首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hao M  Luo J  Yang M  Zhang L  Yan Z  Yuan Z  Zheng Y  Zhang H  Liu D 《Génome》2011,54(12):959-964
The ph-like genes in the Chinese common wheat landrace Kaixian-luohanmai (KL) induce homoeologous pairing in hybrids with alien species. In the present study, meiotic phenotypic differences on homoeologous chromosome pairing at metaphase I between hybrids of wheat genotypes Chinese Spring ph1b (CSph1b) and KL with rye were studied by genomic in situ hybridization (GISH). The frequency of wheat-wheat associations was higher in CSph1b×rye than in KL×rye. However, frequencies of wheat-rye and rye-rye associations were higher in KL×rye than in CSph1b×rye. These differences may be the result of different mechanisms of control between the ph-like gene(s) controlling homoeologous chromosome pairing in KL and CSph1b. Wheat-wheat associations were much more frequent than wheat-rye pairing in both hybriods. This may be caused by lower overall affinity, or homoeology, between wheat and rye chromosomes than between wheat chromosomes.  相似文献   

2.
利用两个小麦-黑麦异源双代换系DS 5A/5R与DS 6A/6R杂交,探讨同祖染色体配对的可能性与创制小麦黑麦异源易位系.在方法上对杂种F1的减数分裂行为进行研究,观察5R与5A、6R与6A配对频率,探讨同祖染色体配对规律.实验结果看到杂交F1减数分裂中有22.91%的花粉母细胞有小麦染色体(ABD组)与黑麦染色体(R组)发生同祖配对.在F2及以后世代,通过染色体C分带、原位杂交检测,选择小麦-黑麦易位系.在F2代的45株中检测到9株有易位,易位频率为20%,是目前小麦-黑麦染色体易位频率最高的.染色体易位有的来源于同祖配对的交换,有的来源于单价体错分裂或断裂的重建.  相似文献   

3.
 Wheat-wheat and wheat-rye homoeologous pairing at metaphase I and wheat-rye recombination at anaphase I were examined by genomic in situ hybridization (GISH) in wild-type (Ph1Ph2) and mutant ph1b and ph2b wheat×rye hybrids. The metaphase-I analysis revealed that the relative contribution of wheat-rye chromosome associations in ph2b wheat×rye was similar to that of the wild-type hybrid genotype but differed from the effect of the ph1b mutation. The greater pairing promotion effect of the ph1b mutation appears to be relatively more on distant homoeologous partner metaphase-I associations, whereas the lower promoting effect of ph2b is evenly distributed among all types of homoeologous associations. This finding reveals that distinct mechanisms are involved in the control of wheat homoeologous pairing by the two Ph genes. The frequency of wheat-rye recombination calculated from anaphase-I analysis was lower than expected from the metaphase-I data. A greater discrepancy was found in ph2b than in ph1b wheat×rye hybrids, which may suggest a more distal chiasma localization in the former hybrid genotype. Received: 20 June 1997 / Accepted: 9 December 1997  相似文献   

4.
Rye B chromosomes, which are supernumerary chromosomes dispensable for the host but increase in number by non-disjunction after meiosis, have been reported to affect meiotic homoeologous pairing in wheat-rye hybrids. The effect of a rye B chromosome (B) and its segments (B-9 and B-10) on homoeologous pairing was studied in hybrids between common wheat (2n=42) and Aegilops variabilis (2n=28), with reference to the Ph1 gene located on wheat chromosome 5B. The B-9 and B-10 chromosomes are derived from reciprocal translocations between a wheat and the B chromosomes, and the former had the B pericentromeric segment and the latter had the B distal segment. Both the B and B-9 chromosomes suppressed homoeologous pairing when chromosome 5B was absent. On the other hand, the B-9 and B-10 chromosomes promoted homoeologous pairing when 5B was present. On pairing suppression, B-9 had a greater effect in one dose than in two doses, and B-9 had a greater effect than B-10 had in one dose. These results suggested that the effect of the B chromosomes on homoeologous pairing was not confined to a specific region and that the intensity of the effect varied depending on the presence or absence of 5B and also on the segment and dose of the B chromosome. The mean chiasma frequency (10.23) in a hybrid (2n=36) possessing 5B and one B-9 was considerably higher than that (2.78) of a hybrid (2n=35) possessing 5B alone, and was comparable with that (14.09) of a hybrid (2n=34) lacking 5B. This fact suggested that the B chromosome or its segment can be used in introducing alien genes into wheat by inducing homoeologous pairing between wheat and alien chromosome.  相似文献   

