首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Determination of pore size of the cell wall of Chara corallina has been made by using the polyethylene glycol (PEG) series as the hydrophilic probing molecules. In these experiments, the polydispersity of commercial preparation of PEGs was allowed for. The mass share (gamma(p)) of polyethylene glycol preparation fractions penetrating through the pores was determined using a cellular 'ghost', i.e. fragments of internodal cell walls filled with a 25% solution of non-penetrating PEG 6000 and tied up at the ends. In water, such a 'ghost' developed a hydrostatic pressure close to the cell turgor which persisted for several days. The determination of gamma(p), for polydisperse polyethylene glycols with different average molecular mass (M) was calculated from the degree of pressure restoration after water was replaced by a 5-10% polymer solution. Pressure was recorded using a dynamometer, which measures, in the quasi-isometric mode, the force necessary for the partial compression of the 'ghost' in its small fragment. By utilizing the data on the distribution of PEG 1000, 1450, 2000, and 3350 fractions over molecular mass (M), it was found that gamma(p), for these polyethylene glycols corresponded to the upper limit of ML=800-1100 D (hydrodynamic radius of molecules, r(h)=0.85-1.05 nm). Thus, the effective diameter of the pores in the cell wall of Chara did not exceed 2.1 nm.  相似文献   

2.
Extracellular secretion of Serratia marcescens nuclease occurs as a two-step process via a periplasmic intermediate. Unlike other extracellular proteins secreted by gram-negative bacteria by the general secretory pathway, nuclease accumulates in the periplasm in its active form for an unusually long time before its export into the growth medium. The energy requirements for extracellular secretion of nuclease from the periplasm were investigated. Our results suggest that the second step of secretion across the outer membrane is dependent upon the external pH; acidic pH effectively but reversibly blocks extracellular secretion. However, electrochemical proton gradient, and possibly ATP hydrolysis, are not required for this step. We suggest that nuclease uses a novel mechanism for the second step of secretion in S. marcescens.  相似文献   

3.
We measured the rates of utilization of hydrophobic and hydrophilic phosphate compounds in gram-negative bacteria with different surface hydrophobicities, isolated from wetland habitats. Three hydrophobic and two hydrophilic bacterial species were selected for study by measuring cell adherence to hydrocarbons. The bacteria were grown under phosphorus-limited conditions with P(infi), hydrophilic (beta)-glycerophosphate, or hydrophobic phosphatidic acid as the phosphate source. Hydrophilic bacteria grew most rapidly on P(infi), followed by (beta)-glycerophosphate. Phosphatidic acid did not support growth or did so at a much later time (40 h) than did the other phosphate treatments. Although all hydrophobic species grew well on these substrates, the rate of growth of two Acinetobacter baumannii isolates on phosphatidic acid exceeded the rate of growth on phosphate or (beta)-glycerophosphate. A membrane phospholipid and lipopolysaccharide were used as a source of phosphorus by hydrophobic species, whereas hydrophilic species could not use the membrane phospholipids and used lipopolysaccharide to a lesser extent. Besides hydrophobic interaction between cells and substrate, phosphatase activity, which was cell bound in hydrophilic species but 30 to 50% unbound in hydrophobic species, affected cell growth. Dialyzed culture supernatant containing phosphatase from hydrophobic species increased the phosphate availability to hydrophilic species. Additionally, cellular extracts from a hydrophilic species, when added to hydrophilic cells, permitted growth on hydrophobic phosphate sources. Naturally occurring amphiphilic humic acids affected the utilization of P(infi) and (beta)-glycerophosphate in bacteria with hydrophilic surfaces but did not affect hydrophobic bacteria. Our results indicate that hydrophobic phosphate sources can be used by bacteria isolated from aquatic environments as the sole phosphorus source for growth. This utilization, in part, appears to be related to cell surface hydrophobicity and extracellular enzyme production.  相似文献   

