首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Two-peptide bacteriocins produced by lactic acid bacteria   总被引:17,自引:0,他引:17  
Garneau S  Martin NI  Vederas JC 《Biochimie》2002,84(5-6):577-592
Bacteriocins from lactic acid bacteria are ribosomally produced peptides (usually 30-60 amino acids) that display potent antimicrobial activity against certain other Gram-positive organisms. They function by disruption of the membrane of their targets, mediated in at least some cases by interaction of the peptide with a chiral receptor molecule (e.g., lipid II or sugar PTS proteins). Some bacteriocins are unmodified (except for disulfide bridges), whereas others (i.e. lantibiotics) possess extensive post-translational modifications which include multiple monosulfide (lanthionine) bridges and dehydro amino acids as well as possible keto amide residues at the N-terminus. Most known bacteriocins are biologically active as single peptides. However, there is a growing class of two peptide systems, both unmodified and lantibiotic, which are fully active only when both partners are present (usually 1:1). In some cases, neither peptide has activity by itself, whereas in others, the activity of one is enhanced by the other. This review discusses the classification, structure, production, regulation, biological activity, and potential applications of such two-peptide bacteriocins.  相似文献   

3.
Colicin V is a small, proteinaceous bacterial toxin, produced by many strains of Escherichia coli and other members of the Enterobacteriaceae, that fits the definition of class II bacteriocins of Gram-positive bacteria. Export of colicin V is dependent on specific ABC (ATP-binding cassette) secretion proteins which recognize a double-glycine-type leader peptide on the immature colicin V bacteriocin. Replacement of the colicin V leader peptide by a signal peptide from the signal sequence-dependent bacteriocin divergicin A allowed expression of colicin V in lactic acid bacteria. This system may serve as a model for the heterologous expression of other small bacteriocins active against Gram-negative bacteria and other antibacterial peptides from lactic acid bacteria.  相似文献   

4.
Pons AM  Lanneluc I  Cottenceau G  Sable S 《Biochimie》2002,84(5-6):531-537
Microcins are a family of low molecular weight antibiotic peptides produced by Enterobacteriaceae strains and active against related bacteria. According to some features we propose to classify these antibiotic substances into two distinct groups. The class I microcins contain Mcc B17, C7, J25 and D93 that are small molecules (molecular mass inferior to 5 kDa), largely post-translationally modified and with specific intracellular targets. The class II microcins, MccV, E492, H47, L and 24, share several common properties with class IIa Gram-positive bacteriocins: molecular mass ranging from 7 to 10 kDa, absence of modified amino acids, double-glycine type leader peptides, secretion mediated by an ABC transporter and antibacterial activity due to interaction with bacterial membrane. This review discusses common features of the class II microcins and provides new insights into these peptides.  相似文献   

5.
Bacteriocins: mechanism of membrane insertion and pore formation   总被引:11,自引:0,他引:11  
Lactic acid bacteria produce several types of pore forming peptides. Class I bacteriocins are lantibiotics that contain (methyl)lanthionine residues that may form intramolecular thioether rings. These peptides generally have a broad spectrum of activity and form unstable pores. Class II bacteriocins are small, heat stable peptides mostly with a narrow spectrum of activity. Most bacteriocins interact with anionic lipids that are abundantly present in the membranes of Gram-positive bacteria.'Docking molecules' may enhance the conductivity and stability of lantibiotic pores, while'receptors' in the target membrane may determine specificity of class II bacteriocins. Insertion into the membrane of many bacteriocins is proton motive force driven. Lantibiotics may form pores according to a'wedge-like' model, while class II bacteriocins may enhance membrane permeability either by the formation of a'barrel stave' pore or by a'carpet' mechanism.  相似文献   

6.
7.
Bacteriocin production in many Gram-positive bacteria is controlled by a two-component regulatory system that is composed of the sensor protein and the response regulator. In this work, methods of computer analysis were used to describe the locus of genes responsible for the synthesis of class II bacteriocins in the Streptococcus equi genome. Potential regulatory sites (direct repeats) recognized by a DNA-binding protein of the corresponding two-component system were predicted.  相似文献   

