首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PURPOSE: To investigate the importance of two possible mechanisms of tyrosine oxidation on the yield of protein dimerization. The model chosen is hen and turkey egg-white lysozymes, which differ by seven amino acids, among which one tyrosine is in the 3 position. MATERIALS AND METHODS: Aqueous solutions of proteins were oxidized by OH(*) or N(*)(3) free radicals produced by gamma or pulse irradiation in an atmosphere of N(2)O. Protein dimers were quantified by SDS-PAGE and reverse-phase HPLC. Dityrosines were identified by absorption and fluorescence. RESULTS: Using N(*)(3) free radicals, the initial yields of dimerization are equal to (8.6 +/- 0.7) x 10(-9) mol J(-1) for both proteins. Using OH(*) free radicals, they become equal to (1.23 +/- 0.1) x 10(-8) and (4.42 +/- 0.1) x 10(-8) mol J(-1) for hen and turkey egg-white lysozymes, respectively (gamma radiolysis). DISCUSSION. N(*)(3) radicals react primarily with tryptophan residues only. Tyrosine gets oxidized by intramolecular long-range electron migration, whereas OH(*) may react directly with tyrosines. We propose a low participation of Tyr3 in turkey protein in the intramolecular process, because Tyr3 is far from all tryptophans. On the other hand, Tyr3 is very accessible to solvent and in a flexible area; thus collisions with OH(*) could easily be followed by intermolecular dimerization.  相似文献   

2.
On the basis of the molecular evolution of hen egg white, human, and turkey lysozymes, three replacements (Trp62 with Tyr, Asn37 with Gly, and Asp101 with Gly) were introduced into the active-site cleft of hen egg white lysozyme by site-directed mutagenesis. The replacement of Trp62 with Tyr led to enhanced bacteriolytic activity at pH 6.2 and a lower binding constant for chitotriose. The fluorescence spectral properties of this mutant hen egg white lysozyme were found to be similar to those of human lysozyme, which contains Tyr at position 62. The replacement of Asn37 with Gly had little effect on the enzymatic activity and binding constant for chitotriose. However, the combination of Asn37----Gly (N37G) replacement with Asp101----Gly (D101G) and Trp62----Tyr (W62Y) conversions enhanced bacteriolytic activity much more than each single mutation and restored hydrolytic activity toward glycol chitin. Consequently, the mutant lysozyme containing triple replacements (N37G, W62Y, and D101G) showed about 3-fold higher bacteriolytic activity than the wild-type hen lysozyme at pH 6.2, which is close to the optimum pH of the wild-type enzyme.  相似文献   

3.
The binding constants of N-acetylglucosamine (G1cNAc) and its methyl alpha- and beta- glycosides to hen and turkey egg-white lysozymes [EC 3.2.1.17], in the latter of which Asp 101 is replaced by Gly, were determined at various pH values by measuring changes in the circular dichroic (DC) band at 295 nm. The binding of beta-methyl-G1cNAc to turkey and hen lysozymes perturbed the pK value of Glu 35 from 6.0 to 6.5, the pK value of Asp 52 from 3.5 to 3.9, and the pK value of Asp 66 from 1.3 to 0.7. In addition, perturbation of the pK value of Asp 101 from 4.4 to 4.0 was observed in the binding of this saccharide to hen lysozyme. The binding of alpha-methyl-GlcNAc to hen and turkey lysozymes perturbed the pK value of Glu 35 to the alkaline side by about 0.5 pH unit, the pK value of Asp 66 to the acidic side by about 0.5 pH unit, and the pK value (4.4) of an ionizable group to the acidic side by about 0.6 pH unit. The last ionizable group was tentatively assigned to Asp 48. The pK value of Asp 52 was not perturbed by the binding of this saccharide. The pH dependence curves for the binding of GlcNAc to hen and turkey lysozymes were very similar and it was suggested that Asp 48, in addition to Asp 66, Asp 52, and Glu 35, is perturbed by the binding of GlcNAc.  相似文献   

