ranges. The detection limit ranged from 12.2 to 16.9 ng/mL. Spectroscopic methods, including RRS spectra, absorption spectra and circular dichroism (CD) spectroscopy, coupled with thermo‐denaturation experiments were used to study the interactions, indicating that the interaction between AGs with ctDNA was electrostatic binding mode. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Treatment of 2'-deoxyadenosine with acrolein at pH 4.6 in 37 degrees C affords unstable adducts containing either one or two fused ring systems where the hydroxypropano units are derived from acrolein. Since the use of 2'-deoxyadenosine resulted in the creation of at least four diastereoisomers for the adduct made up of two fused rings, therefore, for identification and assignment of the products, 9-ethyladenine was used instead as the starting material in the reaction. The products, 3E and 4E, were structurally characterised by UV, mass spectrometry and NMR spectroscopy.  相似文献   

7.
Our previous work has shown that treatment of nucleosides with malonaldehyde simultaneously with acetaldehyde affords stable conjugate adducts. In the present study we demonstrate that conjugate adducts are also formed in calf thymus DNA when incubated with the aldehydes. The adducts were identified in the DNA hydrolysates by their positive ion electrospray MS/MS spectra, by coelution with the 2'-deoxynucleoside standards, and, in the case of adducts exhibiting fluorescent properties, also by LC using a fluorescence detector. In the hydrolysates of double-stranded DNA (ds DNA), two deoxyguanosine and two deoxyadenosine conjugate adducts were detected and in single-stranded DNA (ss DNA) also, the deoxycytidine conjugate adduct was observed. The guanine base was the major target for the malonaldehyde-acetaldehyde conjugates and 2'-deoxyguanosine adducts were produced in ds DNA at levels of 100-500 adducts/10(5) nucleotides (0.7-3 nmol/mg DNA).  相似文献   

8.
Zhou S  Liang D  Burger C  Yeh F  Chu B 《Biomacromolecules》2004,5(4):1256-1261
Synchrotron small-angle X-ray scattering was used to study the nanostructures of the complexes formed by calf thymus DNA interacting with cationic lipids (or surfactants) of didodecyldimethylammonium bromide (DDAB), cetyltrimethylammonium bromide (CTAB), and their mixture with a zwitterionic lipid of 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (PHGPC). The effects of lipid/DNA ratios, DNA chain flexibility, lipid topology, and neutral lipid mixing on the nanostructures of DNA-lipid complexes were investigated. The complexes between double-stranded DNA (dsDNA) and double-tailed DDAB formed a bilayered lamellar structure, whereas the complexes between dsDNA and single-tailed CTAB preferred a structure of 2D hexagonal close packing of cylinders. With single stranded DNA (ssDNA) interacting with CTAB, the complexes showed a Pm3n cubic structure due to the different chain flexibility between dsDNA and ssDNA. The lipid molecules bound by rigid dsDNA like to form cylindrical micelles, whereas lipids bound to flexible ssDNA could form spherical or short cylindrical micelles. The addition of the neutral single-chained PHGPC lipids to the CTAB lipids could induce a structural transition of dsDNA-lipid complexes from a 2D hexagonal to a multi-bilayered lamellar structure. The parallel DNA strands were intercalated in the water layers of lamellar stacks of the mixed lipid bilayers. The DNA-DNA spacing depended on the ratios of charged lipid to neutral lipid, and charged lipid to DNA, respectively.  相似文献   

9.
DNA isolated from calf thymus nuclei is fractionated by zonal centrifugation into 40 sedimentation-rate classes and the reduced viscosity profile determined. This profile is divided into four fractions, I–IV, IV being the fastest sedimenting. The relative concentrations of repetitive DNA sequences in these is determined by hybridization on membrane filters and also hypochromicity by reannealing at 60 °. Repetitive sequences are found in all fractions, although they are slightly more abundant in the order III > II > I. Moreover, fractions I, II, III, act as good competitors in hybridization experiments with each other, implying that a high degree of complementarity exists between repetitive sequences in each of the fractions. Fraction IV had peculiar hydrodynamic properties which have provoked observations on DNA purification.  相似文献   