4.
The complete general secretory pathway in gram-negative bacteria.   总被引:74,自引:0,他引:74  
The unifying feature of all proteins that are transported out of the cytoplasm of gram-negative bacteria by the general secretory pathway (GSP) is the presence of a long stretch of predominantly hydrophobic amino acids, the signal sequence. The interaction between signal sequence-bearing proteins and the cytoplasmic membrane may be a spontaneous event driven by the electrochemical energy potential across the cytoplasmic membrane, leading to membrane integration. The translocation of large, hydrophilic polypeptide segments to the periplasmic side of this membrane almost always requires at least six different proteins encoded by the sec genes and is dependent on both ATP hydrolysis and the electrochemical energy potential. Signal peptidases process precursors with a single, amino-terminal signal sequence, allowing them to be released into the periplasm, where they may remain or whence they may be inserted into the outer membrane. Selected proteins may also be transported across this membrane for assembly into cell surface appendages or for release into the extracellular medium. Many bacteria secrete a variety of structurally different proteins by a common pathway, referred to here as the main terminal branch of the GSP. This recently discovered branch pathway comprises at least 14 gene products. Other, simpler terminal branches of the GSP are also used by gram-negative bacteria to secrete a more limited range of extracellular proteins.  相似文献   

5.
The size of pores formed in the plasma membrane by various substances is frequently determined using polyethylene glycols as osmotic protectants. In this work, we have found that the size of pores formed by saponin in the red blood cell membrane determined by hemolysis versus molecular weight of polyethylene glycol was different to that estimated by light dispersion of cell suspensions. After complete swelling of cells induced by saponin in semiisotonic salt media containing 150 mOsm PEG-4000 or PEG-3000, a significant increase in the light absorbance at 640 nm was developed resulting from the formation of hemoglobin precipitates. Easily sedimenting aggregates were also formed when the supernatant of lysed cells was added to the equiosmotic solutions of polyethylene glycols with molecular weight higher than 1000. We suggest that the real size of large pores could be underestimated due to the phenomenon of hemoglobin precipitation by polyethylene glycols.  相似文献   

6.
Pseudomonas aeruginosa releases membrane vesicles (MVs) filled with periplasmic components during normal growth, and the quantity of these vesicles can be increased by brief exposure to gentamicin. Natural and gentamicin-induced membrane vesicles (n-MVs and g-MVs, respectively) are subtly different from one another, but both contain several important virulence factors, including hydrolytic enzyme factors (J. L. Kadurugamuwa and T. J. Beveridge, J. Bacteriol. 177:3998-4008, 1995). Peptidoglycan hydrolases (autolysins) were detected in both MV types, especially a periplasmic 26-kDa autolysin whose expression has been related to growth phase (Z. Li, A. J. Clarke, and T. J. Beveridge, J. Bacteriol. 178:2479-2488, 1996). g-MVs possessed slightly higher autolysin activity and, at the same time, small quantities of gentamicin. Both MV types hydrolyzed isolated gram-positive and gram-negative murein sacculi and were also capable of hydrolyzing several glycyl peptides. Because the MVs were bilayered, they readily fused with the outer membrane of gram-negative bacteria. They also adhered to the cell wall of gram-positive bacteria. g-MVs were more effective in lysing other bacteria because, in addition to the autolysins, they also contained small amounts of gentamicin. The bactericidal activity was 2.5 times the MIC of gentamicin, which demonstrates the synergistic effect of the antibiotic with the autolysins. n-MVs were capable of killing cultures of P. aeruginosa with permeability resistance against gentamicin, indicating that the fusion of n-MV to the outer membrane liberated autolysins into the periplasm, where they degraded the peptidoglycan and lysed the cells. g-MVs had even greater killing power since they liberated both gentamicin and autolysins into these resistant cells. These findings may help develop a conceptually new group of antibiotics designed to be effective against hard-to-kill bacteria.  相似文献   

7.
The occurrence and ultrastructure of bacteria in leaf cavities of symbiotic Azolla caroliniana were examined by transmission electron microscopy. Bacteria were observed in all leaf cavities of Azolla cultures. Five ultrastructurally distinct types of bacteria were observed in each individual leaf cavity. Features used to characterize the bacteria included morphology, cell wall structure, and cytoplasmic organization. At least one gram-positive and as many as four gram-negative types of bacteria reside in leaf cavities of A. caroliniana. The morphological and ultrastructural characteristics of the gram-positive bacterium suggest that it is an Arthrobacter sp. The gram-negative bacteria could not be cultured; therefore, they have not been classified further. Bacterial cell shape and cell wall structure were similar in leaf cavities of different ages, but cell size and cytoplasmic composition varied. The relative contributions of each bacterial type to the total community within individual leaves was determined. Ultrastructural characteristics of bacterial isolates cultured from A. caroliniana in a free-living state were also examined.  相似文献   