4.
The binding constants of alpha- and beta-GlcNAc to hen and turkey lysozymes [EC 3.2.1.17] were determined at various pH's using the method proposed by Ikeda and Hamaguchi (1975) J. Biochem. 77, 1-16). The pH dependence of the binding of beta-GlcNAc to hen lysozyme was essentially the same as that for turkey lysozyme. The pH dependence curves of the binding constants of beta-GlcNAc to hen and turkey lysozymes were interpreted in terms of the participation of Glu 35 (pK 6.0), Asp 52 (pK 3.5), Asp 48 (pK 4.5), and Asp 66 (pK 1.5). The binding constants of alpha-GlcNAc to hen and turkey lysozymes were the same below pH 3.5 but were different above this pH. The main participant residues in the binding of alpha-GlcNAc were Glu 35, Asp 48, and Asp 66 for hen lysozyme and Glu 35 and Asp 66 for turkey lysozyme. The results obtained here were well explained by the following assumptions: (1) above about pH 4, alpha-GlcNAc binds to hen lysozyme in both alpha- and beta-modes, which correspond to the binding orientation of alpha-GlcNAc and that of beta-GlcNAc, respectively, as determined by X-ray crystallographic studies, but it binds predominantly in the beta-mode below about pH 4, (2) beta-GlcNAc binds to hen and turkey lysozymes predominantly in the beta-mode above about pH 4 and in both alpha- and beta-modes below pH 4, and (3) alpha-GlcNAc binds to turkey lysozyme predominantly in the beta-mode over the whole pH range studied.  相似文献   

5.
The azide, dibromide and dichloride radicals oxidize one or more tryptophan side chains in hen egg-white lysozyme. The indolyl radical produced in this second-order 1-electron oxidation subsequently oxidizes a tyrosine side chain to the phenoxy radical in an intramolecular reaction with a rate constant of 130 +/- 10 s-1 at pH 7, 25 degrees C. The final indolyl and phenoxy equilibrium mixture then decays with a t1/2 approximately 2 s. The faster intramolecular reaction exhibits a pH dependence; on decreasing the pH from 9 the first-order rate constant increases to a maximum near pH 5.4 and then declines as the pH is lowered further. In contrast, the first-order rate constant for the intramolecular electron transfer between the tyrosine and tryptophan of the peptide trpH-pro-tyrOH remains unchanged between approx. pH 11 and 6.5 and then increases as the pH is lowered further. This difference in the observed pH dependence suggests that changes in structure or ionization state influence the protein electron transfer rate. We also discuss the radiation inactivation of lysozyme in light of these observations.  相似文献   

6.
The interaction of N-acetyl-chitotriose ((GlcNAc)3) with human lysozyme [EC 3.2.1.17] was studied at various pH values by measuring changes in the circular dichroic (CD) band at 294 or 255 nm and the data were compared with the results for hen and turkey lysozymes reported previously (Kuramitsu et al. (1974) J. Biochem.76, 671-683; Kuramitsu et al. (1975) J. Biochem. 77, 291-301). The pH dependence of the binding constant of (GlcNAc)3 to human lysozyme was different from those for hen and turkey lysozymes. The catalytic carboxyls of human lysozyme, Asp 52 and Glu 35, were not perturbed on binding of (GlcNAc)3. This is consistent with the previous findings that the macroscopic pK values of Asp 52 and Glu 35 of human lysozyme are 3.4 and 6.8 at 0.1 ionic strength and 25 degrees and were unchanged on complexing with (GlcNAc)3. An ionizable group with pK 4.5, which participates in the binding of (GlcNAc)3 to hen lysozyme and was assigned as Asp 101, did not participate in the binding of the saccharide to human lysozyme. Between pH 9 and 11, the binding constants of (GlcNAc)3 to hen lysozyme remained unchanged, whereas perturbation of an ionizable group with pK 10.5 to 10.0 was observed for human lysozyme. This group may be Tyr 62 in the active-site cleft. The binding constants of (GlcNAc)3 to human lysozyme molecules having different microscopic protonation forms, with respect to the catalytic carboxyls, were estimated using the binding constants obtained in the present experiments and the microscopic ionization constants of the catalytic carboxyls obtained previously. All four species of human lysozyme had similar binding constants to (GlcNAc)3. This result is different from those for hen and turkey lysozymes.  相似文献   

