首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
Perturbation of pheromone signaling modulates not only mating but also virulence in Cryptococcus neoformans, an opportunistic human pathogen known to encode three Galpha, one Gbeta, and two Ggamma subunit proteins. We have found that Galphas Gpa2 and Gpa3 exhibit shared and distinct roles in regulating pheromone responses and mating. Gpa2 interacted with the pheromone receptor homolog Ste3alpha, Gbeta subunit Gpb1, and RGS protein Crg1. Crg1 also exhibited in vitro GAP activity toward Gpa2. These findings suggest that Gpa2 regulates mating through a conserved signaling mechanism. Moreover, we found that Ggammas Gpg1 and Gpg2 both regulate pheromone responses and mating. gpg1 mutants were attenuated in mating, and gpg2 mutants were sterile. Finally, although gpa2, gpa3, gpg1, gpg2, and gpg1 gpg2 mutants were fully virulent, gpa2 gpa3 mutants were attenuated for virulence in a murine model. Our study reveals a conserved but distinct signaling mechanism by two Galpha, one Gbeta, and two Ggamma proteins for pheromone responses, mating, and virulence in Cryptococcus neoformans, and it also reiterates that the link between mating and virulence is not due to mating per se but rather to certain mating-pathway components that encode additional functions promoting virulence.  相似文献   

8.
9.
10.
Heterotrimeric G protein signaling specificity has been attributed to select combinations of Galpha, beta, and gamma subunits, their interactions with other signaling proteins, and their localization in the cell. With few exceptions, the G protein subunit combinations that exist in vivo and the significance of these specific combinations are largely unknown. We have begun to approach these problems in HeLa cells by: 1) determining the concentrations of Galpha and Gbeta subunits; 2) examining receptor-dependent activities of two effector systems (adenylyl cyclase and phospholipase Cbeta); and 3) systematically silencing each of the Galpha and Gbeta subunits by using small interfering RNA while quantifying resultant changes in effector function and the concentrations of other relevant proteins in the network. HeLa cells express equimolar amounts of total Galpha and Gbeta subunits. The most prevalent Galpha proteins were one member of each Galpha subfamily (Galpha(s), Galpha(i3), Galpha(11), and Galpha(13)). We substantially abrogated expression of most of the Galpha and Gbeta proteins expressed in these cells, singly and some in combinations. As expected, agonist-dependent activation of adenylyl cyclase or phospholipase Cbeta was specifically eliminated following the silencing of Galpha(s) or Galpha(q/11), respectively. We also confirmed that Gbeta subunits are necessary for stable accumulation of Galpha proteins in vivo. Gbeta subunits demonstrated little isoform specificity for receptor-dependent modulation of effector activity. We observed compensatory changes in G protein accumulation following silencing of individual genes, as well as an apparent reciprocal relationship between the expression of certain Galpha(q) and Galpha(i) subfamily members. These findings provide a foundation for understanding the mechanisms that regulate the adaptability and remarkable resilience of G protein signaling networks.  相似文献   

11.
One major class of G proteins typically functions as heterotrimeric complexes consisting of Galpha, Gbeta and Ggamma subunits. However, recent work in yeast has identified an atypical Galpha protein, Gpa2p, which functions without cognate Gbetagamma subunits. Two novel kelch repeat protein binding partners of Gpa2p, Krh1p and Krh2p, do not function as alternative Gbeta subunits, as initially thought, but rather as Gpa2p effectors. They directly link Gpa2p to protein kinase A, thus forming an adenylate cyclase bypass pathway that enables inputs other than cellular cAMP concentration to affect protein kinase A activity. Because mammalian protein kinase A expressed in yeast is also subject to control by the same bypass pathway, it is exciting to postulate that a functionally similar mechanism might exist in mammalian cells, and that other Galpha proteins could exhibit similar characteristics to Gpa2p.  相似文献   

12.
G proteins transmit a variety of extracellular signals into intracellular responses. The Galpha and Gbetagamma subunits are both known to regulate effectors. Interestingly, the Galpha subunit also determines subtype specificity of Gbetagamma effector interactions. However, in light of the common paradigm that Galpha and Gbetagamma subunits dissociate during activation, a plausible mechanism of how this subtype specificity is generated was lacking. Using a fluorescence resonance energy transfer (FRET)-based assay developed to directly measure mammalian G protein activation in intact cells, we demonstrate that fluorescent Galpha(i1,2,3), Galpha(z), and Gbeta(1)gamma(2) subunits do not dissociate during activation but rather undergo subunit rearrangement as indicated by an activation-induced increase in FRET. In contrast, fluorescent Galpha(o) subunits exhibited an activation-induced decrease in FRET, reflecting subunit dissociation or, alternatively, a distinct subunit rearrangement. The alpha(B/C)-region within the alpha-helical domain, which is much more conserved within Galpha(i1,2,3) and Galpha(z) as compared with that in Galpha(o), was found to be required for exhibition of an activation-induced increase in FRET between fluorescent Galpha and Gbetagamma subunits. However, the alpha(B/C)-region of Galpha(il) alone was not sufficient to transfer the activation pattern of Galpha(i) to the Galpha(o) subunit. Either residues in the first 91 amino acids or in the C-terminal remainder (amino acids 93-354) of Galpha(il) together with the alpha(B/C)-helical region of Galpha(i1) were needed to transform the Galpha(o)-activation pattern into a Galpha(i1)-type of activation. The discovery of subtype-selective mechanisms of G protein activation illustrates that G protein subfamilies have specific mechanisms of activation that may provide a previously unknown basis for G protein signaling specificity.  相似文献   

