首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
D Bai  D R Knott 《Génome》1994,37(3):405-409
Six accessions of Triticum turgidum var. dicoccoides L. (4x, AABB) of diverse origin were tested with 10 races of leaf rust (Puccinia recondita f.sp. tritici Rob. ex Desm.) and 10 races of stem rust (P. graminis f.sp. tritici Eriks. &Henn.). Their infection type patterns were all different from those of lines carrying the Lr or Sr genes on the A or B genome chromosomes with the same races. The unique reaction patterns are probably controlled by genes for leaf rust or stem rust resistance that have not been previously identified. The six dicoccoides accessions were crossed with leaf rust susceptible RL6089 durum wheat and stem rust susceptible 'Kubanka' durum wheat to determine the inheritance of resistance. They were also crossed in diallel to see whether they carried common genes. Seedlings of F1, F2, and BC1F2 generations from the crosses of the dicoccoides accessions with RL6089 were tested with leaf rust race 15 and those from the crosses with 'Kubanka' were tested with stem rust race 15B-1. The F2 populations from the diallel crosses were tested with both races. The data from the crosses with the susceptible durum wheats showed that resistance to leaf rust race 15 and stem rust race 15B-1 in each of the six dicoccoides accessions is conferred by a single dominant or partially dominant gene. In the diallel crosses, the dominance of resistance appeared to be affected by different genetic backgrounds. With one exception, the accessions carry different resistance genes: CI7181 and PI 197483 carry a common gene for resistance to leaf rust race 15. Thus, wild emmer wheat has considerable genetic diversity for rust resistance and is a promising source of new rust resistance genes for cultivated wheats.  相似文献   

2.
Over 100 genes of resistance to rust fungi: Puccinia recondita f. sp. tritici, (47 Lr - leaf rust genes), P. striiformis (18 Yr - yellow rust genes) and P. graminis f. sp. tritici (41 Sr - stripe rust genes) have been identified in wheat (Triticum aestivum L.) and its wild relatives according to recent papers. Sixteen Lr resistance genes have been mapped using restriction fragments length polymorphism (RFLP) markers on wheat chromosomes. More than ten Lr genes can be identified in breeding materials by sequence tagged site (STS) specific markers. Gene Lrk 10, closely linked to gene Lr 10, has been cloned and its function recognized. Available markers are presented in this review. The STS, cleaved amplified polymorphic sequence (CAPS) and sequence characterized amplified regions (SCAR) markers found in the literature should be verified using Triticum spp. with different genetic background. Simple sequence repeats (SSR) markers for Lr resistance genes are now also available.  相似文献   

3.
D R Knott  B Yadav 《Génome》1993,36(5):877-883
Twelve lines of wheat (Triticum aestivum L.) were developed that had susceptible infection types to leaf rust (Puccinia recondita Rob. ex Desm. f.sp. tritici) race UN 15 in the seedling stage but were resistant in the adult plant stage in the field. The lines were developed from four crosses, each involving four parents (eight in total) that had originally been selected for adult plant or field resistance to stem rust (Puccinia graminis Pers. f.sp. tritici Eriks, and Henn.). The objectives of the present study were to determine the mechanism of resistance to leaf rust and its inheritance in the 12 lines. The 12 lines were grown in an artificially inoculated field nursery in Saskatoon, coefficients of infection (CI) were determined at four dates, and the areas under the disease progress curve (AUDPC) were calculated. Four representative lines were grown in a growth chamber to measure the latent period and pustule size at the two-leaf and flag-leaf stages. Eight lines were crossed and backcrossed to a susceptible check and the parents, F1, F2, F3, and BC1F2 generations were grown in a field nursery. The 12 lines showed wide ranges in CI and AUDPC but all were significantly more resistant than the susceptible check. The four lines studied in the growth chamber had longer latent periods and smaller pustules than the susceptible check at both stages. The differences tended to be greater at the flag-leaf stage. The inheritance studied showed that resistance was recessive or partially recessive and was controlled by two or more genes in each line of the eight lines. In three of the eight lines, Lr34 may be one of the genes and in the other five both Lr13 and Lr34 could be present. However, additional genes are clearly involved. A single gene by itself had only a small effect, but in two and three gene combinations the effects appeared to be greater. This type of resistance appears to occur frequently and may be durable because its complex inheritance may make it more difficult for the rust fungus to overcome. It should be used in breeding wheat for areas where leaf rust is a major problem.  相似文献   