8.
Is the periplasm continuous in filamentous multicellular cyanobacteria?   总被引:1,自引:0,他引:1  
Filamentous, heterocyst-forming cyanobacteria are multicellular organisms in which individual cells exchange nutrients and, presumably, regulatory molecules. Unknown mechanisms underlie this exchange. Classical electron microscopy shows that filamentous cyanobacteria bear a Gram-negative cell wall comprising a peptidoglycan layer and an outer membrane that are external to the cytoplasmic membrane, and that the outer membrane appears to be continuous along the filament of cells. This implies that the periplasmic space between the cytoplasmic and outer membranes might also be continuous. We propose that a continuous periplasm could constitute a communication conduit for the transfer of compounds, which is essential for the performance of these bacteria as multicellular organisms.  相似文献   

9.
Evidence for pore-forming ability by Legionella pneumophila   总被引:15,自引:5,他引:10  
Legionella pneumophila is the cause of Legionnaires' pneumonia. After internalization by macrophages, it bypasses the normal endocytic pathway and occupies a replicative phagosome bound by endoplasmic reticulum. Here, we show that lysis of macrophages and red blood cells by L . pneumophila was dependent on dotA and other loci known to be required for proper targeting of the phagosome and replication within the host cell. Cytotoxicity occurred rapidly during a high-multiplicity infection, required close association of the bacteria with the eukaryotic cell and was a form of necrotic cell death accompanied by osmotic lysis. The differential cytoprotective ability of high-molecular-weight polyethylene glycols suggested that osmotic lysis resulted from insertion of a pore less than 3 nm in diameter into the plasma membrane. Results concerning the uptake of membrane-impermeant fluorescent compounds of various sizes are consistent with the osmoprotection analysis. Therefore, kinetic and genetic evidence suggested that the apparent ability of L . pneumophila to insert a pore into eukaryotic membranes on initial contact may play a role in altering endocytic trafficking events within the host cell and in the establishment of a replicative vacuole.  相似文献   

10.
Periplasmic space in Salmonella typhimurium and Escherichia coli.   总被引:74,自引:0,他引:74  
The volume of the periplasmic space in Escherichia coli and Salmonella typhimurium cells was measured. This space, in cells grown and collected under conditions routinely used in work with these bacteria, was shown to comprise from 20 to 40% of the total cell volume. Further studies were conducted to determine the osmotic relationships between the periplasm, the external milieu, and the cytoplasm. Results showed that there is a Donnan equilibrium between the periplasm and the extracellular fluid, and that the periplasm and cytoplasm are isoosmotic. In minimal salts medium, the osmotic strength of the cell interior was estimated to be approximately 300 mosM, with a net pressure of approximately 3.5 atm being applied to the cell wall. A corollary of these findings was that an electrical potential exists across the outer membrane. This potential was measured by determining the distributions of Na+ and Cl- between the periplasm and the cell exterior. The potential varied with the ionic strength of the medium; for cells in minimal salts medium it was approximately 30 mV, negative inside.  相似文献   

11.
The effect of the extracellular bacteriolytic enzymes of Lysobacter sp. on gram-negative bacteria was studied. These enzymes were found to be able to hydrolyze the peptidoglycan that was isolated from the gram-negative bacteria, the hydrolysis being completely inhibited by the cell wall lipopolysaccharide of these bacteria. The native cells of the gram-negative bacteria became susceptible to the bacteriolytic enzymes after the permeability of the outer membrane of the cells had been altered by treating them with polymyxin B.  相似文献   

12.
Gram-positive bacteria possess a permeable cell wall that usually does not restrict the penetration of antimicrobials. However, resistance due to restricted penetration can occur, as illustrated by vancomycin-intermediate resistant Staphylococcus aureus strains (VISA) which produce a markedly thickened cell wall. Alterations in these strains include increased amounts of nonamidated glutamine residues in the peptidoglycan and it is suggested that the resistance mechanism involves 'affinity trapping' of vancomycin in the thickened cell wall. VISA strains have reduced doubling times, lower sensitivity to lysostaphin and reduced autolytic activity, which may reflect changes in the D-alanyl ester content of the wall and membrane teichoic acids. Mycobacterial cell walls have a high lipid content, which is assumed to act as a major barrier to the penetration of antimicrobial agents. Relatively hydrophobic antibiotics such as rifampicin and fluoroquinolones may be able to cross the cell wall by diffusion through the hydrophobic bilayer composed of long chain length mycolic acids and glycolipids. Hydrophilic antibiotics and nutrients cannot diffuse across this layer and are thought to use porin channels which have been reported in many species of mycobacteria. The occurrence of porins in a lipid bilayer supports the view that the mycobacterial wall has an outer membrane analogous to that of gram-negative bacteria. However, mycobacterial porins are much less abundant than in the gram-negative outer membrane and allow only low rates of uptake for small hydrophilic nutrients and antibiotics.  相似文献   

