首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
Exposure to extremely low frequency (ELF) magnetic fields has been shown to attenuate endogenous opioid peptide mediated antinociception or “analgaesia” in the terrestrial pulmonate snail, Cepaea nemoralis. Here we examine the roles of light in determining this effect and address the mechanisms associated with mediating the effects of the ELF magnetic fields in both the presence and absence of light. Specifically, we consider whether the magnetic field effects involve an indirect induced electric current mechanism or a direct effect such as a parametric resonance mechanism (PRM). We exposed snails in both the presence and absence of light at three different frequencies (30, 60, and 120 Hz) with static field values (BDC) and ELF magnetic field amplitude (peak) and direction (BAC) set according to the predictions of the PRM for Ca2+. Analgaesia was induced in snails by injecting them with an enkephalinase inhibitor, which augments endogenous opioid (enkephalin) activity. We found that the magnetic field exposure reduced this opioid-induced analgaesia significantly more if the exposure occurred in the presence rather than the absence of light. However, the percentage reduction in analgaesia in both the presence and absence of light was not dependent on the ELF frequency. This finding suggests that in both the presence and the absence of light the effect of the ELF magnetic field was mediated by a direct magnetic field detection mechanism such as the PRM rather than an induced current mechanism. Bioelectromagnetics 18:284–291, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
Despite the important role of the immune system in defending the body against infections and cancer, only few investigations on possible effects of radiofrequency (RF) radiation on function of human immune cells have been undertaken. Aim of the present investigation was therefore to assess whether GSM modulated RF fields have adverse effects on the functional competence of human immune cells. Within the frame of the multidisciplinary project "Biological effects of high frequency electromagnetic fields (EMF)" sponsored by the National Occupation Hazard Insurance Association (AUVA) in vitro investigations were carried out on human blood cells. Exposure was performed at GSM Basic 1950 MHz, an SAR of 1 mW/g in an intermittent mode (5 min "ON", 10 min "OFF") and a maximum Delta T of 0.06 degrees C for the duration of 8 h. The following immune parameters were evaluated: (1) the intracellular production of interleukin-2 (IL-2) and interferon (INF) gamma in lymphocytes, and IL-1 and tumor necrosis factor (TNF)-alpha in monocytes were evaluated with monoclonal antibodies. (2) The activity of immune-relevant genes (IL 1-alpha and beta, IL-2, IL-2-receptor, IL-4, macrophage colony stimulating factor (MCSF)-receptor, TNF-alpha, TNF-alpha-receptor) and housekeeping genes was analyzed with real time PCR. (3) The cytotoxicity of lymphokine activated killer cells (LAK cells) against a tumor cell line was determined in a flow cytometric test. For each parameter, blood samples of at least 15 donors were evaluated. No statistically significant effects of exposure were found and there is no indication that emissions from mobile phones are associated with adverse effects on the human immune system.  相似文献   

3.
Abstract

Using a specific questionnaire, we examined subjective symptoms in a group of 17 physicians (9 males and 8 females, mean age 32.9?±?3.71), attending a Postgraduate Medical School in Radiology and engaged in MRI for less than 1 year. Sixteen subjects (94%) reported the presence of at least one of the investigated symptoms during the period of MRI activity. The main symptoms were: unusual drowsiness/tiredness (88%), concentration problems (82%), headaches (76%), sleep disorders (47%), nausea (47%), illusion of movement (47%) and dizziness/vertigo (35%); the former two were subjectively related to MRI by the majority of the operators. These symptoms appeared (or worsened) in more than 15?min and, in the vast majority disappeared 30?min, or more, after the end of exposure. In 13 subjects (81%), the symptom (or some symptoms) appeared at least weekly. In this small group of health care workers recently exposed to MRI, the prevalence of subjective symptoms was higher than reported in other similar studies but, notably, the majority of subjects (77%) reported a regression within 4–8 weeks, suggesting some form of adaptation.  相似文献   

4.
The magnetic flux density of MRI for clinical diagnosis has been steadily increasing. However, there remains very little biological data regarding the effect of strong static magnetic fields (SMFs) on human health. To evaluate the effects of strong SMFs on biological systems, we cultured insulin-secreting cells under exposure to sham and SMF conditions (3-10 T of magnetic flux density, and 0-41.7 T/m of magnetic field gradient) for 0.5 or 1 h, and analyzed insulin secretion, mRNA expression, glucose-stimulated insulin secretion, insulin content, cell proliferation and cell number. Exposure to SMF with a high magnetic field gradient for 1 h significantly increased insulin secretion and insulin 1 mRNA expression. Exposure to SMF with a high magnetic flux density for 0.5 h significantly enhanced responsiveness to glucose stimulation. Exposure to SMF did not affect the insulin content, cell proliferation or cell number. Our results suggested that MRI systems with a higher magnetic flux density might not cause cell proliferative or functional damages on insulin-secreting cells, and that SMF with a high magnetic field gradient might be used clinically after thorough in vivo investigations are conducted.  相似文献   

