首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinetoplast DNA, the mitochondrial DNA of trypanosomatids, is a remarkable DNA structure that contains, in the species Crithidia fasciculata, 5000 topologically linked duplex DNA minicircles. Their replication initiates at two conserved sequences, a dodecamer, known as the universal minicircle sequence (UMS), and a hexamer, which are located at the replication origins of the minicircle L and H strands, respectively. A UMS-binding protein (UMSBP) binds specifically the 12-mer UMS sequence and a 14-mer sequence that contains the conserved hexamer in their single-stranded DNA conformation. In vivo cross-linking analyses reveal the binding of UMSBP to kinetoplast DNA networks in the cell. Furthermore, UMSBP binds in vitro to native minicircle origin fragments, carrying the UMSBP recognition sequences. UMSBP binding at the replication origin induces conformational changes in the bound DNA through its folding, aggregation and condensation.  相似文献   

2.
Replication of the kinetoplast DNA minicircle lagging (heavy (H))-strand initiates at, or near, a unique hexameric sequence (5'-ACGCCC-3') that is conserved in the minicircles of trypanosomatid species. A protein from the trypanosomatid Crithidia fasciculata binds specifically a 14-mer sequence, consisting of the complementary strand hexamer and eight flanking nucleotides at the H-strand replication origin. This protein was identified as the previously described universal minicircle sequence (UMS)-binding protein (UMSBP) (Tzfati, Y., Abeliovich, H., Avrahami, D., and Shlomai, J. (1995) J. Biol. Chem. 270, 21339-21345). This CCHC-type zinc finger protein binds the single-stranded form of both the 12-mer (UMS) and 14-mer sequences, at the replication origins of the minicircle L-strand and H-strand, respectively. The attribution of the two different DNA binding activities to the same protein relies on their co-purification from C. fasciculata cell extracts and on the high affinity of recombinant UMSBP to the two origin-associated sequences. Both the conserved H-strand hexamer and its flanking nucleotides at the replication origin are required for binding. Neither the hexameric sequence per se nor this sequence flanked by different sequences could support the generation of specific nucleoprotein complexes. Stoichiometry analysis indicates that each UMSBP molecule binds either of the two origin-associated sequences in the nucleoprotein complex but not both simultaneously.  相似文献   

3.
Kinetoplast DNA (kDNA) is the mitochondrial DNA of trypanosomatids. Its major components are several thousand topologically interlocked DNA minicircles. Their replication origins are recognized by universal minicircle sequence-binding protein (UMSBP), a CCHC-type zinc finger protein, which has been implicated with minicircle replication initiation and kDNA segregation. Interactions of UMSBP with origin sequences in vitro have been found to be affected by the protein's redox state. Reduction of UMSBP activates its binding to the origin, whereas UMSBP oxidation impairs this activity. The role of redox in the regulation of UMSBP in vivo was studied here in synchronized cell cultures, monitoring both UMSBP origin binding activity and its redox state, throughout the trypanosomatid cell cycle. These studies indicated that UMSBP activity is regulated in vivo through the cell cycle dependent control of the protein's redox state. The hypothesis that UMSBP's redox state is controlled by an enzymatic mechanism, which mediates its direct reduction and oxidation, was challenged in a multienzyme reaction, reconstituted with pure enzymes of the trypanosomal major redox-regulating pathway. Coupling in vitro of this reaction with a UMSBP origin-binding reaction revealed the regulation of UMSBP activity through the opposing effects of tryparedoxin and tryparedoxin peroxidase. In the course of this reaction, tryparedoxin peroxidase directly oxidizes UMSBP, revealing a novel regulatory mechanism for the activation of an origin-binding protein, based on enzyme-mediated reversible modulation of the protein's redox state. This mode of regulation may represent a regulatory mechanism, functioning as an enzyme-mediated, redox-based biological switch.  相似文献   

4.
UMSBP is a CCHC-type zinc finger protein, which functions during replication initiation of kinetoplast DNA minicircles and the segregation of kinetoplast DNA networks. Interactions of UMSBP with origin sequences, as well as the protein oligomerization, are affected by its redox state. Reduction yields UMSBP monomers and activates its binding to DNA, while oxidation drives UMSBP oligomerization and impairs its DNA-binding activity. Kinetics analyses of UMSBP–DNA interactions revealed that redox affects the association of free UMSBP with the DNA, but has little effect on its dissociation from the nucleoprotein complex. A previously proposed model, suggesting that binding of DNA is regulated via the reversible interconversions of active UMSBP monomers and inactive oligomers, was challenged here, revealing that the two redox-driven processes are not interrelated. No correlation could be observed between DNA-binding inhibition and UMSBP oligomerization, upon oxidation of UMSBP. Moreover, while the presence of zinc ions was found to be essential for the interaction of UMSBP with DNA, UMSBP oligomerization occurred through zinc-depleted, unfolded zinc finger domains. Site directed mutagenesis analysis of UMSBP suggested that its unique methionine residue, which can be oxidized into methionine sulfoxide, is not involved in the redox-mediated regulation of UMSBP–DNA interactions.  相似文献   