8.
A New Structure-based Classification of Gram-positive Bacteriocins   总被引:1,自引:0,他引:1  
Bacteriocins are ribosomally-synthesized peptides or proteins produced by a wide range of bacteria. The antimicrobial activity of this group of natural substances against foodborne pathogenic and spoilage bacteria has raised considerable interest for their application in food preservation. Classifying these bacteriocins in well defined classes according to their biochemical properties is a major step towards characterizing these anti-infective peptides and understanding their mode of action. Actually, the chosen criteria for bacteriocins’ classification lack consistency and coherence. So, various classification schemes of bacteriocins resulted various levels of contradiction and sorting inefficiencies leading to bacteriocins belonging to more than one class at the same time and to a general lack of classification of many bacteriocins. Establishing a coherent and adequate classification scheme for these bacteriocins is sought after by several researchers in the field. It is not straightforward to formulate an efficient classification scheme that encompasses all of the existing bacteriocins. In the light of the structural data, here we revisit the previously proposed contradictory classification and we define new structure-based sequence fingerprints that support a subdivision of the bacteriocins into 12 groups. The paper lays down a resourceful and consistent classification approach that resulted in classifying more than 70% of bacteriocins known to date and with potential to identify distinct classes for the remaining unclassified bacteriocins. Identified groups are characterized by the presence of highly conserved short amino acid motifs. Furthermore, unclassified bacteriocins are expected to form an identified group when there will be sufficient sequences.  相似文献   

9.
Lactic acid bacteria (LAB) fight competing Gram-positive microorganisms by secreting anti-microbial peptides called bacteriocins. Peptide bacteriocins are usually divided into lantibiotics (class I) and non-lantibiotics (class II), the latter being the main topic of this review. During the past decade many of these bacteriocins have been isolated and characterized, and elements of the genetic mechanisms behind bacteriocin production have been unravelled. Bacteriocins often have a narrow inhibitory spectrum, and are normally most active towards closely related bacteria likely to occur in the same ecological niche. Lactic acid bacteria seem to compensate for these narrow inhibitory spectra by producing several bacteriocins belonging to different classes and having different inhibitory spectra. The latter may also help in counteracting the possible development of resistance mechanisms in target organisms. In many strains, bacteriocin production is controlled in a cell-density dependent manner, using a secreted peptide-pheromone for quorum-sensing. The sensing of its own growth, which is likely to be comparable to that of related species, enables the producing organism to switch on bacteriocin production at times when competition for nutrients is likely to become more severe. Although today a lot is known about LAB bacteriocins and the regulation of their production, several fundamental questions remain to be solved. These include questions regarding mechanisms of immunity and resistance, as well as the molecular basis of target-cell specificity. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Bacteriocin production in many Gram-positive bacteria is controlled by a two-component regulatory system that is composed of the sensor protein and the response regulator. In this work, methods of computer analysis were used to describe the locus of genes responsible for the synthesis of class II bacteriocins in theStreptococcus equi genome. Potential regulatory sites (direct repeats) recognized by a DNA-binding protein of the corresponding two-component system were predicted.  相似文献   

11.

Background  

Many Gram-positive lactic acid bacteria (LAB) produce anti-bacterial peptides and small proteins called bacteriocins, which enable them to compete against other bacteria in the environment. These peptides fall structurally into three different classes, I, II, III, with class IIa being pediocin-like single entities and class IIb being two-peptide bacteriocins. Self-protective cognate immunity proteins are usually co-transcribed with these toxins. Several examples of cognates for IIa have already been solved structurally. Streptococcus pyogenes, closely related to LAB, is one of the most common human pathogens, so knowledge of how it competes against other LAB species is likely to prove invaluable.  相似文献   