4.
Tyryshkin LG 《Genetika》2006,42(3):377-384
Of 153 accessions reported to be resistant to leaf rust (Puccinia recondita Rob. ex. Desm.), only 70 were not affected by a pooled P. recondita population. According to phytopathological tests (inoculation with test clones), 14 accessions contained the Lr19 gene; 36, the Lr24 gene; 1, the Lr41 gene; and 19 presumably had the Lr9 gene. The presence of these resistance genes was confirmed by hybrid analysis for 26 accessions. Of 28 accessions reported to carry new effective resistance genes other than the known genes, 23 were affected by the P. recondita population. In four of the other five accessions, resistance proved to be controlled by known genes. Possible causes of false identification of new effective leaf rust resistance genes in wheat are discussed.  相似文献   

5.
R L Innes  E R Kerber 《Génome》1994,37(5):813-822
Twelve accessions of Triticum tauschii (Coss.) Schmal. were genetically analyzed for resistance to leaf rust (Puccinia recondita Rob. ex Desm.) and stem rust (Puccinia graminis Pers. f.sp. tritici Eriks. and E. Henn.) of common wheat (Triticum aestivum L.). Four genes conferring seedling resistance to leaf rust, one gene conferring seedling resistance to stem rust, and one gene conferring adult-plant resistance to stem rust were identified. These genes were genetically distinct from genes previously transferred to common wheat from T. tauschii and conferred resistance to a broad spectrum of pathogen races. Two of the four seedling leaf rust resistance genes were not expressed in synthetic hexaploids, produced by combining tetraploid wheat with the resistant T. tauschii accessions, probably owing to the action of one or more intergenomic suppressor loci on the A or B genome. The other two seedling leaf rust resistance genes were expressed at the hexaploid level as effectively as in the source diploids. One gene was mapped to the short arm of chromosome 2D more than 50 cM from the centromere and the other was mapped to chromosome 5D. Suppression of seedling resistance to leaf rust in synthetic hexaploids derived from three accessions of T. tauschii allowed the detection of three different genes conferring adult-plant resistance to a broad spectrum of leaf rust races. The gene for seedling resistance to stem rust was mapped to chromosome ID. The degree of expression of this gene at the hexaploid level was dependent on the genetic background in which it occurred and on environmental conditions. The expression of the adult-plant gene for resistance to stem rust was slightly diminished in hexaploids. The production of synthetic hexaploids was determined to be the most efficient and flexible method for transferring genes from T. tauschii to T. aestivum, but crossing success was determined by the genotypes of both parents. Although more laborious, the direct introgression method of crossing hexaploid wheat with T. tauschii has the advantages of enabling selection for maximum expression of resistance in the background hexaploid genotype and gene transfer into an agronomically superior cultivar.  相似文献   

6.
山东省12个主栽小麦品种(系)抗叶锈性分析   总被引:1,自引:0,他引:1  
本研究旨在明确山东省12个小麦主栽品种(系)抗叶锈性及抗叶锈基因,为小麦品种推广与合理布局、叶锈病防治及抗病育种提供依据。利用2015年采自山东省的5个小麦叶锈菌流行小种的混合小种对这些材料进行苗期抗性鉴定,然后选用15个小麦叶锈菌生理小种对这些品种(系)进行苗期基因推导,并利用与24个小麦抗叶锈基因紧密连锁(或共分离)的30个分子标记对其进行抗叶锈基因分子检测。结果显示,山东省12个主栽小麦品种(系)苗期对该省2015年的5个小麦叶锈菌混合流行小种均表现高度感病。通过基因推导与分子检测发现,济南17含有Lr16,矮抗58和山农20含有Lr26,其余济麦系列、烟农系列、良星系列等9个品种(系)均未检测到所供试标记片段。此外,本研究还对山东省3个非主栽品种进行了检测,结果发现,中麦175含有抗叶锈基因Lr1和Lr37,含有成株抗性基因;皖麦38只检测到Lr26,济麦20未检测到所供试标记片段。综合以上结果,山东省主栽小麦品种(系)所含抗叶锈基因丰富度较低,尤其不含有对我国小麦叶锈菌流行小种有效的抗锈基因,应该引起高度重视,今后育种工作应注重引入其他抗叶锈基因,提高抗叶锈性。  相似文献   

