首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper reviews 31 groups in ferns and lycophytes hypothesized to show eastern Asian–North American disjunctions. Fourteen lineages have been supported by recent phylogenetic evidence: Lycopodium nikoense and Lycopodium sitchense; Isoëtes asiatica and the clade of the North American species complex closely allied to I. maritima; Osmundastrum cinnamomeum; Osmunda claytoniana; the Adiantum pedatum complex; the Cryptogramma acrostichoides complex; Diplaziopsidaceae; Cystopteris chinensis and the Cystopteris bulbifera clade; Asplenium rhizophyllum and Asplenium ruprechtii; diploid Phegopteris; Onoclea sensibilis; the Polypodium appalachianum clade; and the Polypodium glycyrrhiza clade. Phylogenetic and/or cytological evidence did not support the biogeographic disjunctions in six cases: (1) Isoëtes asiatica and I. truncata; (2) Botrychium ternatum; (3) Thelypteris beddomei and T. nipponicaThelypteris noveboracensis and T. nevadensis; (4) Thelypteris glanduligera and Thelypteris. japonicaT. simulata; (5) Woodwardia japonica and W. virginica; and (6) Woodwardia orientalis and Woodwardia fimbriata. Both vicariance and dispersal have been suggested to be the mechanisms for the formation of the disjunct pattern; and the Beringian region has been an active pathway for the migration of ferns and lycophytes between Asia and North America. Disjunctions of ferns and lycophytes reviewed here have been dated in the Tertiary, and are similar to the ages of eastern Asian–North American disjunctions in seed plants, supporting the close biogeographic co‐diversification of ferns and seed plants. Future studies are needed to estimate divergence times and reconstruct biogeographic events in a broad phylogenetic framework, and to test the morphological stasis hypothesis in disjunct ferns and lycophytes.  相似文献   

2.
Toxicodendron is a genus in the Rhus complex of Anacardiaceae with a disjunct distribution between eastern Asia and North America, extending to southeastern Asia and the neotropics. Nuclear (internal transcribed spacer, external transcribed spacer, and NIA-i3) and chloroplast (ndhF and trnL-F) sequences were used to construct phylogenetic relationships of Toxicodendron. Phylogenetic analysis of these data strongly support Toxieodendron as a monophyletic group distinct from other genera of the Rhus complex, and the phylogeny does not fully corroborate classification at the sectional level. Two temperate disjunct lineages were detected, one from section Toxicodendron and the other between the eastern North American Toxicodendron vernix and the eastern Asian Toxicodendron vernieifluum. Their divergence times were estimated to be 13.46 (7.95-19.42) and 7.53 (2.76-12.86) mya, respectively. The disjunction between section Griffithii (taxa from warm temperate to tropical Asia) and Toxieodendron striatum (from the neotropics) was supported and their divergence time was estimated to be 20.84 (11.1 6-30.52) mya in the early Miocene. Our biogeographic results and the paleontological data support the Bering land bridge as the most likely route to explain the temperate disjunctions, yet the tropical disjunction in Toxicodendron seems to be best explained by the North Atlantic land bridge hypothesis.  相似文献   

3.
4.
This review shows a close biogeographic connection between eastern Asia and western North America from the late Cretaceous to the late Neogene in major lineages of vascular plants (flowering plants, gymnosperms, ferns and lycophytes). Of the eastern Asian–North American disjuncts, conifers exhibit a high proportion of disjuncts between eastern Asia and western North America. Several lineages of ferns also show a recent disjunct pattern in the two areas. In flowering plants, the pattern is commonly shown in temperate elements between northeastern Asia and northwestern North America, as well as elements of the relict boreotropical and Neogene mesophytic and coniferous floras. The many cases of intercontinental biogeographic disjunctions between eastern Asia and western North America in plants supported by recent phylogenetic analyses highlight the importance of the Bering land bridge and/or the plant migrations across the Beringian region from the late Cretaceous to the late Neogene, especially during the Miocene. The Beringian region has permitted the filtering and migration of certain plant taxa since the Pliocene after the opening of the Bering Strait, as many conspecific taxa or closely related species occur on both sides of Beringia.  相似文献   