12.
Circular bacteriocins are antimicrobial peptides produced by a variety of Gram-positive bacteria. They are part of a growing family of ribosomally synthesized peptides with a head-to-tail cyclization of their backbone that are found in mammals, plants, fungi and bacteria and are exceptionally stable. These bacteriocins permeabilize the membrane of sensitive bacteria, causing loss of ions and dissipation of the membrane potential. Most circular bacteriocins probably adopt a common 3D structure consisting of four or five α-helices encompassing a hydrophobic core. This review compares the various structures, as well as the gene clusters that encode circular bacteriocins, and discusses the biogenesis of this unique class of bacteriocins.  相似文献   

13.
Quorum sensing (QS) in Gram-negative bacteria is generally assumed to be mediated by N-acyl-homoserine lactone molecules while Gram-positive bacteria make use of signaling peptides. We analyzed the occurrence in Gram-negative bacteria of peptides and transporters that are involved in quorum sensing in Gram-positive bacteria. Many class II bacteriocins and inducing factors produced by lactic acid bacteria (LAB) and competence stimulating peptides (CSPs) synthesized by streptococci are processed by their cognate ABC-transporters during their secretion. During transport, a conserved leader sequence, termed the double-glycine motif (GG-motif), is cleaved off by the N-terminal domain of the transporter, which belongs to the Peptidase C39 protein family. Several peptides containing a GG-motif were recently described in Gram-negative bacteria (Trends Microbiol 2001;9:164-8). To screen for additional putative GG-motif containing peptides, an in silico strategy based on MEME, HMMER2.2 and Wise2 was designed. Using a curated training set, a motif model of the leader peptide was built and used to screen over 120 fully sequenced bacterial genomes. The screening methodology was applied at the nucleotide level as probably many small peptide genes have not been annotated and may be absent from the non-redundant databases. It was found that 33% of the screened genomes of Gram-negative bacteria contained one or more transporters carrying a Peptidase C39 domain, compared to 44% of the genomes of Gram-positive bacteria. The transporters can be subdivided into four classes on the basis of their domain organization. Genes coding for putative peptides containing 23-142 amino acids and a GG-motif were found in close association with genes coding for Peptidase C39 domain containing proteins. These peptides show structural similarity to bacteriocins and peptide pheromones of Gram-positive bacteria. The possibility of signal transduction based on peptide signaling in Gram-negative bacteria is discussed.  相似文献   

14.
In nature, microorganisms can present several mechanisms for setting intercommunication and defense. One of these mechanisms is related to the production of bacteriocins, which are peptides with antimicrobial activity. Bacteriocins can be found in Gram-positive and Gram-negative bacteria. Nevertheless, bacteriocins produced by Gram-positive bacteria are of particular interest due to the industrial use of several strains that belong to this group, especially lactic acid bacteria (LAB), which have the status of generally recognized as safe (GRAS) microorganisms. In this work, we will review recent tendencies in the field of invention and state of art related to bacteriocin production by Gram-positive microorganism. Hundred-eight patents related to Gram-positive bacteriocin producers have been disclosed since 1965, from which 57% are related bacteriocins derived from Lactococcus, Lactobacillus, Streptococcus, and Pediococcus strains. Surprisingly, patents regarding heterologous bacteriocins production were mainly presented just in the last decade. Although the major application of bacteriocins is concerned to food industry to control spoilage and foodborne bacteria, during the last years bacteriocin applications have been displacing to the diagnosis and treatment of cancer, and plant disease resistance and growth promotion.  相似文献   

15.
Héchard Y  Sahl HG 《Biochimie》2002,84(5-6):545-557
The antibiotic activity of bacteriocins from Gram-positive bacteria, whether they are modified (class I bacteriocins, lantibiotics) or unmodified (class II), is based on interaction with the bacterial membrane. However, recent work has demonstrated that for many bacteriocins, generalised membrane disruption models as elaborated for amphiphilic peptides (e.g. tyriodal pore or carpet model) cannot adequately describe the bactericidal action. Rather, specific targets seem to be involved in pore formation and other activities. For the nisin and epidermin family of lantibiotics, the membrane-bound cell wall precursor lipid II has recently been identified as target. The duramycin family of lantibiotics binds specifically to phosphoethanolamine which results in inhibition of phospholipase A2 and various other cellular functions. Most of the class II bacteriocins dissipate the proton motive force (PMF) of the target cell, via pore formation. The subclass IIa bacteriocin activity likely depends on a mannose permease of the phosphotransferase system (PTS) as specific target. The subclass IIb bacteriocins (two-component) also induce dissipation of the PMF by forming cation- or anion-specific pores; specific targets have not yet been identified. Finally, the subclass IIc comprises miscellaneous peptides with various modes of action such as membrane permeabilization, specific inhibition of septum formation and pheromone activity.  相似文献   