5.
In modern magnetic resonance imaging , both patients and health care workers are exposed to strong, non-uniform static magnetic fields inside and outside of the scanner, in which body movement may be able to induce electric currents in tissues which could be potentially harmful. This paper presents theoretical investigations into the spatial distribution of induced E-fields in a tissue-equivalent human model when moving at various positions around the magnet. The numerical calculations are based on an efficient, quasi-static, finite-difference scheme. Three-dimensional field profiles from an actively shielded 4 T magnet system are used and the body model projected through the field profile with normalized velocity. The simulation shows that it is possible to induce E-fields/currents near the level of physiological significance under some circumstances and provides insight into the spatial characteristics of the induced fields. The methodology presented herein can be extrapolated to very high field strengths for the evaluation of the effects of motion at a variety of field strengths and velocities.  相似文献   

6.
The clinical and preclinical use of high-field intensity (HF, 3 T and above) magnetic resonance imaging (MRI) scanners have significantly increased in the past few years. However, potential health risks are implied in the MRI and especially HF MRI environment due to high-static magnetic fields, fast gradient magnetic fields, and strong radiofrequency electromagnetic fields. In this study, the genotoxic potential of 3 T clinical MRI scans in cultured human lymphocytes in vitro was investigated by analyzing chromosome aberrations (CA), micronuclei (MN), and single-cell gel electrophoresis. Human lymphocytes were exposed to electromagnetic fields generated during MRI scanning (clinical routine brain examination protocols: three-channel head coil) for 22, 45, 67, and 89 min. We observed a significant increase in the frequency of single-strand DNA breaks following exposure to a 3 T MRI. In addition, the frequency of both CAs and MN in exposed cells increased in a time-dependent manner. The frequencies of MN in lymphocytes exposed to complex electromagnetic fields for 0, 22, 45, 67, and 89 min were 9.67, 11.67, 14.67, 18.00, and 20.33 per 1000 cells, respectively. Similarly, the frequencies of CAs in lymphocytes exposed for 0, 45, 67, and 89 min were 1.33, 2.33, 3.67, and 4.67 per 200 cells, respectively. These results suggest that exposure to 3 T MRI induces genotoxic effects in human lymphocytes.  相似文献   

7.
Anabolic steroids are widely used to increase skeletal muscle (SM) mass and improve physical performance. Some dietary supplements also include potent steroid precursors or active steroid analogs such as nandrolone. Our previous study reported the anabolic steroid effects on SM in a castrated guinea pig model with SM measured using a highly quantitative magnetic resonance imaging (MRI) protocol. The aim of the current study was to apply this animal model and in vivo MRI protocol to evaluate the growth effects of four widely used over-the-counter testosterone and nandrolone precursors: 4-androstene-3 17-dione (androstenedione), 4-androstene-3β 17β-diol (4-androsdiol), 19-nor-4-androstene-3β-17β-diol (bolandiol) and 19-nor-4-androstene-3 17-dione (19-norandrostenedione). The results showed that providing precursor to castrated male guinea pigs led to plasma steroid levels sufficient to maintain normal SM growth. The anabolic growth effects of these specific precursors on individual and total muscle volumes, sexual organs, and total adipose tissue over a 10-week treatment period, in comparison with those in the respective positive control testosterone and nandrolone groups, were documented quantitatively by MRI.  相似文献   

8.
A magnetic field generator constructed of rare earth-cobalt magnets is proposed for examining the biological effects of static magnetic fields (less than 1 T) on tissue cultures. Important quantities of a magnetic field from a biological-effects viewpoint, ie, its strength and the product of strength and gradient, are analysed. A practical procedure for designing the generator with optimum parameters is given. Also, parameters are determined which will yield a sinusoidal spatial field distribution.  相似文献   

9.
10.
11.
In 2002, we published a review of the cognitive and physiological effects of extremely low frequency magnetic fields (ELF MFs) and ELF-modulated radiofrequency fields associated with mobile phones. Since the original preparation of that review, a significant number of studies have been published using techniques such as electroencephalography, event-related potentials and positron emission tomography to investigate electromagnetic field effects upon human physiology and various measures of performance (cognitive, perceptual, behavioral). We review these recent studies, and when effects were observed, we reference the time course of observed effects (immediate or delayed). In our concluding remarks, we discuss a number of variables that are not often considered in human bioelectromagnetics studies, such as personality, individual differences and the specific laterality of ELF MF and mobile phone exposure over the brain. We also consider the sensitivity of various physiological assays and performance measures in the study of biological effects of electromagnetic fields.  相似文献   

12.
We study the effect of microwaves at 2,450 MHz on protein unfolding using surface plasmon resonance sensing. Our experimental method makes use of the fact that unfolding proteins tend to bind to chaperones on their unfolding pathway and this attachment is readily monitored by surface plasmon resonance. We use the protein citrate synthase (CS) for this study as it shows strong binding to the chaperone alpha crystallin when stressed by exposure to excess temperature. The results of microwave heating are compared with the effect of ambient heating and a combination of ambient and microwave heating to the same final temperature. We study the temperature distributions during the heating process. We show that microwaves cause a significantly higher degree of unfolding than conventional thermal stress for protein solutions heated to the same maximum temperature.  相似文献   