7.
A resistance (R) gene-rich 2S chromosomal segment from Triticum ventricosum contains a cereal cyst nematode (CCN; Heterodera avenae) R gene locus CreX and a closely linked group of genes (Sr38, Yr17, and Lr37) that confer resistance to stem rust (Puccinia graminis f. sp. tritici), stripe rust (P. striiformis f. sp. tritici), and leaf rust (P. recondita f. sp. tritici) when introgressed into wheat. The 2S chromosomal segment from T. ventricosum is further delineated in translocations onto chromosome 2A of bread wheat, where the rust genes are retained but not the CreX gene. Using these critical genetic stocks, we have isolated family members of R gene analogs that are associated with either the 2S segment from T. ventricosum carrying the CreX locus or the rust genes. Derivatives of the Cre3 candidate R gene sequence and a rice (Oryza sativa) R gene analog that mapped to the 2S homologous chromosome groups in wheat were used to isolate related gene sequences from T. ventricosum that contain a nucleotide binding site-leucine rich repeat domain. The potential of these gene sequences as entry points for isolating candidate genes or gene family members of the CreX or rust genes and their further applications to plant breeding are discussed.  相似文献   

8.
P L Dyck  E R Kerber  T Aung 《Génome》1994,37(4):556-559
'Thatcher' backcross lines RL6058 and RL6077 have adult-plant leaf rust resistance and were believed to have Lr34. However, genetic analysis revealed that the genes in the two lines were independent of each other. Previous work demonstrated that Lr34 is located on chromosome 7D. The leaf rust resistance gene in RL6058 must be on chromosome 7DS because no recombinants were observed between it and gene Lr29, known to be on chromosome 7DS. It was also linked with Rc3 (30.25 +/- 2.88%), a gene for purple coleoptile on chromosome 7DS. It was independent of Lr19 and NS1 (nonsuppressor mutant), which are located on 7DL. The leaf rust resistance gene in RL6077 was independent of genes Lr19 and Lr29. The presence of quadrivalents in pollen mother cells of the RL6058/RL6077 hybrid indicates that the Lr34 gene in RL6077 may have been translocated onto another chromosome. Lr34 from RL6058 and RL6077 may have been combined in four F3 lines derived from their intercross.  相似文献   

9.
Leaf rust, caused by Puccinia recondita Rob. ex Desm., is a common disease in wheat. The objective of this study was to develop molecular markers associated with the quantitative trait loci (QTLs) putatively conferring durable leaf rust resistance in Triticum aestivum L. em. Thell. A population of 77 recombinant inbred lines (RILs) developed from 'Parula' (resistant) and 'Siete Cerros' (moderately susceptible) was used. Bulked segregant analysis was done using random amplified polymorphic DNAs (RAPDs) with DNA enriched for low-copy sequences using hydroxyapatite chromatography. Out of 400 decamer primers screened, 3 RAPD markers were identified between the bulk of the most resistant and the bulk of the most susceptible lines. These were cloned and used as probes on the RILs in Southern hybridizations. Two probes revealed two tightly linked loci. One-way analysis of variance showed that these two loci, and another revealed by the third probe, were linked to QTLs controlling leaf rust resistance based on data taken from 2 years of replicated field trials. Cytogenetic analysis placed the two tightly linked loci on the long arm of chromosome 7B. The third probe detected loci located on the short arms of chromosomes 1B and 1D. It is suggested that the QTL detected on 7BL may well be homoeoallelic to Lr34.  相似文献   

10.
Thirty-seven wheat cultivars originating from seven European countries were examined by using sequence tagged site (STS) markers for seven Lr (leaf rust = brown rust) resistance genes against the fungal pathogen of wheat Puccinia recondita f. sp. tritici (Lr9, Lr10, Lr19, Lr24, Lr26 and Lr37). Additionally, 22 accessions with various Lr genes from two germplasm collections were tested. A Scar (sequence-characterized amplified region) marker for Lr24 and a CAPS (Cleaved Amplified Polymorphic Sequence) marker for Lr47 were also used to identify those genes in the wheat accessions. Each marker amplified one specific DNA fragment. Three Lr gene markers were identified in wheat cultivars (Lr10, Lr26 and Lr37). Another four markers (Lr9, Lr19, Lr24 and Lr47) were found in breeding lines carrying leaf rust resistance genes. The results were compared with leaf rust resistance gene postulations made in previous studies, based on multipathotype testing. Markers for Lr10, Lr26 and Lr37 may be useful in marker-assisted breeding.  相似文献   