7.
The difference absorption spectra of hen and turkey lysozymes in the alkaline pH region had three maxima at around 245, 292, and 300 nm and had no isosbestic points. The ratio of the extinction difference at 245 nm to that at 295 nm changed with pH. These spectral features are quite different from those observed when only tyrosyl residues are ionized, and it was impossible to determine precisely the pK values of the tyrosyl residues in lysozyme by spectrophotometric titration. A time-dependent spectral change was observed above about pH 12. This is not due to exposure of a buried tyrosyl residue on alkali denaturation. The disulfide bonds and the peptide bonds in the lysozyme molecule were cleaved by alkali above about pH 11. The intrinsic pK value of Tyr 23 of hen lysozyme was determined to be 10.24 (apparent pK 9.8) at 0.1 ionic strength and 25 degrees C from the CD titration data. Comparison of the CD titration of turkey lysozyme with that of hen lysozyme suggested that Tyr 3 and Tyr 23 in turkey lysozyme have apparent pK values of 11.9 and 9.8, respectively.  相似文献   

8.
Two lysozymes were purified from quail egg white by cation exchange column chromatography and analyzed for amino acid sequence. The enzymes showed the same pH optimum profile for lytic activity with broad pH optima (pH 5.0-8.0) but had difference in mobility on native-PAGE. The native-PAGE immunoblot showed one or two lysozymes present in individual egg whites. The established amino acid sequence of quail egg white lysozyme A (QEWL A) was the same as quail lysozyme reported by Kaneda et al. [Kaneda, M., Kato, I., Tominaga, N., Titani, K., Narita, K., 1969. The amino acid sequence of quail lysozyme. J. Biochem. (Tokyo). 66, 747-749] and had six amino acid substitutions at position 3 (Phe to Tyr), 19 (Asn to Lys), 21 (Arg to Gln), 102 (Gly to Val) 103 (Asn to His) and 121 (Gln to Asn) compared to hen egg white lysozyme. QEWL A and QEWL B showed one substitution, at the position 21, Gln replaced by Lys, plus an insertion of Leu between position 20 and 21, being the first report that QEWL B had 130 amino acids. The amino acid differences between two lysozymes did not seem to affect antigenic determinants detected by polyclonal anti-hen egg white lysozyme, but caused them to separate well from each other by ion exchange chromatography.  相似文献   

9.
We have isolated from a human synthetic phage display library a clone, 2A3, which discriminates native lysozyme from denatured forms. Binding of single-chain Fv fragments (scFvs) of the clone to native hen egg white lysozyme was competitively inhibited by native hen egg white (hew) and human (h) lysozymes. Dot blotting analysis indicated that scFv of the clone did not react with denatured lysozymes. The K(d) values for scFv of 2A3 binding to native hew- and h-lysozymes were 3.78 x 10(-9) and 9.31 x 10(-9) M, respectively, indicating that 2A3 binds more strongly to native hew-lysozyme than to native h-lysozyme. The deduced amino acid sequence of the V(H) chain-CDR3 region of 2A3 was RRYALDY, of which the Arg residues at positions 1 and 2 of the CDR3 region were observed to be extremely rare in other antibodies by homology analysis. Based on these observations, site-directed mutagenesis of the RRYALDY-coding region was carried out. The results, combined with biomolecular analyses, demonstrated that Arg residues at positions 1 and 2 of this region were important for native lysozyme-binding.  相似文献   