5.
Summary The meiotic behaviour of F1 hybrids of hexaploid Triticale that differed in their genotypic or chromosomic constitution, and diploid rye, was investigated. Meiotic analysis were done by Feulgen and C-banding staining methods. A differential desynaptic effect in the hybrids was detected and explained in terms of genetic differences in pairing regulators. The high homoeologous pairing (A-B wheat chromosomes and wheat-rye chromosomes) observed in the hybrids can be explained in terms of an inhibition of the effect of a single dose of thePh allele of the 5B chromosome produced by two doses of the 5R chromosome. The higher homoeologous pairing detected in the hybrid 188 x Canaleja could be the overall result of the balance between thePh diploidizing system (1 dose), the pairing promoter of the 5R chromosome (2 doses) and that of the 3D chromosome (1 dose coming from the parental line Triticale with the substitution 3R by 3D).  相似文献   

6.
~~Transfer of small chromosome fragments of Agropyron elongatum to wheat chromosome via asymmetric somatic hybridization1 .Dong,Y.C,GenePools of common wheat,Journal of Triticeae CroPs(in Chinese),2000,20(3):78-81. 2 .Wei,Y.M.,Zheng,YL.Zhou,R.H., Detectlon of the rye chro- matin in multisPikelet wheat germplasm 10-A background using fluorescence in situ hybridization(FISH)and RFLP markers,Acta Bot.Sinica(in Chinese),1999,41(7):722-725. 3 .Xiang,E N.,Xia,G M.…  相似文献   

7.
The chromosome constitution of hybrids and chromatin patterns of Agropyron elongatum (Host)Neviski in F5 somatic hybrid lines -1–3 and I-1-9 between Triticum aestivum L. and A. elongatum were analyzed. Based on the statistic data of pollen mother cells, F5 I-1-9 and-1-3 had 20–21 bivalents with a frequency of 84.66% and 85.28%, of which, 89.83% and 89.57% were ring bivalents. The result indicated that both hybrid lines were basically stable in the chromosome constitution and behavior. RAPD analysis showed that the two hybrids contained biparental and integrated DNA. GISH (Genome in situ hybridization) revealed that in the form of small chromosome segments, A. elongatum chromatin was scattered on 4–6 wheat chromosomes near by the region of centromere and telomere in the two hybrid lines. SSR analysis indicated that A. elongatum DNA segments were distributed on the 2A, 5B, 6B and 2D wheat chromosomes in the hybrids, which was in accordance with the GISH results that small-segments intercalated poly-site.  相似文献   

8.
钟莉 《植物研究》2006,26(4):442-446
应用原位杂交技术结合染色体组型分析方法,对两个小麦-黑麦异源双代换系5R/5A和6R/6A杂交后代的遗传进行了研究,探讨同祖染色体配对的可能性并获得小麦-黑麦易位系。实验中对杂种F1代植株减数分裂各时期的花粉母细胞染色体行为进行分析,结果发现有22.91%的花粉母细胞中黑麦染色体与小麦染色体发生同祖配对。F2代通过C-分带、原位杂交鉴定,在45株中检测到9株易位,易位频率为20%,是目前报道易位频率最高的。染色体易位有的来源于同祖配对交换,有的来源于单价体错分裂或断裂的重建。  相似文献   

9.
The successful production of a large number of artificial hybrids betweenDahlia species based on x = 16 has allowed a detailed study of their genomic relationships. Chromosome behaviour in these artificial hybrids was extremely similar to that observed in parental species suggesting that there is a considerable degree of homology between the genomes of theseDahlia species. Using GISH it can be demonstrated that in these hybrids bivalent formation involved pairing only between parental genomes. The ability of GISH to differentiate between parental genomes in artificial hybrids was variable, indicating that molecular divergence of highly repeated sequences has accompanied the evolution of these species. However, the extent of chromosome pairing and chiasma formation in the hybrids does not reflect the differences that can be detected by GISH. Seyeral of the new hybrid combinations have resulted in horticulturally interesting plants.  相似文献   

10.
 Genomic in situ hybridization (GISH) was used to distinguish autosyndetic from allosyndetic pairing in the hybrids of Thinopyrum intermedium and Th. ponticum with Triticum aestivum cv ‘Chinese Spring’ (CS). All hybrids showed high autosyndetic pairing frequencies among wheat chromosomes and among Thinopyrum chromosomes. The high autosyndetic pairing frequencies among wheat chromosomes in both hybrids suggested that Th. intermedium and Th. ponticum carry promoters for homoeologous chromosome pairing. The higher frequencies of autosyndetic pairing among Thinopyrum chromosomes than among wheat chromosomes in both hybrids indicated that the relationships among the three genomes of Th. intermedium and among the five genomes of Th. ponticum are closer than those among the three genomes of T. aestivum. Received: 19 September 1996 / Accepted: 18 April 1997  相似文献   