10.
In vitro reactions of glycidol with pyrimidine bases in calf thymus DNA   总被引:1,自引:0,他引:1  
The 3-carbon epoxide glycidol (GLC) was reacted with dCyd and dThd at pH 7.0 to 7.5 and 37 degrees C for 10 h. The only product detected from the reaction with dCyd was 3-(2,3-dihydroxypropyl)-dUrd (3-DHP-dUrd) whose structure was established from UV spectra, isobutane chemical ionization (CI) mass spectra together with accurate mass measurements and synthesis of 3-DHP-dUrd from reactions of GLC with dUrd. Reaction of GLC with dThd gave a single product, 3-DHP-dThd, whose structure was established from UV spectra and CI mass spectra together with accurate mass measurements. The compounds, 3-DHP-dUrd and 3-DHP-dThd, were identified and quantitated following in vitro reaction of GLC with calf thymus DNA at pH 7.0 to 7.5 and 37 degrees C for 10 h. The amounts of 3-DHP-dUrd and 3-DHP-dThd formed were 10 and 1 nmol/mg DNA respectively. Alkylation at the N-3 position of Cyt resulted in a rapid hydrolytic deamination of Cyt to form a Ura adduct. This phenomena was previously reported by us following reaction of propylene oxide (PO) with dCyd and following in vitro reaction of PO with calf thymus DNA under identical conditions. The rapid hydrolytic deamination of Cyt to Ura may be a general occurrence following alkylation of N-3 of Cyt by 3-carbon epoxides and is postulated to be related to the presence of a C-2 hydroxyl group on the 3-carbon propyl side chain. The implications of this newly discovered lesion in DNA in terms of the mutagenicity of GLC (and PO) remain to be elucidated.  相似文献   

11.
12.
Natural anthraquinone compounds have emerged as potent anticancer chemotherapeutic agents because of their promising DNA‐binding properties. Aloe vera is among one of the very well‐known medicinal plants, and the anthraquinone derivatives like aloe emodin (ALM), aloins (ALN), and aloe emodin‐8‐glucoside (ALMG) are known to have immense biological activities. Here, we have used biophysical methods to elucidate the comparative DNA‐binding abilities of these three molecules. Steady‐state fluorescence study indicated complexation between calf thymus DNA (ctDNA) and both the molecules ALM and ALMG whereas ALN showed very weak interaction with DNA. Displacement assays with ctDNA‐bound intercalator (ethidium bromide) and a groove binder (Hoechst 33258) indicated preferential binding of both ALM and ALMG to minor groove of DNA. Isothermal titration calorimetric (ITC) data suggested spontaneous exothermic single binding mode of both the molecules: ALM and ALMG. Entropy is the most important factor which contributed to the standard molar Gibbs energy associated with relatively small favorable enthalpic contribution. The equilibrium constants of binding to ctDNA were (6.02 ± 0.10) × 104 M?1 and (4.90 ± 0.11) × 104 M?1 at 298.15 K, for ALM and ALMG, respectively. The enthalpy vs temperature plot yielded negative standard molar heat capacity value, and a strong negative correlation between enthalpy and entropy terms was observed which indicates the enthalpy entropy compensation behavior in both systems. All these thermodynamic phenomena indicate that hydrophobic force is the key factor which is involved in the binding process. Moreover, the enhancement of thermal stability of DNA helix by ALM and ALMG fully agreed to the complexation of these molecules with DNA.  相似文献   

13.
The pH-dependent structure of calf thymus DNA is analyzed using Raman spectroscopy. The Raman spectra in the acidic region demonstrate that denaturation occurs in several steps. The binding of H+ to adenine and cytosine residues is accompanied by a decrease in the percentage of DNA in the B-conformation and a concurrent increase in a conformation most probably related to the C-form. The denaturation of DNA is observed at pH 3.3 and parallels the protonation of guanine bases. The Raman spectra of calf thymus DNA in the basic region (above pH 10) show that guanine residues are deprotonated at a lower pH value than are thymine residues. In addition, Raman spectra in the basic region detect conformational changes of the phosphate backbone different from those found in the acidic region.  相似文献   