11.
The effect of leaf rust (Puccinia triticina) infection on intercellular chitinase (EC 3.2.1.14) and peroxidase (EC 1.11.1.7) activities was studied in resistant [RL 6082 (Thatcher/Lr35)] and susceptible (Thatcher) near isogenic wheat (Triticum aestivum L.) lines at seedling, stem elongation and flag leaf stages of plant growth. The levels of activity of these enzymes were low during the seedling and stem elongation stages. Resistant plants at the flag leaf stage, during which the Lr35 resistance gene was maximally expressed, exhibited high constitutive levels of chitinase and peroxidase activities, in contrast to the lower constitutive levels of susceptible plants. The results suggest that chitinase and peroxidase, constitutively present in the intercellular spaces of Thatcher/Lr35 wheat leaves, may play a role in Lr35 mediated resistance to leaf rust.  相似文献   

12.
The Indian bread wheat cultivar HD2009 has maintained its partial resistance to leaf rust and stripe rust in India since its release in 1976. To examine the nature, number and mode of inheritance of its genes for partial leaf rust and stripe rust resistance, this cultivar was crossed with cultivar WL711, which is susceptible to leaf rust and stripe rust. The F1, F2, F3 and F5 generations from this cross were assessed separately for adult plant disease severity under artificial epidemic of race 77-5 of leaf rust and race 46S119 of stripe rust. Segregation for rust reaction in the F2, F3 and F5 generations indicated that resistance to each of these rust diseases is based on 2 genes, each with additive effects. Although the leaf rust resistance of HD2009 is similar in expression to that conferred by the gene Lr34, but unlike the wheats carrying this gene, cultivar HD2009 did not show leaf tip necrosis, a morphological marker believed to be tightly linked to the leaf rust resistance gene Lr34. Thus, the non-hypersensitive resistance of HD2009 was ascribed to genes other than Lr34.  相似文献   

13.
小麦叶锈病抗性基因在山西的有效性研究   总被引:2,自引:0,他引:2  
采自山西省各地的小麦叶锈菌菌株分别接种在含有已知抗叶锈病基因的小麦近等基因系(或单基因系)上,测定其毒性频率,根据已知抗病基因对叶锈菌群体的抗性程度,对其进行抗性效能的评价。结果表明:抗性基因Lr9、Lr19、Lr24、Lr38的毒性频率较低,分别为23.08%、16.03%、12.82%和1.92%,为山西省小麦叶锈菌的有效抗病基因。在发现的诸多毒性类型中,THT、THK、PHT、TRT的出现频率居前四位,分别为19.23%、8.97%、7.05%、5.77%,为山西省目前小麦叶锈菌群体中的优势毒性类型。  相似文献   

14.
Leaf rust caused by Puccinia recondita f.sp. tritici is a wheat disease of worldwide importance. Wheat genotypes known to carry specific rust resistance genes and segregating lines that originated from various cross combinations and derived from distinct F2 lineage, so as to represent a diverse genetic background, were included in the present study for validation of molecular markers for Lr19 and Lr24. STS markers detected the presence of the leaf rust resistance gene Lr19 in a Thatcher NIL (Tc*Lrl9) and Inia66//CMH81A575 and of the gene Lr24 in the genotypes Arkan, Blue Boy II, Agent and CI 17907. Validation of molecular markers for Lr19 and Lr24 in parental lines, followed by successful detection of these genes in F3 lines from various cross combinations, was carried out. The molecular test corresponded well with the host-pathogen interaction test response of these lines.  相似文献   