5.
6.
The genus Wisteria (Fabaceae) is disjunctly distributed in eastern Asian and eastern North American temperate deciduous forests, and it is widely cultivated around the world as spectacular garden plants. It is a member of inverted repeat-lacking clade (IRLC). The IRLC Species are characterized by the loss of an IR region in their plastomes, which has long been of great interest. In this research, we report whole plastome sequences from all four Wisteria species and a Wisteriopsis japonica, combining these with existing data to explore phylogenetic relationships and biogeography of Wisteria, as well as plastome evolution of IRLC species. Phylogenetic analyses recognized a clade containing Glycyrrhiza–WisteriopsisWisteria as sister to the remaining genera of IRLC. North American Wisteria frutescens and the three Asian species formed reciprocal clades, and Wisteria brachybotrys was sister to Wisteria floribunda and Wisteria sinensis. Wisteria may have originated in Japan near the boundary of the Oligocene and Miocene. The disappearance of Bering Land Bridge in the late Miocene might lead to the Eastern Asian–Eastern North American disjunction of Wisteria. Allopatric speciation of Wisteria between the Japanese archipelago and the Asian continent in the Quaternary increased the species richness of eastern Asia in comparison with eastern North America. Synonymous substitution rates (dS) of protein-coding genes in the IRLC species were around 2-fold (SC genes) or 11-fold (IR genes) higher than those of non-IRLC species. For both SC and IR genes, herbaceous legumes have around 3-fold higher dS than woody ones. Both loss of one IR region and herbaceous habit elevated substitution rates of the plastomes.  相似文献   

7.
The purpose of this study was to test the hypothesis that the genetic diversity of commercially significant species of King Crabs (Lithodes spp.) along the south‐eastern Pacific (SEP) comprises different independent evolutionary units (IEUs) with spatially isolated distribution. Nine localities from inner and open waters along the SEP Chilean coast (39°S‐55°S) were sampled. We analyzed sequences from 173 individuals for the mitochondrial gene Cytochrome oxidase I (COX‐I), 151 individuals for the Internal Transcribed Spacer 1 (ITS) and 135 for the structural ribosomal RNA (28S). Genetic delimitation was performed through three analytical methods: ABGD, GMYC, and its Bayesian implementation, bGMYC. Bayesian phylogenetic analyses and haplotype networks were also performed. Divergence time between clades was assessed for the COX‐I marker and estimated from known evolutionary rates for this marker in other crustacean species and fossil calibration from other Anomuran species. Delimitation analyses, phylogenetic analyses, and mitochondrial haplotype networks suggested the presence of two deeply divergent mitochondrial lineages of Lithodes in the SEP, referred to as Clade1 and Clade 2. Nuclear markers showed low phylogenetic resolution and therefore were unsuitable for molecular species delimitation. Divergence time analysis of the mitochondrial lineages suggests a separation between Clades of approximately 2.3 Mya. The divergence time obtained suggested that Pliocene glaciations and deglaciations cycles could be involved in hybridization events between Lithodes IEUs at southern tip of South American coasts. The different frequencies of Lithodes haplotypes in inner and open water environments along SEP coasts could be explained by events such as the last glacial maximum or by differences in the adaptation of each clade to different environments. These findings support the necessity of evaluating the taxonomic status of Lithodes individuals found along SEP coasts under an integrative taxonomy approach or through markers with other evolution rates than those already used.  相似文献   

8.
Previous studies based on different molecular datasets have generated conflicting topologies for Ranunculeae. Here, we revisit the phylogeny of Ranunculeae by analyzing the individual matK/trnK, psbJ-petA, and internal transcribed spacer (ITS) data, the combined matK/trnK, psbJ-petA, and ITS dataset, and the combinedrbcL, trnL-F, matK/trnK, psbJ-petA, and ITS dataset. Based on the tree-based comparisons, blast searches against NCBI of the sequences, and close examination of the alignment, we found that 10 psbJ-petA sequences previously used were questionable (erroneous or problematic) and responsible for previous conflicting topologies. After omitting these questionable sequences, we provide a new phylogeny for Ranunculeae, in which Beckwithia–Cyrtorhyncha, Kumlienia, andPeltocalathos were replaced. These new replacements are supported by corresponding morphological characters. Moreover, three previously proposed intercontinental disjunct distributions within Ranunculus were also refuted. In our framework, our divergence time and biogeographic analyses indicate that divergence time estimates and the ancestral areas reconstructed for 10 of the 15 nodes in the genus-level phylogeny were influenced by elimination of the questionable sequences. The most recent common ancestor of Ranunculeae was inferred to be present in Europe and North America during the late Eocene. Clades I and II began to diversify in Europe and North America, respectively, and subsequently migrated to other continents. This study shows that it is necessary to analyze individual chloroplast DNA region datasets separately to detect questionable sequences early in the study. The combined dataset including the questionable sequences resulted in an erroneous phylogenetic tree, and the use of this tree subsequently affected age estimates and biogeographic analyses.  相似文献   

