首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A model-based feed-rate profile optimization problem is discussed for the fed-batch recombinant protein production. Two optimization procedures, an evolutionary programming technique and a simplified method using the dynamic programming concept, are discussed and compared. Modeling as well as experimental results are presented.  相似文献   

2.
补料发酵工艺的应用及其研究进展   总被引:7,自引:0,他引:7  
综述了补料工艺在发酵工业中应用和研究。介绍了补料发酵工艺及其优点,着重讨论了补料发酵动力学和控制理论研究,以期为补料发酵的应用提供充分的参考依据。  相似文献   

3.
模拟青霉素分批补料发酵过程的细胞自动机模型   总被引:2,自引:0,他引:2  
根据青霉素产生菌的生长机理和青霉素分批补料发酵过程的动力学特性,在Paull等建立的形态学结构动力学模型的基础上,建立了模拟青霉素分批补料发酵过程的细胞自动机模型。模型采用三维细胞自动机作为菌体生长空间,采用Moore型邻域作为细胞邻域,其演化规则根据青霉素分批补料发酵过程中菌体生长机理和简化动力学结构模型设计。模型中的每一个细胞既可代表单个产黄青霉菌体细胞,又可代表特定数量的这种菌体细胞,它具有不同的状态。对模型进行的仿真实验结果表明:模型不但能一致地复现形态学结构动力学模型所描述的青霉素分批补料发酵过程的演化特性,而且较形态学结构动力学模型更加直观地刻画了青霉素分批补料发酵过程的演化行为。最后,对所建模型在实际生产过程中的应用问题进行了分析,指出了需要进一步研究的问题。  相似文献   

4.
The advantages of serum-free culture for the manufacture of recombinant biopharmaceuticals from mammalian cells are reviewed. The process favoured is fed-batch serum-free cell culture. This process is applicable to the majority of cell lines, is practical on the large scale, gives the lowest manufacturing cost, and can b e carried out without the use of any serum.The advantages of serum-free culture for the manufacture of recombinant biopharmaceuticals from mammalian cells are reviewed. The process favoured is fed-batch serum-free cell culture. This process is applicable to the majority of cell lines, is practical on the large scale, gives the lowest manufacturing cost, and can be carried out without the use of any serum.  相似文献   

5.
Different fermentation processes, including batch, fed-batch and repeated fed-batch processes by Schizochytrium sp., were studied and compared for the effective DHA-rich microbial lipids production. The comparison between different fermentation processes showed that fed-batch process was a more efficient cultivation strategy than the batch process. Among the four different feeding strategies, the glucose concentration feed-back feeding strategy had achieved the highest fermentation results of final cell dry weight, total lipids content, DHA content and DHA productivity of 72.37, 48.86, 18.38 g l?1 and 138.8 mg l?1 h?1, respectively. The repeated fed-batch process had the advantages of reducing the time and cost for seed culture and inoculation between each fermentation cycles. The results of fermentation characteristics and lipid characterization of the repeated fed-batch process indicated that this repeated fed-batch process had promising industrialization prospect for the production of DHA-rich microbial lipids.  相似文献   

6.
Equations are developed which describe variable-volume cultivations, including fed-batch systems. An analogy is drawn between the quasi-steady state in variable-volume cultivation and a dynamic steady state in variable-flow, constant-volume chemostat bioreactors. Switching procedures are developed to give a steady-state transition from batch to fed-batch and to continuous operation. In this respect, considerations in the literature have been extended. Computer solutions of the governing differential equations verify the theory and provide insight into the behavior of variable-volume stirred tank reactors. Application of variable-volume cultivation as a tool in investigating growth rates at low substrate levels is suggested. Variable-volume bioreactor systems could be also to obtain controlled dynamic conditions for research or production purposes.  相似文献   

7.
In recent times, it has been realized that novel vaccines are required to combat emerging disease outbreaks, and faster optimization is required to respond to global vaccine demands. Although, fed-batch operations offer better productivity, experiment-based optimization of a new fed-batch process remains expensive and time-consuming. In this context, we propose a novel computational framework that can be used for process optimization and control of a fed-batch baculovirus-insect cell system. Since the baculovirus expression vector system (BEVS) is known to be widely used platforms for recombinant protein/vaccine production, we chose this system to demonstrate the identification of optimal profile. Toward this, first, we constructed a mathematical model that captures the time course of cell and virus growth in a baculovirus-insect cell system. Second, the proposed model was used for numerical analysis to determine the optimal operating profiles of control variables such as culture media, cell density, and oxygen based on a multiobjective optimal control formulation. Third, a detailed comparison between batch and fed-batch culture was perfromed along with a comparison between various alternatives of fed-batch operation. Finally, we demonstrate that a model-based quantification of controlled feed addition in fed-batch culture is capable of providing better productivity as compared to a batch culture. The proposed framework can be utilized for the estimation of optimal operating regions of different control variables to achieve maximum infected cell density and virus yield while minimizing the substrate/media, uninfected cell, and oxygen consumption.  相似文献   