16.
Cerein 7 is a peptidic antibiotic produced by Bacillus cereus Bc7 (CECT 5148) at the end of exponential growth but before sporulation onset. Cerein 7 has a broad spectrum of antibacterial activity against Gram-positive bacteria, but it is inactive against Gram-negative bacteria. The sequence of its amino-terminal end and its characteristics of hydrophobicity and molecular mass make cerein 7 unique among the bacteriocins produced by the soil bacterium B. cereus. In this paper a further characterization of cerein 7 is presented, it is shown that it can be classified as a Klaenhammer's class II bacteriocin and that its mode of action corresponds to that of a membrane-active compound.  相似文献   

17.
Nes IF  Holo H 《Biopolymers》2000,55(1):50-61
Strains of lactic acid bacteria (LAB) produce a wide variety of antibacterial peptides. More than fifty of these so-called peptide bacteriocins have been isolated in the last few years. They contain 20-60 amino acids, and are cationic and hydrophobic in nature. Several of these bacteriocins consist of two complementary peptides. The peptide bacteriocins of LAB are inhibitory at concentrations in the nanomolar range, and cause membrane permeabilization and leakage of intracellular components in sensitive cells. The inhibitory spectrum is limited to gram-positive bacteria, and in many cases to bacteria closely related to the producing strain. Among the target organisms are food spoilage bacteria and pathogens such as Listeria, so that many of these antimicrobial peptides could have a potential as food preservatives as well as in medical applications.  相似文献   

18.
Circular bacteriocins are a group of N-to-C-terminally linked antimicrobial peptides, produced by Gram-positive bacteria of the phylum Firmicutes. Circular bacteriocins generally exhibit broad-spectrum antimicrobial activity, including against common food-borne pathogens, such as Clostridium and Listeria spp. These peptides are further known for their high pH and thermal stability, as well as for resistance to many proteolytic enzymes, properties which make this group of bacteriocins highly promising for potential industrial applications and their biosynthesis of particular interest as a possible model system for the synthesis of highly stable bioactive peptides. In this review, we summarize the current knowledge on this group of bacteriocins, with emphasis on the recent progress in understanding circular bacteriocin genetics, biosynthesis, and mode of action; in addition, we highlight the current challenges and future perspectives for the application of these peptides.  相似文献   

19.
20.

Antimicrobial peptides (AMPs) from prokaryotic source also known as bacteriocins are ribosomally synthesized by bacteria belonging to different eubacterial taxonomic branches. Most of these AMPs are low molecular weight cationic membrane active peptides that disrupt membrane by forming pores in target cell membranes resulting in cell death. While these peptides known to exhibit broad-spectrum antimicrobial activity, including antibacterial and antifungal, they displayed minimal cytotoxicity to the host cells. Their antimicrobial efficacy has been demonstrated in vivo using diverse animal infection models. Therefore, we have discussed some of the promising peptides for their ability towards potential therapeutic applications. Further, some of these bacteriocins have also been reported to exhibit significant biological activity against various types of cancer cells in different experimental studies. In fact, differential cytotoxicity towards cancer cells as compared to normal cells by certain bacteriocins directs for a much focused research to utilize these compounds as novel therapeutic agents. In this review, bacteriocins that demonstrated antitumor activity against diverse cancer cell lines have been discussed emphasizing their biochemical features, selectivity against extra targets and molecular mechanisms of action.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号