首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A filtered reactor beam, consisting mainly of 24 keV neutrons, was used to study the induction of chromosome aberrations in the V79/4(AH1) Chinese hamster cell line. The yields of both dicentrics and acentrics were linear with dose and the value of relative biological effectiveness (RBE) for dicentrics at low doses was 6.5 +/- 1.4. This value was similar to that found previously for a neutron spectrum with mean energy 2.1 MeV, and suggests that the RBE of neutrons does not increase to very high values in the energy region below 100 keV. This result does not support the suggestions of Davy (1969) and Key (1971) that the neutron RBE rises to very high values in the intermediate energy range.  相似文献   

2.
Considerable interest has been aroused in recent years by reports that the transforming and carcinogenic effectiveness of low doses of high LET radiations can be increased by reducing the dose rate, especially for transformation of 10T1/2 cells in vitro by fission-spectrum neutrons. We report on conditions which have been established for irradiation of 10T1/2 cells with high LET monoenergetic alpha-particles (energy of 3.2 MeV, LET of 124 keV microns-1) from 238Pu. The alpha-particle irradiator allows convenient irradiation of multiple dishes of cells at selectable high or low dose rates and temperatures. The survival curves of irradiated cells showed that the mean lethal dose of alpha-particles was 0.6 Gy and corresponded to an RBE, at high dose rates, of 7.9 at 80 per cent survival and 4.6 at 5 per cent survival, relative to 60Co gamma-rays. The mean areas of the 10T1/2 nuclei, perpendicular to the incident alpha-particles, was measured as 201 microns2, from which it follows that, on average, only one in six of the alpha-particle traversals through a cell nucleus is lethal. Under the well-characterized conditions of these experiments the event frequency of alpha-particle traversals through cell nuclei is 9.8 Gy-1.  相似文献   

3.
Background and purpose: Accelerator-Based Boron Neutron Capture Therapy is a radiotherapy based on compact accelerator neutron sources requiring an epithermal neutron field for tumour irradiations. Neutrons of 10 keV are considered as the maximum optimised energy to treat deep-seated tumours. We investigated, by means of Monte Carlo simulations, the epithermal range from 10 eV to 10 keV in order to optimise the maximum epithermal neutron energy as a function of the tumour depth.Methods: A Snyder head phantom was simulated and mono-energetic neutrons with 4 different incident energies were used: 10 eV, 100 eV, 1 keV and 10 keV. 10B capture rates and absorbed dose composition on every tissue were calculated to describe and compare the effects of lowering the maximum epithermal energy. The Therapeutic Gain (TG) was estimated considering the whole brain volume.Results: For tumours seated at 4 cm depth, 10 eV, 100 eV and 1 keV neutrons provided respectively 54%, 36% and 18% increase on the TG compared to 10 keV neutrons. Neutrons with energies between 10 eV and 1 keV provided higher TG than 10 keV neutrons for tumours seated up to 6.4 cm depth inside the head. The size of the tumour does not change these results.Conclusions: Using lower epithermal energy neutrons for AB-BNCT tumour irradiation could improve treatment efficacy, delivering more therapeutic dose while reducing the dose in healthy tissues. This could lead to new Beam Shape Assembly designs in order to optimise the BNCT irradiation.  相似文献   