5.
Kinetoplast DNA (kDNA), the mitochondrial DNA of the trypanosomatid Crithidia fasciculata, is a unique structure containing 5,000 DNA minicircles topologically linked into a massive network. In vivo, the network is condensed into a disk-shaped structure. Replication of minicircles initiates at unique origins that are bound by universal minicircle sequence (UMS)-binding protein (UMSBP), a sequence-specific DNA-binding protein. This protein, encoded by a nuclear gene, localizes within the cell's single mitochondrion. Using immunofluorescence, we found that UMSBP localizes exclusively to two neighboring sites adjacent to the face of the kDNA disk nearest the cell's flagellum. This site is distinct from the two antipodal positions at the perimeter of the disk that is occupied by DNA polymerase beta, topoisomerase II, and a structure-specific endonuclease. Although we found constant steady-state levels of UMSBP mRNA and protein and a constant rate of UMSBP synthesis throughout the cell cycle, immunofluorescence indicated that UMSBP localization within the kinetoplast is not static. The intramitochondrial localization of UMSBP and other kDNA replication enzymes significantly clarifies our understanding of the process of kDNA replication.  相似文献   

6.
Kinetoplastid topoisomerase IB is an unusual bisubunit enzyme where reconstitution of the large (LdTOPIL or L) and small (LdTOPIS or S) subunits shows functional activity. It is yet to be deciphered whether one subunit or both navigate the heterodimer to its cellular DNA targets. Tethering a specific DNA-binding protein to topoisomerase I alters its site specificity. The chimeric constructs UMSBP-LdTOPIL/S or U-L/S (fusion of UMSBP to the N-terminus of L and reconstituted with S) and LdTOPIL/UMSBP-LdTOPIS or L/U-S (fusion of UMSBP to the N-terminus of S and reconstituted with L) exhibit relaxation activity. Only U-L/S shows altered site specificity and enhanced DNA-binding affinity for the universal minicircle sequence (UMS) containing substrate. This proves that L alone serves as the 'molecular steer' for this heterodimer. Reconstituted U-L/S also induces cleavage close to UMS and causes minicircle linearization. The differential properties of the reconstituted chimeras U-L/S and L/U-S reveal the structural and functional asymmetry between the heterodimer. Therefore this study helps in a better understanding of the mechanistic details underlying topoisomerization by this bi-subunit enzyme.  相似文献   

7.
Kinetoplast DNA (kDNA), the mitochondrial genome of trypanosomatids, consists of several thousand topologically interlocked DNA circles. Mitochondrial histone H1-like proteins were implicated in the condensation of kDNA into a nucleoid structure in the mitochondrial matrix. However, the mechanism that remodels kDNA, promoting its accessibility to the replication machinery, has not yet been described. Analyses, using yeast two hybrid system, co-immunoprecipitation, and protein-protein cross-linking, revealed specific protein-protein interactions between the kDNA replication initiator protein universal minicircle sequence-binding protein (UMSBP) and two mitochondrial histone H1-like proteins. Fluorescence and electron microscopy, as well as biochemical analyses, demonstrated that these protein-protein interactions result in the decondensation of kDNA. UMSBP-mediated decondensation rendered the kDNA network accessible to topological decatenation by topoisomerase II, yielding free kDNA minicircle monomers. Hence, UMSBP has the potential capacity to function in vivo in the activation of the prereplication release of minicircles from the network, a key step in kDNA replication, which precedes and enables its replication initiation. These observations demonstrate the prereplication remodeling of a condensed mitochondrial DNA, which is mediated via specific interactions of histone-like proteins with a replication initiator, rather than through their posttranslational covalent modifications.  相似文献   