14.
The binding of [14C]ellipticine to native calf thymus DNA was studied using equilibrium dialysis. A Scatchard polt revealed the presence of high-and low-affinity binding sites in DNA, the former having a K of 4.0 X 10(7) M(-1) and an n (saturation limiting of binding) of 0.078 (1mol ellipticine/13 mol of DNA nucleotides). The forces involved in stabilizing the high-affinity binding, which has been equated with intercalative binding, were due to a combination of hydrophobic interactions and hydrogen bonding. Difference spectra of ellipticine in the presence of the polydeoxynucleotides, poly d(A-T) or poly d(G-C), showed that there was no base specificity involved in the high-affinity binding. Ellipticine binding to the low-affinity sites, which has been equated with surface binding, was due primarily to the participation of electrostatic interactions of ellipticine with the anionic phosphate groups on the double helical surface of DNA.  相似文献   

15.
Thymidine (TdR) incorporation into DNA as a measure of bacterial production in environmental samples relies on assumptions about what organisms incorporate exogenous thymidine, extent of dilution of labelled thymidine by internal and external pools, and analytical methods for recovery and purification of bacterial DNA. We have examined these assumptions with regard to the feasibility of using [3H]TdR incorporation in the water column and sediments of a blackwater river. The extent of dilution of added [3H]TdR may be determined with isotope dilution plots (Moriarty and Pollard, 1981 and 1982) and these indicate a wide range of degree of participation of added [3H]TdR. Previously described methods for extracting DNA from sediment bacteria may lead to underestimates and we described a more efficient recovery scheme.  相似文献   

16.
The interaction of two water soluble phthalocyanines, cobalt(II) 4,4′,4″,4‴-tetrasulfo-phthalocyanine (CoTsPc) and iron(II) 4,4′,4″,4‴-tetrasulfo-phthalocyanine (FeTsPc), and one water soluble porphyrin, tetra sodium mesotetrakis(p-sulfophenyl)porphyrin (TSPP), with calf thymus DNA has been studied by UV-Vis spectroscopy at five different temperatures (20, 25, 30, 35, and 40°C). The optical absorption spectra of these materials were analyzed to obtain binding constants and stoichiometries using SQUAD software. The results show that the best fitting corresponds to a 1: 1 complex model between a base pair of DNA and these materials. All of the studied porphyrin and phthalocyanines showed strong electrolyte effect, and increasing NaCl concentration induced self-aggregation of these materials. Published in Russian in Biokhimiya, 2007, Vol. 72, No. 6, pp. 799–804.  相似文献   

17.
The effects on thermal denaturation of calf thymus DNA (ct-DNA) and its conformational changes induced by the presence in solution of different polyols, namely glycerol, i-erytritol, (−) and (+) arabitol, -mannitol, -sorbitol and myo-inositol, have been investigated by means of differential scanning calorimetry (DSC) and circular dichroism (CD). By increasing the concentration of these additives a decrease in both the denaturation enthalpy (ΔdH) and temperature of the maximum of the denaturation peak (Tmax) of DNA is observed. The values of these thermodynamic parameters depend on both the nature and concentration of the solute. The overall destabilization of DNA molecule has been related to the different capability of polyhydric alcohols to interact with the polynucleotide solvation sites replacing water and to the modification of the electrostatic interactions between the polynucleotide and its surrounding atmosphere of counterions. The particular behaviour of (−) arabitol, which showed a much greater destabilizing ability compared to the other polyols, was further investigated and attributed to a direct more effective interaction with the double helix of DNA. CD spectra showed only a slight alteration of DNA-B structure in the presence of all the molecules here studied, except for (−) arabitol where the DNA molecule seems to undergo a meaningful conformational change. The salt concentration dependence of DNA thermal stability in the presence of (−) arabitol indicates a conformational change of polynucleotide towards a more extended conformation.  相似文献   