4.
The RBE for neutrons was assessed in a head-to-head experiment in which cultures of lymphocytes from the same male donor were irradiated simultaneously with 144 keV neutrons and with 60Co gamma rays as the reference radiation and evaluated using matched time, culture conditions, and the end point of chromosomal aberrations to avoid potential confounding factors that would influence the outcome of the experiment. In addition, the irradiation time was held constant at 2 h for the high-dose groups for both radiation types, which resulted in rather low dose rates. For the induction of dicentric chromosomes, the exposure to the 144 keV neutrons was found to be almost equally as effective (yield coefficient alpha(dic) = 0.786 +/- 0.066 dicentrics per cell per gray) as that found previously for irradiation with monoenergetic neutrons at 565 keV (alpha(dic) = 0.813 +/- 0.052 dicentrics per cell per gray) under comparable exposure and culture conditions (Radiat. Res. 154, 307-312, 2000). However, the values of the maximum low-dose RBE (RBE(m)) relative to 60Co gamma rays that were determined in the present and previous studies show an insignificant but conspicuous difference: 57.0 +/- 18.8 and 76.0 +/- 29.5, respectively. This difference is mainly due to the difference in the alpha(dic) value of the 60Co gamma rays, the reference radiation, which was 0.0138 +/- 0.0044 Gy(-1) in the present study and 0.0107 +/- 0.0041 Gy(-1) in the previous study. In the present experiment, irradiations with 144 keV neutrons and 60Co gamma rays were both performed at 21 degrees C, while in the earlier experiment irradiations with 565 keV neutrons were performed at 21 degrees C and the corresponding reference irradiation with gamma rays was performed at 37 degrees C. However, the temperature difference between 21 degrees C and 37 degrees C has a minor influence on the yield of chromosomal alterations and hence RBE values. The large cubic PMMA phantom that was used for the gamma irradiations in the present study results in a larger dose contribution from Compton-scattered photons compared to the mini-phantom used in the earlier experiments. The contribution of these scattered photons may explain the large value of alpha(dic) for gamma irradiation in the present study. These results indicate that the yield coefficient alpha(dic) for 144 keV neutrons is similar to the one for 565 keV neutrons, and that modification of the alpha(dic) value of the low-LET reference radiation, due to changes in the experimental conditions, can influence the RBE(m). Consequently, alpha(dic) values cannot be shared between cytogenetic laboratories for the purpose of assessment of RBM(m) without verification of the comparability of the experimental conditions.  相似文献   

5.
We have investigated the effect of fission-spectrum neutron dose fractionation on neoplastic transformation of exponentially growing C3H 10T1/2 cells. Total doses of 10.8, 27, 54, and 108 cGy were given in single doses or in five equal fractions delivered at 24-h intervals in the biological channel of the RSV-TAPIRO reactor at CRE-Casaccia. Both cell inactivation and neoplastic transformation were more effectively induced by fission neutrons than by 250-kVp X rays. No significant effect on cell survival or neoplastic transformation was observed with split doses compared to single doses of fission-spectrum neutrons. Neutron RBE values relative to X rays determined from data for survival and neoplastic transformation were comparable.  相似文献   

6.
The dosimetry is described for an investigation of the induction of somatic aberrations in Tradescantia occidentalis by substantially mono-energetic neutrons in the energy range 100 keV to 15 MeV, by 200 keV X-rays and cobalt-60 gamma-radiation. Spectrometry was carried out for both neutrons and X-rays. Neutron fluence was measured by uranium fission chambers. Two types of ionization chamber were employed for dose measurement. One chamber was manufactured of CH-plastic and filled with acetylene and the other of graphite and filled with carbon dioxide. Dosimetry for X- and gamma-radiation was by means of lithium fluoride thermoluminescent dosemeters calibrated against a Victoreen ionization chamber.  相似文献   

7.
L929 cells were irradiated by cyclotron-produced neutrons and by 14.8 MeV monoenergetic neutrons. For comparison cells were also irradiated by 60Co gamma rays. Following irradiation cells were treated by an equimolar solution of deoxyribonucleosides, and the effect on cell survival measured. Results show that nucleoside treatment was efficient after low-LET irradiation: gamma ray survival curves were altered by deoxyribonucleosides in terms of significantly increased extrapolation numbers only, but without Do change. Cells irradiated by neutrons from either of the two sources did not respond to nucleoside treatment, and consequently their survival curves remained unaltered. These results show that the nucleoside effect does occur after low-LET irradiation, but apparently not following high-LET irradiation. Since deoxyribonucleosides as well as other cell breakdown products are released in irradiated and necrotic tumours due to massive cell destruction, such a nucleoside effect could possibly enhance the cell survival and thus effect the result of radiotherapy. Absence of the nucleoside effect in case of high-LET irradiation may therefore be an additional potential gain from neutrons in radiotherapy.  相似文献   