13.
Canonical G proteins are heterotrimeric, consisting of alpha, beta, and gamma subunits. Despite multiple Galpha subunits functioning in fungi, only a single Gbeta subunit per species has been identified, suggesting that non-conventional G protein signaling exists in this diverse group of eukaryotic organisms. Using the Galpha subunit Gpa1 that functions in cAMP signaling as bait in a two-hybrid screen, we have identified a novel Gbeta-like/RACK1 protein homolog, Gib2, from the human pathogenic fungus Cryptococcus neoformans. Gib2 contains a seven WD-40 repeat motif and is predicted to form a seven-bladed beta propeller structure characteristic of beta transducins. Gib2 is also shown to interact, respectively, with two Ggamma subunit homologs, Gpg1 and Gpg2, similar to the conventional Gbeta subunit Gpb1. In contrast to Gpb1 whose overexpression promotes mating response, overproduction of Gib2 suppresses defects of gpa1 mutation in both melanization and capsule formation, the phenotypes regulated by cAMP signaling and associated with virulence. Furthermore, depletion of Gib2 by antisense suppression results in a severe growth defect, suggesting that Gib2 is essential. Finally, Gib2 is shown to also physically interact with a downstream target of Gpa1-cAMP signaling, Smg1, and the protein kinase C homolog Pkc1, indicating that Gib2 is also a multifunctional RACK1-like protein.  相似文献   

14.
15.
In the phytopathogenic fungus Ustilago maydis, fusion of haploid cells is a prerequisite for infection. This process is controlled by a pheromone-receptor system. The receptors belong to the seven-transmembrane class that are coupled to heterotrimeric G proteins. Of four Galpha subunits in U. maydis, only gpa3 has a function during mating and cyclic AMP (cAMP) signaling. Activation of the cAMP cascade induces pheromone gene expression; however, it does not lead to the induction of conjugation tubes seen after pheromone stimulation. To investigate the possibility that a Gbeta subunit participates in pheromone signaling, we isolated the single beta subunit gene, bpp1, from U. maydis. bpp1 deletion mutants grew filamentously and showed attenuated pheromone gene expression, phenotypes associated with deltagpa3 strains. In addition, a constitutively active allele of gpa3 suppressed the phenotype of the bpp1 deletion strains. We suggest that Bpp1 and Gpa3 are components of the same heterotrimeric G protein acting on adenylyl cyclase. Interestingly, while deltagpa3 strains are impaired in pathogenicity, deltabpp1 mutants are able to induce plant tumors. This could indicate that Gpa3 operates independently of Bpp1 during pathogenic development.  相似文献   

16.
According to the prevailing paradigm, G-proteins are composed of three subunits, an alpha subunit with GTPase activity and a tightly associated betagamma subunit complex. In the yeast Saccharomyces cerevisiae there are two known Galpha proteins (Gpa1 and Gpa2) but only one Gbetagamma, which binds only to Gpa1. Here we show that the yeast ortholog of RACK1 (receptor for activated protein kinase C1) Asc1 functions as the Gbeta for Gpa2. As with other known Gbeta proteins, Asc1 has a 7-WD domain structure, interacts directly with the Galpha in a guanine nucleotide-dependent manner, and inhibits Galpha guanine nucleotide exchange activity. In addition, Asc1 binds to the effector enzyme adenylyl cyclase (Cyr1), and diminishes the production of cAMP in response to glucose stimulation. Thus, whereas Gpa2 promotes glucose signaling through elevated production of cAMP, Asc1 has opposing effects on these same processes. Our findings reveal the existence of an unusual Gbeta subunit, one having multiple functions within the cell in addition to serving as a signal transducer for cell surface receptors and intracellular effectors.  相似文献   