11.
H Ozkan  M Feldman 《Génome》2001,44(6):1000-1006
The Ph1 gene has long been considered the main factor responsible for the diploid-like meiotic behavior of polyploid wheat. This dominant gene, located on the long arm of chromosome 5B (5BL), suppresses pairing of homoeologous chromosomes in polyploid wheat and in their hybrids with related species. Here we report on the discovery of genotypic variation among tetraploid wheats in the control of homoeologous pairing. Compared with the level of homoeologous pairing in hybrids between Aegilops peregrina and the bread wheat cultivar Chinese Spring (CS), significantly higher levels of homoeologous pairing were obtained in hybrids between Ae. peregrina and CS substitution lines in which chromosome 5B of CS was replaced by either 5B of Triticum turgidum ssp. dicoccoides line 09 (TTD09) or 5G of Triticum timopheevii ssp. timopheevii line 01 (TIMO1). Similarly, a higher level of homoeologous pairing was found in the hybrid between Ae. peregrina and a substitution line of CS in which chromosome arm 5BL of line TTD140 substituted for 5BL of CS. It appears that the observed effect on the level of pairing is exerted by chromosome arm 5BL of T turgidum ssp. dicoccoides, most probably by an allele of Ph1. Searching for variation in the control of homoeologous pairing among lines of wild tetraploid wheat, either T turgidum ssp. dicoccoides or T timopheevii ssp. armeniacum, showed that hybrids between Ae. peregrina and lines of these two wild wheats exhibited three different levels of homoeologous pairing: low, low intermediate, and high intermediate. The low-intermediate and high-intermediate genotypes may possess weak alleles of Ph1. The three different T turgidum ssp. dicoccoides pairing genotypes were collected from different geographical regions in Israel, indicating that this trait may have an adaptive value. The availability of allelic variation at the Ph1 locus may facilitate the mapping, tagging, and eventually the isolation of this important gene.  相似文献   

12.
The character of chromosome pairing in meiocytes was studied in F1 wheat-rye Triticum aestivum L. x Secale cereale L. (ABDR, 4x = 28) hybrids with three types of chromosome behavior: reductional, equational, and equational + reductional. A high variation of the frequencies of bivalents and ring univalents was observed in meiocytes with the reductional or equational + reductional type of chromosome behavior. The type of chromosome division was found to affect the bivalent and ring univalent frequencies. Chromosome pairing occurred in 10.28% of meiocytes with the reductional chromosome behavior, 0.93% of meiocytes with the equational chromosome behavior, and 10.81% of meiocytes with the equational + reductional chromosome behavior. On average, 0.13 bivalents per cell formed in meiocytes of the hybrid population. C-banding and genomic in situ hybridization (GISH) showed that both rye and wheat chromosomes produced ring univalents. The role of the Ph genes in regulating the bivalent formation in meiocytes with different types of chromosome behavior is discussed.  相似文献   

13.
 Fluorescence in situ hybridization (FISH) with multiple probes has been applied to meiotic chromosome spreads derived from ph1b common wheat x rye hybrid plants. The probes used included pSc74 and pSc 119.2 from rye (the latter also hybridizes on wheat, mainly B genome chromosomes), the Ae. squarrosa pAs1 probe, which hybridizes almost exclusively on D genome chromosomes, and wheat rDNA probes pTa71 and pTa794. Simultaneous and sequential FISH with a two-by-two combination of these probes allowed unequivocal identification of all of the rye (R) and most of the wheat (W) chromosomes, either unpaired or involved in pairing. Thus not only could wheat-wheat and wheat-rye associations be easily discriminated, which was already feasible by the sole use of the rye-specific pSc74 probe, but the individual pairing partners could also be identified. Of the wheat-rye pairing observed, which averaged from about 7% to 11% of the total pairing detected in six hybrid plants of the same cross combination, most involved B genome chromosomes (about 70%), and to a much lesser degree, those of the D (almost 17%) and A (14%) genomes. Rye arms 1RL and 5RL showed the highest pairing frequency (over 30%), followed by 2RL (11%) and 4RL (about 8%), with much lower values for all the other arms. 2RS and 5RS were never observed to pair in the sample analysed. Chromosome arms 1RL, 1RS, 2RL, 3RS, 4RS and 6RS were observed to be exclusively bound to wheat chromosomes of the same homoeologous group. The opposite was true for 4RL (paired with 6BS and 7BS) and 6RL (paired with 7BL). 5RL, on the other hand, paired with 4WL arms or segments of them in more than 80% of the cases and with 5WL in the remaining ones. Additional cases of pairing involving wheat chromosomes belonging to more than one homoeologous group occurred with 3RL, 7RS and 7RL. These results, while adding support to previous evidence about the existence of several translocations in the rye genome relative to that of wheat, show that FISH with multiple probes is an efficient method by which to study fundamental aspects of chromosome behaviour at meiosis, such as interspecific pairing. The type of knowledge attainable from this approach is expected to have a significant impact on both theoretical and applied research concerning wheat and related Triticeae. Received: 21 February 1996 / Accepted: 12 July 1996  相似文献   