8.
Human melanoma cells that are resistant to gamma rays were irradiated with 14 MeV neutrons given at low doses ranging from 5 cGy to 1.12 Gy at a very low dose rate of 0.8 mGy min(-1) or a moderate dose rate of 40 mGy min(-1). The biological effects of neutrons were studied by two different methods: a cell survival assay after a 14-day incubation and an analysis of chromosomal aberrations in metaphases collected 20 h after irradiation. Unusual features of the survival curve at very low dose rate were a marked increase in cell killing at 5 cGy followed by a plateau for survival from 10 to 32.5 cGy. The levels of induced chromosomal aberrations showed a similar increase for both dose rates at 7.5 cGy and the existence of a plateau at the very low dose rate from 15 to 30 cGy. The existence of a plateau suggests that a repair process after low-dose neutrons might be induced after a threshold dose of 5-7.5 cGy which compensates for induced damage from doses as high as 32.5 cGy. These findings may be of interest for understanding the relative biological effectiveness of neutrons and the effects of environmental low-dose irradiation.  相似文献   

9.
Plateau-phase V79 cells were exposed sequentially to fast neutrons and gamma rays. A dose-dependent reduction in the shoulder width of the gamma-ray survival curve was observed after preexposure of cells to neutrons. A similar effect was demonstrated on the neutron survival curve when cells were preirradiated with gamma rays. Treatment of cells with 150 microM beta-araA after either gamma or neutron irradiation reduced primarily the shoulder of the survival curve. When beta-araA was given to the cells after exposure to mixed radiation modalities, survival curves similar to those observed after exposure to a single radiation modality and treatment with beta-araA were obtained. The kinetics of loss of the interaction observed after exposure of cells to gamma rays following neutron irradiation was similar to the kinetics of loss of sensitivity to beta-araA (T1/2 = 1 h) measured by delaying drug administration after exposure to gamma rays. The results suggest that the PLD expressed by beta-araA is at least partly involved in the interactive effect observed after combined exposure of plateau-phase V79 cells to neutrons and gamma rays.  相似文献   

10.
K Ando  S Koike  S Sato 《Radiation research》1992,131(2):157-161
We have previously proposed that survival curves for cells of murine NFSa fibrosarcomas after exposure to fast neutrons might demonstrate curvature when the neutron doses reach a level high enough to cure the fibrosarcomas. We report here that this is the case. Murine NFSa fibrosarcomas growing in the hind legs of syngeneic mice were exposed to either gamma rays or fast neutrons. The tumors were removed and retransplanted into fresh recipients to obtain 50% tumor cell doses, from which the dose-cell survival relationship was constructed. Survival curves showed continuous bending down to 10(-7), and were well fitted using the linear-quadratic model. The alpha and beta values for neutrons were larger than those for gamma rays. When the surviving fractions at experimental TCD50 doses were calculated using these values, comparable figures were obtained for neutrons and gamma rays. The RBEs for neutrons were comparable for the TCD50 and TD50 assays. Neutron RBE was independent of dose within a range of 5-28 Gy. The capacity of the tumors to repair the damage caused by large doses of neutrons was identical to that for small doses of neutrons, indicating that cells retained the capacity to repair neutron damage irrespective of the size of the dose.  相似文献   

11.
The long-term effects of ionizing radiation on male gonads may be the result of damage to spermatogonial stem cells. Doses of 10 cGy to 15 Gy (60)Co gamma rays or 10 cGy to 7 Gy 14 MeV neutrons were given to NMRI mice as single or split doses separated by a 24-h interval. The ratios of haploid spermatids/2c cells and the coefficients of variation of DNA histogram peaks as measures of both the cytocidal and the clastogenic actions of radiation were analyzed by DNA flow cytometry after DAPI staining. The coefficient of variation is not only a statistical examination of the data but is also used here as a measure of residual damage to DNA (i.e. a biological dosimeter). Testicular histology was examined in parallel. At 70 days after irradiation, the relative biological effectiveness for neutrons at 50% survival of spermatogonial stem cells was 3.6 for single doses and 2.8 for split doses. The average coefficient of variation of unirradiated controls of elongated spermatids was doubled when stem cells were irradiated with single doses of approximately 14 Gy (60)Co gamma rays or 3 Gy neutrons and observed 70 days later. Split doses of (60)Co gamma rays were more effective than single doses, doubling DNA dispersion at 7 Gy. No fractionation effect was found with neutrons with coefficients of variation.  相似文献   