17.
Regulator of G-protein signaling 3 (RGS3) enhances the intrinsic rate at which Galpha(i) and Galpha(q) hydrolyze GTP to GDP, thereby limiting the duration in which GTP-Galpha(i) and GTP-Galpha(q) can activate effectors. Since GDP-Galpha subunits rapidly combine with free Gbetagamma subunits to reform inactive heterotrimeric G-proteins, RGS3 and other RGS proteins may also reduce the amount of Gbetagamma subunits available for effector interactions. Although RGS6, RGS7, and RGS11 bind Gbeta(5) in the absence of a Ggamma subunit, RGS proteins are not known to directly influence Gbetagamma signaling. Here we show that RGS3 binds Gbeta(1)gamma(2) subunits and limits their ability to trigger the production of inositol phosphates and the activation of Akt and mitogen-activated protein kinase. Co-expression of RGS3 with Gbeta(1)gamma(2) inhibits Gbeta(1)gamma(2)-induced inositol phosphate production and Akt activation in COS-7 cells and mitogen-activated protein kinase activation in HEK 293 cells. The inhibition of Gbeta(1)gamma(2) signaling does not require an intact RGS domain but depends upon two regions in RGS3 located between acids 313 and 390 and between 391 and 458. Several other RGS proteins do not affect Gbeta(1)gamma(2) signaling in these assays. Consistent with the in vivo results, RGS3 inhibits Gbetagamma-mediated activation of phospholipase Cbeta in vitro. Thus, RGS3 may limit Gbetagamma signaling not only by virtue of its GTPase-activating protein activity for Galpha subunits, but also by directly interfering with the activation of effectors.  相似文献   

18.
A G protein alpha subunit gene (pigpa1) and a G protein beta subunit gene (pigpb1) were isolated from the oomycete Phytophthora infestans, the causal agent of potato late blight. Heterotrimeric G proteins are evolutionary conserved GTP-binding proteins that are composed of alpha,beta, and gamma subunits and participate in diverse signal transduction pathways. The deduced amino acid sequence of both pigpa1 and pigpb1, showed the typical conserved motifs present in Galpha or Gbeta proteins from other eukaryotes. Southern blot analysis revealed no additional copies of Galpha or Gbeta subunit genes in P. infestans, suggesting that pigpa1 and pigpb1 are single copy genes. By cross-hybridization homologues of gpa1 and gpb1 were detected in other Phythophthora species. Expression analyses revealed that both genes are differentially expressed during asexual development, with the highest mRNA levels in sporangia. In mycelium, no pigpa1 mRNA was detected. Western blot analysis using a polyclonal GPA1 antibody confirmed the differential expression of pigpa1. These expression patterns suggest a role for G-protein-mediated signaling during formation and germination of asexual spores of P. infestans, developmental stages representing the initial steps of the infection process.  相似文献   

19.
Genes encoding the Galpha subunit were cloned from Mucor circinelloides, a zygomycete dimorphic fungus. There are at least four genes that encode for Galpha subunits, gpa1, gpa2, gpa3, and gpa4. The genes gpa1 and gpa3 were isolated and characterized, and their predicted products showed 36%-67% identity with Galpha subunits from diverse fungi. Northern blot analysis of gpa3 showed that it is present in spores and constitutively expressed during mycelium development and during yeast-mycelium and mycelium-yeast transitions. However, during yeast cell growth, decreased levels of mRNA were observed. Sequence analysis of gpa3 cDNA revealed that Gpa3 encodes a polypeptide of 356 amino acids with a calculated molecular mass of 40.8 kDa. The deduced sequence of Gpa3 protein contains all the consensus regions of Galpha subunits of the Galpha(i/o/t) subfamily except the cysteine near the C terminus for potential ADP-ribosylation by pertussis toxin. This cDNA was expressed in Escherichia coli and purified by affinity chromatography. Based on its electrophoretic mobility in SDS-PAGE, the molecular mass of the His6-tagged Gpa3 was 45 kDa. The recombinant protein was recognized by a polyclonal antibody against a fragment of a human Galpha(i/o/t). Furthermore, the recombinant Gpa3 was ADP-ribosylated by activated cholera toxin and [32P]NAD but not by pertussis toxin. These results indicate that in M. circinelloides the Galpha subunit Gpa3 is expressed constitutively during differentiation.  相似文献   

20.
Despite acutely inhibiting adenylate cyclase, prolonged activation of Galpha(i/o)-coupled receptors leads to a subsequent heterologous sensitization of adenylate cyclase responsiveness. Recently, protein kinase signaling and phosphorylation have been implicated in the sensitization of adenylate cyclase type 6 (AC6). To examine the sensitization specifically of AC6, we constructed human embryonic kidney cells (HEK293) cells stably expressing AC6 and the Galpha(i/o)-coupled D2L dopamine receptor. In contrast to observations in delta-opioid-expressing Chinese hamster ovary (CHO) cells that express endogenous AC6 and AC7, neither protein kinase C (PKC) nor tyrosine kinase inhibitors attenuated D2L receptor-mediated sensitization of AC6. Inhibition of Raf1 modestly inhibited the magnitude of D2L receptor-induced sensitization of AC6; however, activation of PKC robustly enhanced D2L receptor-mediated AC6 sensitization in a Raf1-dependent manner. These data indicate that, although PKC and Raf1 are not required for sensitization, activation of the PKC-Raf1 pathway robustly potentiated D2L receptor-mediated sensitization of AC6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号