8.
人肿瘤坏死因子受体Ⅱ-Fc融合蛋白在治疗风湿性、类风湿性关节炎方面拥有广阔的市场前景和巨大的经济价值。本实验以表达TNFR-Fc融合蛋白的GS-CHO细胞为研究对象,结合细胞生长代谢特性和动力学参数分析,以葡萄糖为关键控制参数,通过测定培养上清的葡萄糖浓度对培养过程中的葡萄糖消耗进行及时的预测,调整流加速率,形成了以满足细胞生长代谢需要为基本原则的动态流加培养过程设计模型。在此控制模型指导下,建立了高效的流加培养过程。使最大活细胞密度和最大融合蛋白浓度分别达9.4×106cells/mL和207mg/L,较批次培养分别提高了3.4倍和3倍。本研究所采用的研究方法和控制策略为优化GS-CHO细胞培养过程和TNFR-Fc融合蛋白成功迈向产业化奠定了基础。  相似文献   

9.
A cellular automata model to simulate penicillin fed-batch fermentation process(CAPFM)was established in this study,based on a morphologically structured dynamic penicillin production model,that is in turn based on the growth mechanism of penicillin producing microorganisms and the characteristics of penicillin fed-batch fermentation.CAPFM uses the three-dimensional cellular automata as a growth space,and a Moore-type neighborhood as the cellular neighborhood.The transition roles of CAPFM are designed based on mechanical and structural kinetic models of penicillin batch-fed fermentation processes.Every cell of CAPFM represents a single or specific number of penicillin producing microorganisms,and has various state.The simulation experimental results show that CAPFM replicates the evolutionary behavior of penicillin batch-fed fermentation processes described by the structured penicillin production kinetic model accordingly.  相似文献   

10.
A stoichiometry-based model for the fed-batch culture of the recombinant bacterium Bacillus subtilis ATCC 6051a, producing extracellular alpha-amylase as a desirable product and proteases as undesirable products, was developed and verified. The model was then used for optimizing the feeding schedule in fed-batch culture. To handle higher-order model equations (14 state variables), an optimization methodology for the dual-enzyme system is proposed by integrating Pontryagin's optimum principle with fermentation measurements. Markov chain Monte Carlo (MCMC) procedures were appropriate for model parameter and decision variable estimation by using a priori parameter distributions reflecting the experimental results. Using a simplified Metropolis-Hastings algorithm, the specific productivity of alpha-amylase was maximized and the optimum path was confirmed by experimentation. The optimization process predicted a further 14% improvement of alpha-amylase productivity that could not be realized because of the onset of sporulation. Among the decision variables, the switching time from batch to fed-batch operation (t(s)) was the most sensitive decision variable.  相似文献   

11.
First, by considering all possible combination of methanol (as a carbon-energy source), peptone (as an organic carbon-nitrogen source), and ammonium sulfate (as an inorganic nitrogen source), five batch cultures of a methanol-assimilating bacterium, Protomonas extorquens, were done to elucidate the cause(s) of pH variations during the microbial cultivations. The batch cultures have been classified into five types in terms of stoichiometric equations of cell growth which involve the elements, C, H, O, and N. The equations explained the pH variation (drop and rise) of the batch cultures on the basis of the consumption and liberation of ammonium ion. Then, six fed-batch cultures using a setpoint of high limit were done by feeding either methanol only or methanol plus peptone. Growth rates could be controlled by the amount of substrate(s) fed per pulse. Supplying peptone in addition to methanol enhanced cell growth. Characteristic differences between pH-stat modal fed-batch cultures using a low limit and those using a high limit, and advantages of the pH-stat modal fed-batch culture using a setpoint of high limit are discussed.  相似文献   

12.
The present Influenza vaccine manufacturing process has posed a clear impediment to initiation of rapid mass vaccination against spreading pandemic influenza. New vaccine strategies are therefore needed that can accelerate the vaccine production. Pichia offers several advantages for rapid and economical bulk production of recombinant proteins and, hence, can be attractive alternative for producing an effective influenza HA based subunit vaccine. The recombinant Pichia harboring the transgene was subjected to fed-batch fermentation at 10 L scale. A simple fermentation and downstream processing strategy is developed for high-yield secretory expression of the recombinant Hemagglutinin protein of pandemic Swine Origin Influenza A virus using Pichia pastoris via fed-batch fermentation. Expression and purification were optimized and the expressed recombinant Hemagglutinin protein was verified by sodium dodecyl sulfate polyacrylamide gel electrophoresis, Western blot and MALDI-TOF analysis. In this paper, we describe a fed-batch fermentation protocol for the secreted production of Swine Influenza A Hemagglutinin protein in the P. pastoris GS115 strain. We have shown that there is a clear relationship between product yield and specific growth rate. The fed-batch fermentation and downstream processing methods optimized in the present study have immense practical application for high-level production of the recombinant H1N1 HA protein in a cost effective way using P. pastoris.  相似文献   