12.
Dense ionization tracks from high linear energy transfer (LET) radiations form multiple damaged sites (MDS), which involve several types of DNA lesions in close vicinity. The primary DNA damage triggers sensor proteins that activate repair processes, cell cycle control or eventually apoptosis in subsequent cellular responses. The question how homologous recombination (HR) and non-homologous end joining (NHEJ) interact in the repair of radiation-induced DNA damage of MDS type has been addressed in different model systems but several questions remain to be answered. We have therefore challenged cells with treatments of ionizing radiation of different qualities to investigate whether primary DNA damages of different complexity are reflected in the processes of repair by HR as well as cell survival. We used the V79 derived SPD8 cell line to determine the induction of HR in the hprt exon 7 and clonogenic assay for survival in response to radiation. SPD8 cells were irradiated with gamma-rays (137Cs 0.5 keV/microm), boron ions (40 and 80 keV/microm) and nitrogen ions (140 keV/microm), with doses up to 5 Gy. Analysis of clonogenic survival showed that B-ions (80 keV/microm) and N-ions were more toxic than gamma-rays, 4.1 and 5.0 times respectively, while B-ions at 40 keV/microm were 2.0 times as toxic as gamma-rays. Homologous recombination in the cells exposed to B-ions (80 keV/microm) increased 2.9 times, a significant response as compared to cells exposed to gamma-rays, while for B-ions (40 keV/microm) and N-ions a nonsignificant increase in HR of 1.2 and 1.4, respectively, was observed. We hypothesize that the high-LET generated formation of MDS is responsible for the enhanced cytotoxicity as well as for the mobilization of the HR machinery.  相似文献   

13.
The highly radiosensitive immature oocytes of mice were irradiated in vivo with graded doses of 252Cf fission radiation, 0.43- or 15-MeV neutrons, or 60Co gamma rays. Comparisons of oocyte survival for neutrons and for gamma rays demonstrate that neutron RBEs for the killing of these important cells do not reach the high values (30-50 or more) at low doses observed for several other biological end points. Rather, neutrons differ little in effectiveness from gamma rays in killing these extremely sensitive murine oocytes. For 0.43-MeV neutrons, RBEs obtained from fitted survival curves reach only 1.7 at 0.1 rad. For 15-MeV neutrons, they are not significantly different from 1 at any dose tested (lowest, 4.5 rad). For 252Cf fission neutrons (E = 2.15 MeV), RBEs are intermediate between those for 0.43- and 15-MeV neutrons. For all neutron energies tested, the RBEs are particularly low in the juvenile period, a time when murine immature oocytes are especially radiosensitive. With exposure just prior to birth, however, when these cells are much less easily killed, higher, more usual RBEs are found. The minimum size of the lethality target in mouse immature oocytes, estimated from the inactivation constant for 0.43-MeV neutrons and microdosimetric values, is larger than the nucleus but not larger than the cell. This and related analytical considerations suggest that the hypersensitive target in these particular oocytes is the plasma membrane, a finding which is in excellent accord with results from other experiments using different, contrasting radiations and dose deliveries (accelerated Si14+ ions, gamma rays, and beta rays from 3HOH compared with those from [3H]thymidine).  相似文献   