8.
The dodecamer universal minicircle sequence is a conserved sequence present in minicircles of trypanosomatid kinetoplast DNA studied so far. This sequence is recognised by a protein named universal minicircle sequence binding protein, described for Crithidia fasciculata, involved in minicircle DNA replication. We have identified a Trypanosoma cruzi gene homologue of the Crithidia fasciculata universal minicircle sequence binding protein. Similar to the Crithidia fasciculata universal minicircle sequence binding protein, the Trypanosoma cruzi protein, named PDZ5, contains five zinc finger motifs. Pulsed field gel electrophoresis indicated that the pdz5 gene is located in the chromosomal band XX of the Trypanosoma cruzi genome. The predicted amino acid sequence of PDZ5 shows a high degree of similarity with several trypanosomatid zinc finger proteins. Specific antibody raised against Crithidia fasciculata universal minicircle sequence binding protein recognises both the recombinant and endogenous PDZ5. The complete pdz5 coding sequence cloned in bacteria expresses a recombinant PDZ5 protein that binds specifically to the universal minicircle sequence dodecamer. These data strongly suggest that PDZ5 represents a Trypanosoma cruzi universal minicircle sequence binding protein.  相似文献   

9.
Kinetoplast DNA (kDNA) is the mitochondrial genome of trypanosomatids. It consists of a few dozen maxicircles and several thousand minicircles, all catenated topologically to form a two-dimensional DNA network. Minicircles are heterogeneous in size and sequence among species. They present one or several conserved regions that contain three highly conserved sequence blocks. CSB-1 (10?bp sequence) and CSB-2 (8?bp sequence) present lower interspecies homology, while CSB-3 (12?bp sequence) or the Universal Minicircle Sequence is conserved within most trypanosomatids. The Universal Minicircle Sequence is located at the replication origin of the minicircles, and is the binding site for the UMS binding protein, a protein involved in trypanosomatid survival and virulence. Here, we describe the structure and organisation of the kDNA of Trypanosoma copemani, a parasite that has been shown to infect mammalian cells and has been associated with the drastic decline of the endangered Australian marsupial, the woylie (Bettongia penicillata). Deep genomic sequencing showed that T. copemani presents two classes of minicircles that share sequence identity and organisation in the conserved sequence blocks with those of Trypanosoma cruzi and Trypanosoma lewisi. A 19,257?bp partial region of the maxicircle of T. copemani that contained the entire coding region was obtained. Comparative analysis of the T. copemani entire maxicircle coding region with the coding regions of T. cruzi and T. lewisi showed they share 71.05% and 71.28% identity, respectively. The shared features in the maxicircle/minicircle organisation and sequence between T. copemani and T. cruzi/T. lewisi suggest similarities in their process of kDNA replication, and are of significance in understanding the evolution of Australian trypanosomes.  相似文献   

10.
To date, methanogens are the only group within the archaea where firing DNA replication origins have not been demonstrated in vivo. In the present study we show that a previously identified cluster of ORB (origin recognition box) sequences do indeed function as an origin of replication in vivo in the archaeon Methanothermobacter thermautotrophicus. Although the consensus sequence of ORBs in M. thermautotrophicus is somewhat conserved when compared with ORB sequences in other archaea, the Cdc6-1 protein from M. thermautotrophicus (termed MthCdc6-1) displays sequence-specific binding that is selective for the MthORB sequence and does not recognize ORBs from other archaeal species. Stabilization of in vitro MthORB DNA binding by MthCdc6-1 requires additional conserved sequences 3' to those originally described for M. thermautotrophicus. By testing synthetic sequences bearing mutations in the MthORB consensus sequence, we show that Cdc6/ORB binding is critically dependent on the presence of an invariant guanine found in all archaeal ORB sequences. Mutation of a universally conserved arginine residue in the recognition helix of the winged helix domain of archaeal Cdc6-1 shows that specific origin sequence recognition is dependent on the interaction of this arginine residue with the invariant guanine. Recognition of a mutated origin sequence can be achieved by mutation of the conserved arginine residue to a lysine or glutamine residue. Thus despite a number of differences in protein and DNA sequences between species, the mechanism of origin recognition and binding appears to be conserved throughout the archaea.  相似文献   

11.
Eukaryotic replication protein A (RPA) is a single-stranded(ss) DNA binding protein with multiple functions in DNA replication, repair, and genetic recombination. The 70-kDa subunit of eukaryotic RPA contains a conserved four cysteine-type zinc-finger motif that has been implicated in the regulation of DNA replication and repair. Recently, we described a novel function for the zinc-finger motif in the regulation of human RPA's ssDNA binding activity through reduction-oxidation (redox). Here, we show that yeast RPA's ssDNA binding activity is regulated by redox potential through its RPA32 and/or RPA14 subunits. Yeast RPA requires a reducing agent, such as dithiothreitol (DTT), for its ssDNA binding activity. Also, under non-reducing conditions, its DNA binding activity decreases 20 fold. In contrast, the RPA70 subunit does not require DTT for its DNA binding activity and is not affected by the redox condition. These results suggest that all three subunits are required for the regulation of RPA's DNA binding activity through redox potential.  相似文献   