15.
The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad‐spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in field‐grown seedlings. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when grown under field conditions. This D genome‐encoded bread wheat gene was transferred to tetraploid durum wheat (T. turgidum) cultivar Stewart by transformation. Transgenic durum lines were produced with elevated gene expression levels when compared with the endogenous hexaploid gene. Unlike nontransgenic hexaploid and durum control lines, these transgenic plants showed robust seedling resistance to pathogens causing wheat leaf rust, stripe rust and powdery mildew disease. The effectiveness of seedling resistance against each pathogen correlated with the level of transgene expression. No evidence of accelerated leaf necrosis or up‐regulation of senescence gene markers was apparent in these seedlings, suggesting senescence is not required for Lr34 resistance, although leaf tip necrosis occurred in mature plant flag leaves. Several abiotic stress‐response genes were up‐regulated in these seedlings in the absence of rust infection as previously observed in adult plant flag leaves of hexaploid wheat. Increasing day length significantly increased Lr34 seedling resistance. These data demonstrate that expression of a highly durable, broad‐spectrum adult plant resistance gene can be modified to provide seedling resistance in durum wheat.  相似文献   

16.
To investigate biochemical aspects of resistance conferred by the Lr35 gene for adult-plant resistance in wheat ( Triticum aestivum L.) to leaf rust, pathogen development was related to intercellular protein composition and β -1,3-glucanase (EC 3.2.1.39) activities at three growth stages in infected and uninfected resistant (RL6082 [Thatcher/ Lr35 ]) and susceptible (Thatcher) plants. Leaf rust symptoms produced by pathotype UVPrt9 of Puccinia recondita f. sp. tritici showed that resistance conferred by Lr35 was most effective at the flag leaf stage. Furthermore, fluorescence microscopy indicated that resistance was strongly associated with hypersensitive cell death of invaded tissue. According to polypeptide profiles, intercellular proteins with molecular masses of 35, 33, 31 and 26 kDa were constitutively present at higher levels in resistant than in susceptible plants at the flag leaf stage. Four intercellular proteins (35, 33, 32 and 31 kDa) serologically related to β -1,3-glucanase were present in resistant and susceptible genotypes during all stages of plant growth. Resistance was associated with high constitutive levels of β -1,3-glucanase activity. Susceptibility on the other hand was associated with low constitutive levels of β -1,3-glucanase, while high levels were induced by infection during more advanced stages of colonization. Our results suggest that β -1,3-glucanase is involved in the defense response controlled by the Lr35 gene.  相似文献   

17.
Inheritance of partial leaf rust and stripe rust resistance of a Thatcher wheat 90RN2491, earlier reported to carry two doses of the gene pairLr34-Yr18 and the reference line RL6058 (6*Thatcher/PI58548) for theLr34-Yr18 gene pair was studied against predominant and highly virulent Indian races. Thatcher derivatives 90RN2491 and RL6058 were intercrossed as well as crossed with the leaf rust and stripe rust susceptible Indian cultivar WL711. The F1, F2 and F3 generations from these crosses were assessed for rust severity against leaf rust race 77-5 and stripe rust race 46S119. The F2 and F3 generations from the crosses of RL6058 and 90RN2491 with WL711, segregated 15 resistant : 1 susceptible (F2) and 7 homozygous resistant : 8 segregating : 1 homozygous susceptible (F3) ratios, respectively, both for leaf rust and stripe rust severity. Therefore, partial resistance against each of the leaf rust and stripe rust races in both RL6058 and 90RN2491 is ascribed to two independently inherited dominant genes. One of the two genes for leaf rust and stripe rust resistance in 90RN2491 and RL6058 isLr34 and the linked geneYr18, respectively. The second leaf rust resistance gene in both the Thatcher lines segregated independently of stripe rust resistance. Therefore, it is notLr34 and it remains unidentified.  相似文献   