14.
The induction of mutation by graded doses of monoenergetic neutrons was examined using the human-hamster hybrid cell system. The AL cells, formed by fusion of human fibroblasts with the gly- A mutant of the Chinese hamster ovary cells, contain the standard set of hamster chromosomes plus a single human chromosome, number 11. These cells contain specific human cell surface antigens that render them sensitive to killing by specific antisera in the presence of complement. Mutant AL cells that have lost the surface markers, however, would survive and give rise to scorable colonies. The cells were irradiated with neutrons produced at the Radiological Research Accelerator Facility of Columbia University. Doses corresponding to low, moderate, and high cytotoxicities and in energies ranging from 0.33 to 14 MeV were used. Neutrons induced a dose-dependent cytotoxicity and mutation frequency in the AL cells. Over the range of doses examined, it was found that the mutagenesis induced by neutrons was energy-dependent and the frequencies were a curvilinear function of dose for both the a1 and a2 antigenic loci examined. In comparison to gamma rays, the relative biological effectiveness (RBE) for cell lethality at the 10% survival level ranged from 5.2 for 0.33 MeV to 1.8 for 14 MeV neutrons. The RBE for mutation induction at the a1 locus, however, ranged from 30 for 0.33 MeV to 4.2 for 14 MeV neutrons at or around the lowest levels of effect examined. Results of the present study demonstrated that neutrons, when measured under conditions which permit detection of a spectrum of gene and chromosomal mutations, in fact, are more efficient mutagens than previously thought.  相似文献   

15.
Survival of colony-forming units-spleen (CFU-S) was measured after single doses of photons or heavy charged particles from the BEVALAC. The purposes were to define the radiosensitivity to heavy ions used medically and to evaluate relationships between relative biological effectiveness (RBE) and dose-averaged linear energy transfer (LET infinity). In in vitro irradiation experiments. CFU-S suspensions were exposed to 220 kVp X rays or to 20Ne (372 MeV/micron) or 40Ar (447 MeV/micron) particles in the plateau portion of the Bragg curve. In in vivo irradiation experiments, donor mice from which CFU-S were harvested were exposed to 12C (400 MeV/micron). 20Ne (400 or 670 MeV/micron), or 40Ar (570 MeV/micron) particles in Bragg peaks spread to 4 or 10 cm by spiral ridge filters. Based on RBE at 10 survival, the maximum RBE of 2.1 was observed for 40Ar particles characterized by an LET infinity of approximately 100 keV/micron. Lower RBEs were determined at lower or higher estimated values of LET infinity and ranged from 1.1 for low energy 40Ar particles to 1.5-1.6 for low energy 12C and 20Ne. The responses of CFU-S are compared with responses of other model systems to heavy charged particles and with the reported sensitivity of CFU-S to neutrons of various energies. The maximum RBE reported here, 2.1 for high energy 40Ar particles, is somewhat lower than values reported for fission-spectrum neutrons, and is appreciably lower than values for monoenergetic 0.43-1.8 MeV neutrons. Low energy 12C and 20Ne particles have RBEs in the range of values reported for 14.7 MeV neutrons.  相似文献   

16.
The survival of spermatogonial stem cells in CBA and C3H mice after single and split-dose (24-hr interval) irradiation with fission neutrons and gamma rays was compared. The first doses of the fractionated regimes were either 150 rad (neutrons) or 600 rad (gamma). For both strains the neutron survival curves were exponential. The D0 value of stem cells in CBA decreased from 83 to 25 rad upon fractionation; that of C3H stem cells decreased only from 54 to 36 rad. The survival curves for gamma irradiation, which all showed shoulders, indicated that C3H stem cells had larger repair capacities than CBA stem cells. However, the most striking difference between the two strains in response to gamma radiation was in the slopes of the second-dose curves. Whereas C3H stem cells showed a small increase of the D0 upon fractionation (from 196 to 218 rad), CBA stem cells showed a marked decrease (from 243 to 148 rad). The decreases in D0 upon fractionation, observed in both strains with neutron irradiation and also with gamma irradiation in CBA, are most likely the result of recruitment or progression of radioresistant survivors to a more sensitive state of proliferation or cell cycle phase. It may be that the surviving stem cells in C3H mice are recruited less rapidly and synchronously into active cycle than in CBA mice. Thus, it appears that the strain differences may be quantitative, rather than qualitative.  相似文献   