18.
Among multiple subspecies of DNA polymerase α of calf thymus, only 10 S DNA polymerase α had a capacity to initiate DNA synthesis on an unprimed single-stranded, circular M13 phage DNA in the presence of ribonucleoside triphosphates (DNA primase activity). The primase was copurified with 10 S DNA polymerase α through the purification and both activities cosedimented at 10 S through gradients of either sucrose or glycerol. Furthermore, these two activities were immunoprecipitated at a similar efficiency by a monoclonal antibody directed against calf thymus DNA polymerase α. These results indicate that the primase is tightly bound to 10 S DNA polymerase α. The RNA polymerizing activity was resistant to α-amanitin, required high concentration of all four ribonucleoside triphosphates (800 μM) for its maximal activity, and produced the limited length of oligonucleotides (around 10 nucleotides long) which were necessary to serve as a primer for DNA synthesis. Covalent bonding to RNA to DNA was strongly suggested by the nearest neighbour frequency analysis and the DNAase treatment. The DNA synthesis primed by the RNA oligomers may be carried out by the associating DNA polymerase α because it was strongly inhibited by araCTP, resistant to d2TTP, and was also inhibited by aphidicolin but at relatively high concentration. The primase preferred single-stranded DNA as a template, but it also showed an activity on the double-stranded DNA from calf thymus at an efficiency of approx. 10% of that with single-stranded DNA.  相似文献   

19.
Acrolein, a known mutagen, undergoes reaction in vitro under physiological conditions with both 2(')-deoxyguanosine and native DNA to give rise to exocyclic adducts of the 5,6,7,8-tetrahydropyrimido[1,2-a]purine-10(3H)-one class having an hydroxy group at either the 6 or the 8 position. Previously we have shown that the 8-hydroxy derivative in a bacterial system has very low mutagenicity probably because in double-stranded DNA this residue exists in the open-chain aldehydic form [N(2)-(3-oxopropyl)-2(')-deoxyguanosine] (3). To continue our investigation in this area, we needed ample supplies of the 6-hydroxy isomers. This current paper describes high-yield simple methods for the synthesis in bulk of the 6-hydroxy adduct 1 and its incorporation into DNA oligomers. The basic methods for the synthesis of the adduct 1, involve 1-substitution of dG derivatives with a 3-butenyl group, dihydroxylation of the olefin with osmium tetroxide and N-methylmorpholine N-oxide, then diol cleavage with periodate ion after incorporation of the 1-(3,4-diacetoxybutyl)-2(')-deoxyguanosine into oligomeric DNA.  相似文献   

20.
The binding of benzoyl peroxide (BPO), a flour brightener, with calf thymus DNA (ctDNA) was predicted by molecular simulation, and this were confirmed using multi‐spectroscopic techniques and a chemometrics algorithm. The molecular docking result showed that BPO could insert into the base pairs of ctDNA, and the adenine bases were the preferential binding sites which were validated by the analysis of Fourier transform infrared spectra. The mode of binding of BPO with ctDNA was an intercalation as supported by the results from ctDNA melting and viscosity measurements, iodide quenching effects and competitive binding investigations. The circular dichroism and DNA cleavage assays indicated that BPO induced a conformational change from B‐like DNA structure towards to A‐like form, but did not lead to significant damage in the DNA. The complexation was driven mainly by hydrogen bonds and hydrophobic interactions. Moreover, the ultraviolet–visible (UV–vis) spectroscopic data matrix was resolved by a multivariate curve resolution–alternating least–squares algorithm. The equilibrium concentration profiles for the components (BPO, ctDNA and BPO–ctDNA complex) were extracted from the highly overlapping composite response to quantitatively monitor the BPO–ctDNA interaction. This study has provided insights into the mechanism of the interaction of BPO with ctDNA and potential hazards of the food additive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号