18.
D Bai  G J Scoles  D R Knott 《Génome》1994,37(3):410-418
Six accessions of Triticum triaristatum (Willd) Godr. &Gren. (syn. Aegilops triaristata) (6x, UUMMUnUn), having good resistance to both leaf rust (Puccinia recondita f.sp. tritici Rob. ex Desm) races and stem rust (P. graminis f.sp. tritici Eriks. &Henn.) races, were successfully crossed with both susceptible durum wheats (T. turgidum var. durum L., 2n = 28, AABB) and bread wheats (T. aestivum, 2n = 42, AABBDD). In some crosses, embryo rescue was necessary. The T. triaristatum resistance was expressed in all F1 hybrids. Backcrossing of the F1 hybrids to their wheat parents to produce BC1F1 plants was more difficult (seed set 0-7.14%) than to produce F1 hybrids (seed set 12.50-78.33%). The low female fertility of the F1 hybrids was due to low chromosome pairing. Only gametes with complete or nearly complete genomes from the F1 hybrids were viable. In BC2F4 populations from the cross MP/Ata2//2*MP, monosomic or disomic addition lines (2n = 21 II + 1 I or 22 II) with resistance to leaf rust race 15 (IT 1) were selected. In BC2F2 populations from the crosses CS/Ata4//2*MP and MP/Ata4//2*MP, monosomic or disomic addition lines with resistance to either leaf rust race 15 or stem rust race 15B-1 (both IT 1) were selected. Rust tests and cytology on the progeny of the disomic addition lines confirmed that the genes for rust resistance were located on the added T. triaristatum chromosomes. The homoeologous groups of the T. triaristatum chromosomes in the addition lines from the crosses MP/Ata2//2*MP, CS/Ata4//2*MP, and MP/Ata4//2*MP were determined to be 5, 2, and 7, respectively, through the detecting of RFLPs among genomes using a set of homoeologous group specific wheat cDNA probes. The addition lines with resistance to leaf rust race 15 from the crosses MP/Ata2//2*MP and CS/Ata4//2*MP were resistant to another nine races of leaf rust and the addition line with resistance to stem rust race 15B-1 from the cross MP/Ata4//2*MP was resistant to another nine races of stem rust as were their T. triaristatum parents. Since such genes provide resistance against a wide spectrum of rust races they should be very valuable in wheat breeding for rust resistance.  相似文献   

19.
Sequence tagged site (STS) markers for eight resistance genes against Puccinia recondita f. sp. tritici were used to screen a set of near-isogenic lines of wheat cv. Thatcher containing in total 40 different Lr genes and their alleles. Polymerase chain reaction (PCR) analysis was carried out by using STS, SCAR and CAPS primers specific for the leaf rust resistance genes Lr1, Lr9, Lr10, Lr19, Lr24, Lr28, Lr37 and Lr47. The STS, CAPS and SCAR markers linked to resistance genes Lr9, Lr10, Lr19, Lr24, Lr37 and Lr47 were found to be reliable in diverse genetic backgrounds. The amplification product of the Lr1 gene marker was detected in the susceptible cv. Thatcher and in all of the near-isogenic lines examined except Lr2a, Lr2b, Lr2c and Lr19. The sequence analysis of PCR products amplified in lines Lr1, Lr10, Lr28 and in cv. Thatcher indicated that the near-isogenic lines and cv. Thatcher contained in the targeted chromosome region an allele that differed from the original alleles corresponding to Lr1/6*Thatcher (TLR621) and susceptible Thatcher (TH621). The amplification product specific to the STS marker of the Lr1 gene was amplified in almost all Thatcher near-isogenic lines and in cv. Thatcher because their alleles possessed primer sequences identical to the original allele TLR621. The marker for the Lr28 resistance gene was identified in line Lr28, carrying gene Lr28, and in 21 other near-isogenic lines. The sequencing of PCR products specific to Lr28 and generated in lines Lr1, Lr10 and Lr28 indicated that the lines Lr1, Lr10 and Lr28 are heterozygous in this region.  相似文献   

20.
Wheat stem rust caused by Puccinia graminis f. sp. tritici can cause devastating yield losses in wheat. Over the past several decades, stem rust has been controlled worldwide through the use of genetic resistance. Stem rust race TTKSK (Ug99), first detected in Uganda in 1998, threatens global wheat production because of its unique virulence combination. As the majority of the currently grown cultivars and advanced breeding lines are susceptible to race TTKSK, sources of resistance need to be identified and characterized to facilitate their use in agriculture. South Dakota breeding line SD 1691 displayed resistance to race TTKSK in the international wheat stem rust nursery in Njoro, Kenya. Seedling screening of progeny derived from SD 1691 crossed to susceptible LMPG-6 indicated that a single resistance gene was present. Allelism and race-specificity tests indicated the stem rust resistance gene in SD 1691 was Sr28. The chromosome arm location of Sr28 was previously demonstrated to be 2BL. We identified molecular markers linked to Sr28 and validated this linkage in two additional populations. Common spring wheat cultivars in the central United States displayed allelic diversity for markers flanking Sr28. These markers could be used to select for Sr28 in breeding populations and for combining Sr28 with other stem rust resistance genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号