10.
Hexagonal crystals of turkey egg white lysozyme have been examined for activity in order to evaluate their potential for use in time-resolved X-ray crystallographic experiments. Substrates used in this study were hexa-N-acetylglucosamine (hexa-GlcNAc) and a modified analogue of hexa-GlcNAc where the terminal sugar ring was opened by reduction with tritiated sodium borohydride. This gave a labeled beta-N-acetylglucosaminitol unit at the sixth position of the sugar chain and allowed easy quantitation of enzymatic cleavage on TLC plates. Using these substrates, it has been shown that turkey egg white lysozyme is enzymatically active in the crystal. Enzyme dispersed in the buffer surrounding the crystal does not show detectable activity under conditions relevant to an X-ray experiment. Unmodified hexa-GlcNAc is hydrolyzed into di-, tri-, and tetrasaccharides in the crystal. This cleavage pattern is different from that obtained with hen egg white lysozyme in solution and likely causes of the differences are discussed. The reduced radiolabeled oligosaccharide has a unique cleavage pattern with trisaccharides as the products. The specific activity of the enzyme with the radiolabelled analogue was 9.8 (+/- 1.0) x 10(-7) mmol/min/mg protein at 22 degrees C in the crystal.  相似文献   

11.
Song Y  Azakami H  Hamasu M  Kato A 《FEBS letters》2001,491(1-2):63-66
The mutant hen egg white lysozymes Ile55Thr and Asp66His, corresponding to human amyloidogenic mutant lysozymes Ile56Thr and Asp67His, respectively, were secreted in Saccharomyces cerevisiae. The amyloidogenic mutants (I55T and D66H) of hen egg white lysozymes were remarkably less soluble than that of the wild-type protein. To enhance the secretion of these mutants, we constructed the glycosylated amyloidogenic lysozymes (I55T/G49N and D66H/G49N) having the N-glycosylation signal sequence (Asn-X-Ser) by the substitution of glycine with asparagine at position 49. The secretion of these glycosylated mutant proteins is greatly increased in S. cerevisiae, compared with that of non-glycosylated type. Both the glycosylated mutants retained about 40% enzymatic activity when incubated at pH 7.4 for 1 h at the physiological temperature of 37 degrees C whereas the non-glycosylated proteins eventually lost all activity under these conditions. These results suggest that the glycosylated chains could mask the beta-strand of amyloidogenic lysozymes from the intermolecular cross-beta-sheet association, thus improving the solubility of amyloidogenic lysozymes.  相似文献   

12.
The circular dichroism spectra of hen egg white lysozyme, and of lysozyme derivatives in which tryptophan residues 62 or 108, or both, are selectively oxidized, have been measured as a function of pH over the range of 200 to 310 nm. Neither Trp-62 nor Trp-108 is principally responsible for the positive rotational strength in the 280 to 300 nm region. The spectrum in the 200 to 230 nm region is nearly the same in the native protein and in the derivatives, and is little affected by binding of saccharide. These results are used to reinterpret the circular dichroism spectra of the lysozymes and alpha-lactalbumins.  相似文献   

13.
To study the structure and function of reptile lysozymes, we have reported their purification, and in this study we have established the amino acid sequence of three egg white lysozymes in soft-shelled turtle eggs (SSTL A and SSTL B from Trionyx sinensis, ASTL from Amyda cartilaginea) by using the rapid peptide mapping method. The established amino acid sequence of SSTL A, SSTL B, and ASTL showed substitutions of 43, 42, and 44 residues respectively when compared with the HEWL (hen egg white lysozyme) sequence. In these reptile lysozymes, SSTL A had one substitution compared with SSTL B (Gly126Asp) and had an N-terminal extra Gly and 11 substitutions compared with ASTL. SSTL B had an N-terminal extra Gly and 10 residues different from ASTL. The sequence of SSTL B was identical to soft-shelled turtle lysozyme from STL (Trionyx sinensis japonicus). The Ile residue at position 93 of ASTL is the first report in all C-type lysozymes. Furthermore, amino acid substitutions (Phe34His, Arg45Tyr, Thr47Arg, and Arg114Tyr) were also found at subsites E and F when compared with HEWL. The time course using N-acetylglucosamine pentamer as a substrate exhibited a reduction of the rate constant of glycosidic cleavage and increase of binding free energy for subsites E and F, which proved the contribution for amino acids mentioned above for substrate binding at subsites E and F. Interestingly, the variable binding free energy values occurred on ASTL, may be contributed from substitutions at outside of subsites E and F.  相似文献   