12.
Protein function often requires remodeling of protein structure. In the well-studied iteron-containing plasmids, the initiator of replication has a dimerization interface that undergoes chaperone-mediated remodeling. This remodeling reduces dimerization and promotes DNA replication, since only monomers bind origin DNA. A structurally homologs interface exists in RctB, the replication initiator of Vibrio cholerae chromosome 2 (Chr2). Chaperones also promote Chr2 replication, although both monomers and dimers of RctB bind to origin, and chaperones increase the binding of both. Here we report how five changes in the dimerization interface of RctB affect the protein. The mutants are variously defective in dimerization, more active as initiator, and except in one case, unresponsive to chaperone (DnaJ). The results indicate that chaperones also reduce RctB dimerization and support the proposal that the paradoxical chaperone-promoted dimer binding likely represents sequential binding of monomers on DNA. RctB is also activated for replication initiation upon binding to a DNA site, crtS, and three of the mutants are also unresponsive to crtS. This suggests that crtS, like chaperones, reduces dimerization, but additional evidence suggests that the remodelling activities function independently. Involvement of two remodelers in reducing dimerization signifies the importance of dimerization in limiting Chr2 replication.  相似文献   

13.
Initiation of adenovirus DNA replication is dependent on a complex of the precursor of the terminal protein and the adenovirus-coded DNA polymerase (pTP-pol complex). This complex catalyzes the formation of a covalent linkage between dCMP and pTP in the presence of a functional origin of DNA replication residing in the terminal nucleotide sequence of adenovirus DNA. We have purified the pTP-pol complex of adenovirus type 5 and studied its binding to double-stranded DNA. Using DNA-cellulose chromatography it could be shown that the pTP-pol complex has a higher affinity for adenovirus DNA than for calf thymus or pBR322 DNA. From the differential binding of the pTP-pol complex to plasmids containing adenovirus terminal sequences with different deletions, it has been concluded that a sequence of 14 nucleotide pairs at positions 9-22 plays a crucial role in the binding of pTP-pol to adenovirus DNA. This region is conserved in the DNA's of all human adenovirus serotypes and is obviously an important structural element of the adenovirus origin of DNA replication. Comparative binding studies with adenovirus DNA polymerase and pTP-pol indicated that pTP is responsible for the binding. The nature of the binding of pTP-pol to the conserved sequence will be discussed.  相似文献   

14.
While many of the proteins involved in the initiation of DNA replication are conserved between yeasts and metazoans, the structure of the replication origins themselves has appeared to be different. As typified by ARS1, replication origins in Saccharomyces cerevisiae are <150 bp long and have a simple modular structure, consisting of a single binding site for the origin recognition complex, the replication initiator protein, and one or more accessory sequences. DNA replication initiates from a discrete site. While the important sequences are currently less well defined, metazoan origins appear to be different. These origins are large and appear to be composed of multiple, redundant elements, and replication initiates throughout zones as large as 55 kb. In this report, we characterize two S. cerevisiae replication origins, ARS101 and ARS310, which differ from the paradigm. These origins contain multiple, redundant binding sites for the origin recognition complex. Each binding site must be altered to abolish origin function, while the alteration of a single binding site is sufficient to inactivate ARS1. This redundant structure may be similar to that seen in metazoan origins.  相似文献   

15.
Trypanosomes have an unusual mitochondrial genome, called kinetoplast DNA, that is a giant network containing thousands of interlocked minicircles. During kinetoplast DNA synthesis, minicircles are released from the network for replication as theta-structures, and then the free minicircle progeny reattach to the network. We report that a mitochondrial protein, which we term p38, functions in kinetoplast DNA replication. RNA interference (RNAi) of p38 resulted in loss of kinetoplast DNA and accumulation of a novel free minicircle species named fraction S. Fraction S minicircles are so underwound that on isolation they become highly negatively supertwisted and develop a region of Z-DNA. p38 binds to minicircle sequences within the replication origin. We conclude that cells with RNAi-induced loss of p38 cannot initiate minicircle replication, although they can extensively unwind free minicircles.  相似文献   