14.
Summary Chromosome pairing between rye chromosome arm 1RS, present in two wheat-rye translocation stocks, and its wheat homoeologues was induced by introducing the translocations into either a ph1bph1b or a nullisomic 5B background. This rye arm carries a gene conferring resistance to wheat stem rust, but lines carrying the translocation produce a poor quality dough unsuitable for breadmaking. Storage protein markers were utilised along with stem rust reaction to screen for allosyndetic recombinants. From a 1DL-1RS translocation, three lines involving wheat-rye recombination were recovered, along with thirteen lines derived from wheat-wheat homoeologous recombination. From a 1BL-1RS translocation, an additional three allosyndetic recombinants were recovered. Nullisomy for chromosome 5B was as efficacious as the ph1b mutant for induction of allosyndesis, and the former stock is easier to manipulate due to the presence of a 5BL-encoded endosperm protein. The novel wheat-rye chromosomes present in the recombinant lines may enable the rye disease resistance to be exploited without the associated dough quality defect.  相似文献   

15.
Wheat-rye chromosome associations at metaphase I studied by Naranjo and Fernández-Rueda (1991) in ph1b ABDR hybrids have been reanalysed to establish the frequency of pairing between individual chromosomes of wheat and rye. Wheat chromosomes, except for 2A and 2D, and their arms were identified by C-banding. Diagnostic C-bands and other cytological markers such as telocentrics or translocations were used to identify each one of the rye chromosomes and their arms. Both the amount of telomeric C-heterochromatin and the structure of the rye chromosomes relative to wheat affected the level of wheatrye pairing. The degree to which rye chromosomes paired with their wheat homoeologues varied with each of the three wheat genomes; in most groups, the B-R association was more frequent than the A-R or D-R associations. Recombination between arms 1RL and 2RL and their homoeologues of wheat possessing a different telomeric C-banding pattern was detected and quantified at anaphase I. The frequency of recombinant chromosomes obtained supports the premise that recombination between wheat and rye chromosomes may be estimated from wheat-rye pairing.  相似文献   

16.
Summary The pairing of polytene chromosomes was investigated in the hybrids between three closely related species of Drosophila belonging to the virilis species group. It was found that within the same hybrid different chromosome bands lost the ability to pair by differing degrees. Furthermore, the same chromosome sections paired with different frequencies depending on the hybrid involved. This study revealed that poor polytene chromosome pairing in the hybrids is not due to specific genetic interaction in the hybrids, but depends solely on the properties of the homologous loci themselves. It was also of interest to find whether the pattern of polytene chromosome somatic pairing resembled in some way the picture of chromosome synapsis during meiosis. To obtain evidence for this, crossing-over in the hybrid 5th chromosome was analyzed both genetically and cytologically (from salivary gland chromosome observations). It was found that the sections of the fifth chromosome which were characterized by a high frequency of conjugation in the salivary glands of hybrids also exhibited a high frequency of crossing-over in hybrid females. It may be concluded that sections of the polytene chromosome characterized by a low frequency of conjugation behave in the same manner in meiosis, and thus rarely take part in genetic recombination.  相似文献   