13.
Cytoplasmic membrane vesicles isolated from the gram-negative photosynthetic bacterium Rhodobacter capsulatus catalyzed the transport of nucleotides. No transport occurred in the intact bacteria unless they were pretreated with EDTA. The transport rate was measured by incorporation of radioactive phosphate into externally added ADP or by incorporation of nonradioactive phosphate into added labeled ADP. The catalytic activities which utilized the added ADP were photosynthetic ATP synthesis, Pi-ADP exchange, and adenylate kinase. These activities were shown to occur on the cytoplasmic side of the internal membrane. The products were found in the outer medium. The rate of nucleotide transport across the membranes was comparable to the rate of photophosphorylation. These results indicated that nucleotides can be transported across the cytoplasmic membrane but not across the outer membrane of the native R. capsulatus cell. Therefore, by analogy to the mitochondrial ATP-ADP translocator, the exchange might function as an energy transfer system to the periplasm of these bacteria.  相似文献   

14.
Begunova  E. A.  Stepnaya  O. A.  Tsfasman  I. M.  Kulaev  I. S. 《Microbiology》2004,73(3):267-270
The effect of the extracellular bacteriolytic enzymes of Lysobacter sp. on gram-negative bacteria was studied. These enzymes were found to be able to hydrolyze the peptidoglycan that was isolated from the gram-negative bacteria, the hydrolysis being completely inhibited by the cell wall lipopolysaccharide of these bacteria. The native cells of the gram-negative bacteria became susceptible to the bacteriolytic enzymes after the permeability of the outer membrane of the cells was altered by treating them with polymyxin B.  相似文献   

15.
Bacterial Utilization of Ether Glycols   总被引:9,自引:8,他引:1       下载免费PDF全文
A soil bacterium capable of using oligo- and polyethylene glycols and ether alcohols as sole sources of carbon for aerobic growth was isolated. The effects of substituent groups added to the ether bonds on the acceptability of the compounds as substrates were studied. Mechanisms for the incorporation of two-carbon compounds were demonstrated by the observation that acetate, glyoxylate, ethylene glycol, and a number of the tricarboxylic acid cycle intermediates served as growth substrates in minimal media. The rate of oxidation of the short-chained ethylene glycols by adapted resting cells varied directly with increasing numbers of two-carbon units in the chains from one to four. The amount of oxygen consumed per carbon atom of oligo- and polyethylene glycols was 100% of theoretical, but only 67% of theoretical for ethylene glycol. Resting cells oxidized oligo- and polyethylene glycols with 2 to 600 two-carbon units in the chains. Longer chained polyethylene glycols (up to 6,000) were oxidized at a very slow rate by these cells. Dehydrogenation of triethylene glycol by adapted cells was observed, coupling the reaction with methylene blue reduction.  相似文献   

16.
Strain C5.84 is a Tn5-751 insertion mutant of Aeromonas hydrophila which is unable to secrete extracellular proteins, instead accumulating them in the periplasm (B. Jiang and S.P. Howard, J. Bacteriol. 173:1241-1249, 1991). A 3.5-kb BglII fragment which complements this mutation was isolated from the chromosome of the parent strain. Analysis of this fragment revealed an operon-like structure with two complete genes, exeA and exeB, a functional promoter 5' to the exeA gene, and a 13-bp inverted repeat immediately 3' to the exeB gene. Although the transposon had inserted in exeA, provision of a wild-type copy of this gene alone in trans did not restore competence for export to C5.84. Complementation required the presence of both exeA and exeB, and marker exchange mutagenesis confirmed the requirement for both gene products for secretion. In vitro expression as well as analysis of the deduced amino acid sequence of ExeA indicated that it is a hydrophilic 60-kDa protein with a consensus ATP binding site. ExeB is a 25-kDa basic protein which shares limited homology with PulB, a protein of unknown function associated with the maltose regulon of Klebsiella oxytoca, and OutB, a protein which has been shown to be required for efficient secretion in Erwinia chrysanthemi. The hydrophilic character of these proteins and preliminary localization studies suggested that they are anchored to the inner membrane. These results demonstrate the involvement of a second operon encoding a putative ATP-binding protein in the secretion of extracellular proteins from gram-negative bacteria and further suggest that the cytoplasmic compartment may play a greater role in protein translocation across the outer membrane from the periplasm than previously thought.  相似文献   