14.
In order to obtain a better understanding of the possible influence of the primary sequence of a protein on its folding pathway, renaturation of reduced human milk lysozyme was compared to that of reduced hen egg white lysozyme. Following disulfide bond formation, under identical conditions, similar products were found during the folding of both lysozymes, but the kinetics of appearance and disappearance of these intermediates as well as the appearance of the native conformation were different.  相似文献   

15.
The difference spectra of hen and turkey egg-white lysozymes [EC 3.2.1.17] produced by acidification were measured. The difference spectra of both lysozymes had peaks at 295 and 301 nm which are characteristic of tryptophyl residues. The pH dependence curves of the extinction differences (delta eplision) at 301 nm and 295 nm for hen lysozyme were identical with the corresponding curves for turkey lysozyme. The pH dependence of delta eplision at 301 nm was analyzed assuming that the extinction at 301 nm is due to Trp 108 only, which interacts with the catalytic carboxyls, Glu 35 and Asp 52. The macroscopic pK values of Glu 35 and Asp 52 in both lysozymes thus determined were 6.0 and 3.3, respectively. These values were in excellent agreement with those determined by measuring the pH dependence of the circular dichroic band at 305 nm (Kuramitsu et al. (1974) J. Biochem, 76, 671-683; (1975) ibid. 77, 291-301). The pH dependence of delta eplision at 295 nm could not be completely explained in terms of the electrostatic effects of the catalytic groups on Trp 108.  相似文献   

16.
The lysozyme (rabbit kidney lysozyme) from the homogenate of rabbit kidney (Japanese white) was purified by repeated cation-exchange chromatography on Bio-Rex 70. The amino acid sequence was determined by automated gas-phase Edman degradation of the peptides obtained from the digestion of reduced and S-carboxymethylated rabbit lysozyme with Achromobacter protease I (lysyl endopeptidase). The sequence thus determined was KIYERCELARTLKKLGLDGYKGVSLANWMCLAKWESSYNTRATNYNPGDKSTDYGIFQ INSRYWCNDGKTPRAVNACHIPCSDLLKDDITQAVACAKRVVSDPQGIRAWVAWRNHCQ NQDLTPYIRGCGV, indicating 25 amino acid substitutions from human lysozyme. The lytic activity of rabbit lysozyme against Micrococcus lysodeikticus at pH 7, ionic strength of 0.1, and 30 degrees C was found to be 190 and 60% of those of hen and human lysozymes, respectively. The lytic activity-pH profile of rabbit lysozyme was slightly different from those of hen and human lysozymes. While hen and human lysozymes had wide optimum activities at around pH 5.5-8.5, the optimum activity of rabbit lysozyme was at around pH 5.5-7.0. The high proline content (five residues per molecule compared with two prolines per molecule in hen or human lysozyme) is one of the interesting features of rabbit lysozyme. The transition temperatures for the unfolding of rabbit, human, and hen lysozymes in 3 M guanidine hydrochloride at pH 5.5 were 51.2, 45.5, and 45.4 degrees C, respectively, indicating that rabbit lysozyme is stabler than the other two lysozymes. The high proline content may be responsible for the increased stability of rabbit lysozyme.  相似文献   

17.
We investigated the influence of solvation forces on protein-protein interactions for two forms of lysozyme: hen egg white (HEWL) and turkey egg white (TEWL). Turkey egg white has more surface exposed hydrophobic residues than HEWL and the protein-protein interactions of TEWL are shown to be more attractive than those of HEWL, for the conditions studied. The importance of including a solvation term in the potential of mean force model, to account for molecular variation in protein surface characteristics, is highlighted. We also show that the magnitude of this solvation term can be estimated using readily available data.  相似文献   