13.
A series of epidemiological studies have indicated associations between exposure to magnetic fields (MFs) and a variety of cancers, including breast cancer. In order to test the possibility that MF acts as a cancer promoter or copromoter, four separate experiments have been conducted in rats in which the effects of chronic exposure to MFs on the development of mammary tumors induced by 7,12-dimethylbenz(a)anthracene (DMBA) were determined. Female rats were exposed in magnetic coils for 91 days (24 h/day) to either alternating current (AC; 50 Hz)-MF or direct current (DC)-MF. Magnetic flux density of the DC-MF was 15 mT. Two AC-MF exposures used a homogeneous field with a flux density of 30 mT (rms); one used a gradient field with flux density ranging from 0.3–1 μT. DMBA (5 mg) was administered orally at the onset of MF exposure and was repeated thrice at intervals of 1 week. In each experiment, 18–36 animals were exposed in 6 magnetic coils. The same number of rats were used as sham-exposed control. These control animals were treated with DMBA and were placed in dummy coils in the same room as the MF-exposed rats. Furthermore, groups of age-matched rats (reference controls) were treated with DMBA but housed in another room to exclude any MF exposure due to the magnetic stray field from the MF produced by coils. At the end of the exposure or sham-exposure period, tumor number and weight or size of tumors were determined at necropsy. Results were as follows: In sham-exposed animals or reference controls, the tumor incidence varied between 50 and 78% in the 4 experiments. The average number of mammary tumors per tumor-bearing animal varied between 1.6 and 2.9. In none of the experiments did MFs significantly alter tumor incidence, but in one of the experiments with AC-MF exposure at 30 mT, the number of tumors per tumor-bearing animal was significantly increased. Furthermore, exposure to a DC-MF at 15 mT significantly enhanced the tumor weight. Exposure to a gradient AC-MF at 0.3–1 μT exerted no significant effects. These experiments seem to indicate that MFs at high flux densities may act as a promoter or copromoter of breast cancer. However, this interpretation must be considered only a tentative conclusion because of the limitations of this study, particularly the small sample size used for MF exposure and the lack of repetition of data. © 1993 Wiley-Liss. Inc.  相似文献   

14.
An ungrounded human, such as a substation worker, receives contact currents when touching a grounded object in electric fields. In this article, contact currents and internal electric fields induced in the human when exposed to non‐uniform electric fields at 50 Hz are numerically calculated. This is done using a realistic human model standing at a distance of 0.1–0.5 m from the grounded conductive object. We found that the relationship between the external electric field strength and the contact current obtained by calculation is in good agreement with previous measurements. Calculated results show that the contact currents largely depend on the distance, and that the induced electric fields in the tissues are proportional to the contact current regardless of the non‐uniformity of the external electric field. Therefore, it is concluded that the contact current, rather than the spatial average of the external electric field, is more suitable for evaluating electric field dosimetry of tissues. The maximum induced electric field appears in the spinal cord in the central nervous system tissues, with the induced electric field in the spinal cord approaching the basic restriction (100 mV/m) of the new 2010 International Commission on Non‐Ionizing Radiation Protection guidelines for occupational exposure, if the contact current is 0.5 mA. Bioelectromagnetics 34:61–73, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
16.
The growth and Cr(VI) reduction by Shewanella oneidensis MR-1 was examined using a mini-bioreactor system that independently monitors and controls pH, dissolved oxygen (DO), and temperature for each of its 24, 10-mL reactors. Independent monitoring and control of each reactor in the cassette allows the exploration of a matrix of environmental conditions known to influence S. oneidensis chromium reduction. S. oneidensis MR-1 grew in minimal medium without amino acid or vitamin supplementation under aerobic conditions but required serine and glycine supplementation under anaerobic conditions. Growth was inhibited by DO concentrations >80%. Lactate transformation to acetate was enhanced by low concentration of DO during the logarithmic growth phase. Between 11 and 35 degrees C, the growth rate obeyed the Arrhenius reaction rate-temperature relationship, with a maximum growth rate occurring at 35 degrees C. S. oneidensis MR-1 was able to grow over a wide range of pH (6-9). At neutral pH and temperatures ranging from 30 to 35 degrees C, S. oneidensis MR-1 reduced 100 microM Cr(VI) to Cr(III) within 20 min in the exponential growth phase, and the growth rate was not affected by the addition of chromate; it reduced chromate even faster at temperatures between 35 and 39 degrees C. At low temperatures (<25 degrees C), acidic (pH < 6.5), or alkaline (pH > 8.5) conditions, 100 microM Cr(VI) strongly inhibited growth and chromate reduction. The mini-bioreactor system enabled the rapid determination of these parameters reproducibly and easily by performing very few experiments. Besides its use for examining parameters of interest to environmental remediation, the device will also allow one to quickly assess parameters for optimal production of recombinant proteins or secondary metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号