17.
Natural populations of bacteria assoiciated with the slime on submerged surfaces in a mountain stream were examined by phase-contrast and electron microscopy. The slime contained large numbers of bacteria which were predominantly gram-negative as determined by their cell wall structure. Examination of the in situ distribution of cells revealed that they were enmeshed in an extensive fibrous matrix whose component fibrils were stained with ruthenium red. The arrangement of slime fibrils immediately around individual bacterial cells suggested that this material was produced by these bacteria. This slime facilitated microcolony development and also anchored the bacteria to a particular surface. It is proposed that these slime-enmeshed microcolonies constitute functional communities within which most sessile bacteria live.  相似文献   

18.
Genetic and biochemical studies have shown that the product of the Escherichia coli secY gene is an integral membrane protein with a central role in protein secretion. We found the Bacillus subtilis secY homologue within the spc-alpha ribosomal protein operon at the same position occupied by E. coli secY. B. subtilis secY coded for a hypothetical product 41% identical to E. coli SecY, a protein thought to contain 10 membrane-spanning segments and 11 hydrophilic regions, six of which are exposed to the cytoplasm and five to the periplasm. We predicted similar segments in B. subtilis SecY, and the primary sequences of the second and third cytoplasmic regions and the first, second, fourth, fifth, seventh, and tenth membrane segments were particularly conserved, sharing greater than 50% identity with E. coli SecY. We propose that the conserved cytoplasmic regions interact with similar cytoplasmic secretion factors in both organisms and that the conserved membrane-spanning segments actively participate in protein export. Our results suggest that despite the evolutionary differences reflected in cell wall architecture, Gram-negative and Gram-positive bacteria possess a similar protein export apparatus.  相似文献   

19.
Ehrlich HL 《Geobiology》2008,6(3):220-224
The extensive contributions by Terry Beveridge to our understanding of the differences in cell wall organization with respect to structure, chemistry and compartmentalization between gram-positive and gram-negative bacteria are summarized. These contributions greatly aided in conceptualization of recent discoveries concerning electron export and import across cell walls of some gram-negative bacteria. Although electron export and import across the cell wall by any gram-positive has not been documented so far, Beveridge's observations and concepts concerning cell walls of gram-positive bacteria suggest potential mechanisms by which such electron transfer may occur.  相似文献   

20.
Many gram-negative bacteria harbor a copper/zinc-containing superoxide dismutase (CuZnSOD) in their periplasms. In pathogenic bacteria, one role of this enzyme may be to protect periplasmic biomolecules from superoxide that is released by host phagocytic cells. However, the enzyme is also present in many nonpathogens and/or free-living bacteria, including Escherichia coli. In this study we were able to detect superoxide being released into the medium from growing cultures of E. coli. Exponential-phase cells do not normally synthesize CuZnSOD, which is specifically induced in stationary phase. However, the engineered expression of CuZnSOD in growing cells eliminated superoxide release, confirming that this superoxide was formed within the periplasm. The rate of periplasmic superoxide production was surprisingly high and approximated the estimated rate of cytoplasmic superoxide formation when both were normalized to the volume of the compartment. The rate increased in proportion to oxygen concentration, suggesting that the superoxide is generated by the adventitious oxidation of an electron carrier. Mutations that eliminated menaquinone synthesis eradicated the superoxide formation, while mutations in genes encoding respiratory complexes affected it only insofar as they are likely to affect the redox state of menaquinone. We infer that the adventitious autoxidation of dihydromenaquinone in the cytoplasmic membrane releases a steady flux of superoxide into the periplasm of E. coli. This endogenous superoxide may create oxidative stress in that compartment and be a primary substrate of CuZnSOD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号