18.
Equilibrium and calorimetric studies of substrate binding to turkey egg white (TEW) lysozyme were carried out at 30degrees as a function of pH (2 to 9) and ligand size (monosaccharide to hexasaccharide of N-acetylglucosamine). Steady state kinetic measurements using the N-acetylglucosamine hexasaccharide were carried out as a function of pH (2 to 9) and temperature (20-60degrees). These experiments allow comparison of the properties of TEW lysozyme with those of the hen egg white (HEW) enzyme reported previously (Banerjee, S. K., Holler, E., Hess, G. P., and Rupley, J. A. (1975) J. Biol. Chem. 250, 4355-4367, and references therein). The free energies and enthalpies of oligosaccharide binding are the same for TEW and HEW lysozymes at pH 2 but are less negative for TEW lysozyme at pH 5. The pH dependence of the binding of (GlcNAc)3 and higher oligomers to TEW lysozyme is like that for the binding of beta-methyl-N-acetylglucosaminide to TEW lysozyme. These data indicate that oligosaccharide ligands bind identically with HEW and TEW lysozymes, except for the interactions of residue 101, which is aspartic acid in the HEW protein and glycine in the TEW protein (Larue, J. N., and Speck, J. C., Jr. (1970) J. Biol. Chem. 245, 1985-1991). The pH dependence of kcat is described by apparent pK values of 3.9 and 6.8 and a maximum value of kcat of 0.135 s-1. A value of 21.0 kcal/mol was calculated for deltaH from the temperature dependence of kcat. These values and the dependence of the transglycosylation reaction on acceptor concentration are within experimental error the same as those for HEW lysozyme. The more acid pK seen in the pH rate profile reflects the ionization of Asp-52 in the lysozyme-(GlcNAc)6 complex. The pK of Asp-52 in the free protein is 0.3 pK unit lower. The essential identity of the active sites of the HEW and TEW enzymes, except for the Asp-101 interactions, allows estimation of the thermodynamic properties associated with formation of the two hydrogen bonds between Asp-101 and substrate as deltaG0 = -1.2 kcal/mol, DeltaH0 = -3.6 kcal/mol, and deltaS0 = -7.9 e.u.  相似文献   

19.
The reaction of hen egg white lysozyme with a 4 molar excess of dimethyl (2-hydroxy-5-nitrobenzyl)-sulfonium bromide at pH 6.0 leads to total loss of enzymatic activity within 5 minutes. Upon standing, the inactivated enzyme spontaneously regains activity, leveling off at 60% of the original activity after 72 hours. Under the same conditions, turkey egg white lysozyme is reduced to less than 5% of its original activity within 5 minutes, then spontaneously reactivates to 85% of its original activity after 24 hours. Human lysozyme shows no dramatic loss of activity when treated under these conditions. The presence of the substrate, chitotetraose, prevents the initial inactivation of both hen and turkey enzymes.  相似文献   

20.
One-electron oxidation of TyrOH-TrpH or TrpH-TyrOH in aqueous solutions by N3 radicals occurs predominantly at the tryptophyl residue. The corresponding indolyl radicals (absorbing at 510 nm) are subsequently transformed into phenoxyl radicals (absorbing at 390/405 nm): TyrOH-Trp leads to TyrO-TrpH, k5 = 5.4 x 10(4)s-1, (5), Trp-TyrOH leads to TrpH-TyrO, k7 = 7.3 x 10(4)s-1. (7) The first-order radical transformation rates are independent of the (initial) concentration of N3 or peptide and unaffected by urea (as a modifier of hydrogen bond structures). Intermolecular conversion of indolyl into phenoxyl radicals, e.g. by reaction of GlyH-Trp with TyrOH-GlyH, is very slow and inefficient. It is concluded that reactions (5) and (7) occur by intramolecular charge transfer across the peptide bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号