17.
Stochastic radiation effects following exposure to heavy ions and other high linear energy transfer (LET) radiation in space are a matter of concern when the long-term consequences of space flights are considered. This paper is an overview of the relevant literature, emphasizing uncertainties entailed from estimates of relative biological effectiveness (RBE) for different experiment end-points, making the choice of a single weighting factor for the prediction of cancer risk in man extremely difficult. Life-span-shortening studies in mice exposed to heavy ions and ongoing large-scale experiments in monkeys exposed to protons suggest that RBEs for all cancers are lower than 5. This does not exclude a much higher RBE for rare tumors such as brain tumors in monkeys or promoted Harderian gland tumours in mice at LET >80 keV/µm. Skin cancer studies in rats exposed to neon or argon resulted in similar RBE. Exposure to fission neutrons led to high RBE in all species, not excluding values much higher than 20 for specific cancers such as lung tumors in mice and all cancers in rats. The estimate of maximal RBE is, however, extremely dependent on the hypothesis made on the shape of the dose-response curves in the lower range of doses. These results suggest that neutrons may be the most hazardous component of high-LET radiation. There is only limited evidence from cancer experiments that LET >150 keV/µm results in highly decreased efficiency, but this has been found for bone cancer induction following exposure to fission fragments.Invited paper presented at the International Symposium on Heavy Ion Research: Space, Radiation Protection and Therapy, Sophia-Antipolis, France, 21–24 March 1994  相似文献   

18.
Fast neutrons (FN) have a higher radio-biological effectiveness (RBE) compared with photons, however the mechanism of this increase remains a controversial issue. RBE variations are seen among various FN facilities and at the same facility when different tissue depths or thicknesses of hardening filters are used. These variations lead to uncertainties in dose reporting as well as in the comparisons of clinical results. Besides radiobiology and microdosimetry, another powerful method for the characterization of FN beams is the calculation of total proton and heavy ion kerma spectra. FLUKA and MCNP Monte Carlo code were used to simulate these kerma spectra following a set of microdosimetry measurements performed at the National Accelerator Centre. The calculated spectra confirmed major classical statements: RBE increase is linked to both slow energy protons and alpha particles yielded by (n,alpha) reactions on carbon and oxygen nuclei. The slow energy protons are produced by neutrons having an energy between 10 keV and 10 MeV, while the alpha particles are produced by neutrons having an energy between 10 keV and 15 MeV. Looking at the heavy ion kerma from <15 MeV and the proton kerma from neutrons <10 MeV, it is possible to anticipate y* and RBE trends.  相似文献   

19.
Chromosomes of budding yeast Saccharomyces pastorianus were used to determine the extent of DNA double-strand breaks (DSBs) induced by x-rays (30-50 keV) and 14 MeV neutrons. The yeast chromosomes were separated by pulsed-field gel electrophoresis (PFGE) and the proportion of unbroken molecules corresponding to the largest chromosome no. IV (1500 kbp) was used to calculate the DSB frequency assuming a random distribution of hits. To determine the protective contribution of the cell environment, chromosomes embedded in agarose plugs as well as intact yeast cells, were irradiated under conditions completely inhibiting DNA repair. Following irradiation, the intact cells were also embedded in agarose plugs and the chromosomes isolated to perform PFGE. All radiation experiments resulted in a linear dose-effect curve for DSBs. For both radiation qualities, the yield of DSBs for exposed isolated chromosomes exceeded that for intact yeast cells by a factor of 13. The relative biological effectiveness (RBE) of 14 MeV neutrons in the induction of DNA DSBs was about 2.5. This figure was found to be identical for the in vivo and in vitro exposure of yeast chromosomes (neutrons 36.7 and 2.8, x-rays 14.5 and 1.1 x 10(-8) DSB x Bp-1 Gy-1 for isolated DNA and intact cells, respectively).  相似文献   

20.
The effect of irradiating V-79 Chinese hamster cells with a mixture of 40% 14.8-MeV neutrons and 60% 60Co photons with simultaneous or sequential exposures is investigated. Sample doses are obtained by irradiating cells with alternating 3-min pulses of neutrons and photons (in the sequential case) or with mixed neutrons and photons followed by equal beam-off periods to ensure equal total exposure times for sequential and simultaneous irradiations. Differences between the survival results under each beam configuration that are consistent with previous observations with nonpulsed irradiations are observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号