16.
SeqA is a negative regulator of DNA replication in Escherichia coli and related bacteria that functions by sequestering the origin of replication and facilitating its resetting after every initiation event. Inactivation of the seqA gene leads to unsynchronized rounds of replication, abnormal localization of nucleoids and increased negative superhelicity. Excess SeqA also disrupts replication synchrony and affects cell division. SeqA exerts its functions by binding clusters of transiently hemimethylated GATC sequences generated during replication. However, the molecular mechanisms that trigger formation and disassembly of such complex are unclear. We present here the crystal structure of a dimeric mutant of SeqA [SeqAΔ(41–59)-A25R] bound to tandem hemimethylated GATC sites. The structure delineates how SeqA forms a high-affinity complex with DNA and it suggests why SeqA only recognizes GATC sites at certain spacings. The SeqA–DNA complex also unveils additional protein–protein interaction surfaces that mediate the formation of higher ordered complexes upon binding to newly replicated DNA. Based on this data, we propose a model describing how SeqA interacts with newly replicated DNA within the origin of replication and at the replication forks.  相似文献   

17.
18.
S E Fawell  J A Lees  R White  M G Parker 《Cell》1990,60(6):953-962
We have identified a region within the steroid binding domain of the mouse estrogen receptor that is required for both receptor dimerization and high affinity DNA binding. Analysis of sequences in this region revealed that a heptad repeat of hydrophobic residues was conserved in all members of the nuclear receptor superfamily. Single amino acid substitutions of residues in the N-terminal half, but not the C-terminal half, of the repeat prevented receptor dimerization. Steroid binding was abolished by point mutations in the center of the conserved region, implying that the steroid binding and dimerization domains overlap. The role of this region in steroid receptor function is discussed in relation to other models of protein dimerization and DNA binding.  相似文献   

19.
DnaA protein has the sole responsibility of initiating a new round of DNA replication in prokaryotic organisms. It recognizes the origin of DNA replication, and initiates chromosomal DNA replication in the bacterial genome. In Gram-negative Escherichia coli, a large number of DnaA molecules bind to specific DNA sequences (known as DnaA boxes) in the origin of DNA replication, oriC, leading to the activation of the origin. We have cloned, expressed, and purified full-length DnaA protein in large quantity from Gram-positive pathogen Bacillus anthracis (DnaABA). DnaABA was a highly soluble monomeric protein making it amenable to quantitative analysis of its origin recognition mechanisms. DnaABA bound DnaA boxes with widely divergent affinities in sequence and ATP-dependent manner. In the presence of ATP, the KD ranged from 3.8 × 10−8 M for a specific DnaA box sequence to 4.1 × 10−7 M for a non-specific DNA sequence and decreased significantly in the presence of ADP. Thermodynamic analyses of temperature and salt dependence of DNA binding indicated that hydrophobic (entropic) and ionic bonds contributed to the DnaABA·DNA complex formation. DnaABA had a DNA-dependent ATPase activity. DNA sequences acted as positive effectors and modulated the rate (Vmax) of ATP hydrolysis without any significant change in ATP binding affinity.  相似文献   

20.
L Li  B L Li  M Hock  E Wang    W R Folk 《Journal of virology》1995,69(12):7570-7578
Replication of the genomes of the polyomaviruses requires two virus-specified elements, the cis-acting origin of DNA replication, with its auxiliary DNA elements, and the trans-acting viral large tumor antigen (T antigen). Appropriate interactions between them initiate the assembly of a replication complex which, together with cellular proteins, is responsible for primer synthesis and DNA chain elongation. The organization of cis-acting elements within the origins of the polyomaviruses which replicate in mammalian cells is conserved; however, these origins are sufficiently distinct that the T antigen of one virus may function inefficiently or not at all to initiate replication at the origin of another virus. We have studied the basis for such replication selectivity between the murine polyomavirus T antigen and the primate lymphotropic polyomavirus origin. The murine polyomavirus T antigen is capable of carrying out the early steps of the assembly of an initiation complex at the lymphotropic papovavirus origin, including binding to and deformation of origin sequences in vitro. However, the T antigen inefficiently unwinds the origin, and unwinding is influenced by sequences flanking the T antigen pentanucleotide binding sites on the late side of the viral core origin. These same sequences contribute to the replication selectivity observed in vivo and in vitro, suggesting that the inefficient unwinding is the cause of the replication defect. These observations suggest a mechanism by which origins of DNA replication can evolve replication selectivity and by which the function of diverse cellular origins might be temporally activated during the S phase of the eukaryotic cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号