17.
Biofortification of bread wheat by the transfer of useful variability of high grain Fe and Zn from Aegilops kotschyi through induced homoeologous pairing is the most feasible approach to alleviate micronutrient malnutrition worldwide. Deficiency of chromosome 5B in interspecific hybrids allows homoeologous pairing and recombination of chromosomes of wheat with those of the related species. The interspecific hybrid plants without 5B chromosome showed much higher chromosome pairing than did the plants with 5B. The F1 plants without 5B chromosome were selected and repeatedly backcrossed with wheat cultivar PBW343. The chromosome number of BC2F1 plants ranged from 43 to 60 with several univalents and multivalents. Molecular markers and GISH analysis confirmed the introgression of U/S chromosomes of Ae. kotschyi and their fragments in wheat. The BC2F2 plants showed up to 125 % increase in Fe and 158 % increase in Zn compared to PBW343 with Lr24 and Yr36. Induced homoeologous pairing in the absence of 5B was found to be an effective approach for transfer of useful variability for enhanced grain Fe and Zn content for biofortification of wheat for high grain micronutrient content.  相似文献   

18.
Intergeneric hybrids (ABDJJsS genomes) were made between Triticum aestivum cv. Chinese Spring (CS) and Thinopyrum intermedium. Genomic in situ hybridization (GISH) using genomic DNA probes from Pseudoroegneria libanotica (Hackel) D.R. Dewey (genome S, 2n = 14) was used to study chromosome pairing among J, Js, S and wheat ABD genomes in the hybrids. It was shown that in the hexaploid (ABDJJsS) hybrids, high pairing occurred among wheat chromosomes and among Thinopyrum chromosomes. A closer relationship was observed among the three genomes of Th. intermedium than among the three genomes of T. aestivum. It was further discerned that S genome chromosomes paired with J- and Js-genome chromosomes at a high frequency. The frequency of heterologous pairing between S and J or S and Js chromosomes was higher than those between J and Js chromosomes, indicating that the S-genome was more closely related with these two genomes. Our results provided direct molecular cytogenetic evidence for the hypothesis that S-genome chromosomes are genetically similar to the J-genome chromosomes and, therefore, genetic exchange between these genomes is possible. The discovery of a close relationship among S, J and Js genomes provides valuable markers for molecular cytogenetic analyses using S-genomic DNA probes in monitoring the transfer of useful traits from Thinopyrum species into wheat. Received: 23 August 2000 / Accepted: 5 September 2000  相似文献   

19.
The metaphase I and anaphase I stages of meiosis of wheat×rye hybrids carrying the ph1b mutation were analyzed by genomic in situ hybridization. This technique allows distinction between three different types of wheat-rye associations in metaphase I configurations as well as detection of wheat-rye recombinant chromosomes in anaphase I cells. The frequency of associations between wheat and rye chromosomes greatly exceeded the level of wheat-rye recombination found in the three hybrids examined. Extremely distal associations, which account for about 50% of the total wheat-rye metaphase I chromosomal pairing, can explain such a discrepancy between metaphase I and anaphase I data. It is further discussed whether these associations reflect very distally located chiasmata or nonchiasmatic pairing. The sizes of the segments exchanged in wheat-rye recombinant chromosomes provide cytological evidence that wheat-rye recombination is restricted to the distal chromosomal regions. Received: 24 August 1995; in revised form: 27 February 1996 / Accepted: 28 March 1996  相似文献   

20.
M Molnár-Láng  G Linc  A Logojan  J Sutka 《Génome》2000,43(6):1045-1054
New winter wheat (Triticum aestivum L.) x winter barley (Hordeum vulgare L.) hybrids produced using cultivated varieties (wheat 'Martonvásári 9 krl'(Mv9 krl) x barley 'Igri', Mv9 krl x 'Osnova', 'Asakazekomugi' x 'Manas') were multiplied in tissue culture because of the high degree of sterility and then pollinated with wheat to obtain backcross progenies. Meiotic analysis of the hybrids Mv9 krl x 'Igri' and 'Asakazekomugi' x 'Manas' and their in vitro regenerated progenies with the Feulgen method revealed 1.59 chromosome arm associations per cell in both initial hybrids. The number of chromosome arm associations increased after in vitro culture to 4.72 and 2.67, respectively, in the two combinations. According to the genomic in situ hybridization (GISH) analysis, wheat-barley chromosome arm associations made up 3.6% of the total in the initial Mv9 krl x 'Igri' hybrid and 6.6% and 16.5% of the total in in vitro regenerated progenies of the 'Asakazekomugi' x 'Manas' and Mv9 krl x 'Igri' hybrids, respectively. The demonstration by GISH of wheat-barley chromosome pairing in the hybrids and especially in their in vitro regenerated progenies proves the possibility of producing recombinants between these two genera, and thus of transferring useful characters from barley into wheat. In vitro conditions caused an increase in chromosome arm association frequency in both combinations and in fertility in some regenerants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号