13.
Optimization of fed-batch fermentors by iterative dynamic programming   总被引:7,自引:0,他引:7  
By using penalty functions to handle state constraints, iterative dynamic programming can be used in a straightforward manner for the optimization of fedbatch fermentors. No computational difficulties were encountered and better results are obtained than previously reported in the literature for a fed-batch fermentor for biosynthesis of penicillin. (c) 1993 Johy Wiley & Sons, Inc.  相似文献   

14.
目的: 提高地衣芽孢杆菌BF-002的芽孢产量,实现氮源流加过程的自动化控制,降低生产成本,为其他芽孢杆菌提高芽孢产率的研究提供一种思路。方法: 通过摇瓶做单因素实验,筛选最佳温度和碳氮源,在此基础上进行5 L发酵罐实验。初始添加不同浓度的氮源,探索芽孢形成与氮源的关系。提出相对氨基氮的概念,通过恒速补料、间歇补料和基于尾气CO2浓度反馈流加三个策略控制相对氨基氮浓度水平。采用Python语言编写计算机控制程序,实现基于尾气CO2浓度反馈流加策略的自动化控制。结果: 摇瓶筛选最佳温度及碳氮源分别为:37℃、葡萄糖、鱼粉蛋白胨、豆粕。上罐结果表明,相对氨基氮浓度越低芽孢率越高,采用基于尾气CO2浓度反馈流加能将相对氨基氮控制在8.42 mg/OD600水平,芽孢量可达4.25×109 cfu/mL。利用计算机程序自动控制低价氮源氯化铵的流加,可以使芽孢量达到1.87×1010 cfu/mL,是前期最优批次的4.4倍,同时降低原料成本。结论: 将相对氨基氮浓度控制在适宜水平可以得到芽孢量较高的培养液,自动流加氯化铵策略能降低生产成本并实现自动化控制,为研究芽孢杆菌产孢提供一种思路。  相似文献   

15.
A simple pulse-based method for the determination of the maximum uptake capacities for glucose and oxygen in glucose limited cultivations of E. coli is presented. The method does not depend on the time-consuming analysis of glucose or acetate, and therefore can be used to control the feed rate in glucose limited cultivations, such as fed-batch processes. The application of this method in fed-batch processes of E. coli showed that the uptake capacity for neither glucose nor oxygen is a constant parameter, as often is assumed in fed-batch models. The glucose uptake capacity decreased significantly when the specific growth rate decreased below 0.15 h(-1) and fell to about 0.6 mmol g(-1) h(-1) (mmol per g cell dry weight and hour) at the end of fed-batch fermentations, where specific growth rate was approximately 0.02 h(-1). The oxygen uptake capacity started to decrease somewhat earlier when specific growth rate declined below 0.25 h(-1) and was 5 mmol g(-1) h(-1) at the end of the fermentations. The behavior of both uptake systems is integrated in a dynamic model which allows a better fitting of experimental values for glucose in fed-batch processes in comparison to generally used unstructured kinetic models.  相似文献   

16.
The biopharmaceutical industry continuously seeks to optimize the critical quality attributes to maintain the reliability and cost-effectiveness of its products. Such optimization demands a scalable and optimal control strategy to meet the process constraints and objectives. This work uses a model predictive controller (MPC) to compute an optimal feeding strategy leading to maximized cell growth and metabolite production in fed-batch cell culture processes. The lack of high-fidelity physics-based models and the high complexity of cell culture processes motivated us to use machine learning algorithms in the forecast model to aid our development. We took advantage of linear regression, the Gaussian process and neural network models in the MPC design to maximize the daily protein production for each batch. The control scheme of the cell culture process solves an optimization problem while maintaining all metabolites and cell culture process variables within the specification. The linear and nonlinear models are developed based on real cell culture process data, and the performance of the designed controllers is evaluated by running several real-time experiments.  相似文献   

17.
Parallel miniaturized stirred tank bioreactors are an efficient tool for "high-throughput bioprocess design." As most industrial bioprocesses are pH-controlled and/or are operated in a fed-batch mode, an exact scale-down of these reactions with continuous dosing of fluids into the miniaturized bioreactors is highly desirable. Here, we present the development, characterization, and application of a novel concept for a highly integrated microfluidic device for a bioreaction block with 48 parallel milliliter-scale stirred tank reactors (V = 12 mL). The device consists of an autoclavable fluidic section to dispense up to three liquids individually per reactor. The fluidic section contains 144 membrane pumps, which are magnetically driven by a clamped-on actuator section. The micropumps are designed to dose 1.6 μL per pump lift. Each micropump enables a continuous addition of liquid with a flow rate of up to 3 mL h(-1) . Viscous liquids up to a viscosity of 8.2 mPa s (corresponds to a 60% v/v glycerine solution) can be pumped without changes in the flow rates. Thus, nearly all feeding solutions can be delivered, which are commonly used in bioprocesses. The functionality of the first prototype of this microfluidic device was demonstrated by double-sided pH-controlled cultivations of Saccharomyces cerevisiae based on signals of fluorimetric sensors embedded at the bottom of the bioreactors. Furthermore, fed-batch cultivations with constant and exponential feeding profiles were successfully performed. Thus, the presented novel microfluidic device will be a useful tool for parallel and, thus, efficient optimization of controlled fed-batch bioprocesses in small-scale stirred tank bioreactors. This can help to reduce bioprocess development times drastically.  相似文献   

18.
In many microorganisms, flux limitations in oxidative metabolism lead to the formation of overflow metabolites even under fully aerobic conditions. This can be avoided if the specific growth rate is controlled at a low enough value. This is usually accomplished by controlling the substrate feeding profile in a fed-batch process. The present work proposes a control concept which is based on the on-line detection of metabolic state by on-line calculation of mass and elemental balances. The advantages of this method are: 1) the check of measurement consistency based on all of the available measurements, 2) the minimum requirement of a priori knowledge of metabolism, and 3) the exclusive use of simple and established on-line techniques which do not require direct measurement of the metabolite in question. The control concept has been linked to a simple adaptive controller and applied to fed-batch cultures of S. cerevisiae and E. coli, organisms which express different overflow metabolites, ethanol and acetic acid, respectively. Oxidative and oxidoreductive states of S. cerevisiae and E. coli cultures were detected with high precision. As demonstrated by the formation of acetic acid in E. coli cultures, metabolic states could be correctly distinguished for systems for which traditional methods, such as respiratory quotient (RQ), are insensitive. Hence, it could be shown that the control concept allowed avoidance of overflow metabolite formation and operation at maximum oxidative biomass productivity and oxidative conversion of substrate into biomass. Based on mass and elemental balances, the proposed method additionally provides a richness of additional information, such as yield coefficients and estimation of concentrations and specific conversion rates. These data certainly help the operator to additionally evaluate the state of the process on-line.  相似文献   

19.
A dynamic flux balance model based on a genome-scale metabolic network reconstruction is developed for in silico analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed-batch culture. Metabolic engineering strategies previously identified for their enhanced steady-state biomass and/or ethanol yields are evaluated for fed-batch performance in glucose and glucose/xylose media. Dynamic analysis is shown to provide a single quantitative measure of fed-batch ethanol productivity that explicitly handles the possible tradeoff between the biomass and ethanol yields. Productivity optimization conducted to rank achievable fed-batch performance demonstrates that the genetic manipulation strategy and the fed-batch operating policy should be considered simultaneously. A library of candidate gene insertions is assembled and directly screened for their achievable ethanol productivity in fed-batch culture. A number of novel gene insertions with ethanol productivities identical to the best metabolic engineering strategies reported in previous studies are identified, thereby providing additional targets for experimental evaluation. The top performing gene insertions were substrate dependent, with the highest ranked insertions for glucose media yielding suboptimal performance in glucose/xylose media. The analysis results suggest that enhancements in biomass yield are most beneficial for the enhancement of fed-batch ethanol productivity by recombinant xylose utilizing yeast strains. We conclude that steady-state flux balance analysis is not sufficient to predict fed-batch performance and that the media, genetic manipulations, and fed-batch operating policy should be considered simultaneously to achieve optimal metabolite productivity.  相似文献   

20.
A cellular automata model to simulate penicillin fed-batch fermentation process (CAPFM) was established in this study, based on a morphologically structured dynamic penicillin production model, that is in turn based on the growth mechanism of penicillin producing microorganisms and the characteristics of penicillin fed-batch fermentation. CAPFM uses the three-dimensional cellular automata as a growth space, and a Moore-type neighborhood as the cellular neighborhood. The transition rules of CAPFM are designed based on mechanical and structural kinetic models of penicillin batch-fed fermentation processes. Every cell of CAPFM represents a single or specific number of penicillin producing microorganisms, and has various state. The simulation experimental results show that CAPFM replicates the evolutionary behavior of penicillin batch-fed fermentation processes described by the structured penicillin production kinetic model accordingly. __________ Translated from ACTA BIOPHYSICA, 2005, 21(2) [译自: 生物物理学报, 2005,21(2)]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号