9.
Gross anatomical characters of all 18 species of Littorina are used to construct a phylogenetic hypothesis for the genus, by the method of cladistic analysis. The resulting cladogram suggests that of the four subgenera of Littorina, one (Littorina) is paraphyletic. It is uncertain whether the genus Mainwaringia should be included in Littorina. It is shown that the non-planktotrophic Littorina species in the northern Atlantic comprise a monophyletic group, with the sister-species L. kurila and/or L. subrotundata in the northern Pacific. Invasion of the Atlantic by a minimum of two Pacific species, across the Arctic migration route established during the late Cenozoic, is sufficient to account for the modern distribution of the subgenera Littorina and Neritrema. The importance of the cladogram as a basis for hypotheses of adaptation is illustrated by a discussion of spawn and development in Littorina.  相似文献   

10.
We evaluate the phylogenetic and biogeographical relationships of the members of the family Pettalidae (Opiliones, Cyphophthalmi), a textbook example of an ancient temperate Gondwanan taxon, by means of DNA sequence data from four markers. Taxon sampling is optimized to cover more than 70% of the described species in the family, with 117 ingroup specimens included in the analyses. The data were submitted to diverse analytical treatments, including static and dynamic homology, untrimmed and trimmed alignments, and a variety of optimality criteria including parsimony and maximum‐likelihood (traditional search and Bayesian). All analyses found strong support for the monophyly of the family Pettalidae and of all its genera, with the exception of Speleosiro, which is nested within Purcellia. However, the relationships among genera are poorly resolved, with the exceptions of a first split between the South African genus Parapurcellia and the remaining species, and, less supported, a possible relationship between Chileogovea and the other South African genus Purcellia. The diversification of most genera is Mesozoic, and of the three New Zealand genera, two show evidence of constant diversification through time, contradicting scenarios of total submersion of New Zealand during the Oligocene drowning episode. The genera Karripurcellia from Western Australia and Neopurcellia from the Australian plate of New Zealand show a pattern typical of relicts, with ancient origin, depauperate extant diversity and recent diversification. The following taxonomic actions are taken: Milipurcellia Karaman, 2012 is synonymized with Karripurcellia Giribet, 2003 syn. nov. ; Speleosiro Lawrence, 1931 is synonymised with Purcellia Hansen & Sørensen, 1904 syn. nov . The following new combinations are proposed: Parapurcellia transvaalica (Lawrence, 1963) comb. nov. ; Purcellia argasiformis (Lawrence, 1931) comb. nov .  相似文献   

11.
The social vole of Cyrenaica, Libya, is the only extant representative of the Cricetidae family found in Africa. Its taxonomic status has been under debate, partly due to the problematic systematics of the entire group of social voles and partly due to the lack of morphological and molecular data from Cyrenaican specimens. In this study, we applied ancient DNA protocols to produce three cytochrome b (cytb) sequences of Cyrenaican voles and built a phylogenetic reconstruction (195 sequences in total) incorporating all available cytb sequences of the remaining social voles, other representatives of the genus Microtus and closely related cricetids. We used this phylogeny to test the performance of the model-based, single-locus, species delimitation approach implemented in mPTP and delimited nine species of social voles. Among them are the Cyrenaican vole, Microtus mustersi and its sister species M. guentheri, distributed along the Mediterranean coasts of southwestern Asia. Biogeographical reconstruction of ancestral area and molecular clock estimations of the time since the divergence of the two sister lineages suggest that their common ancestor dispersed into Africa through a coastal route and was isolated in Cyrenaica as a result of population fragmentation associated with Middle Pleistocenic pluvial/interpluvial cycles. Geographic isolation triggered the speciation process, but species distribution modeling gave evidence of subsequent niche divergence; M. guentheri has adapted to the xeric conditions of its distributional area, while M. mustersi benefited from the milder Cyrenaican climate. The Cyrenaican vole is a relict species more than 200,000 years old, has a small and isolated distribution and probably merits conservation.  相似文献   

12.
Species that are dispersed across oceanic islands can have strong population structure due to genetic isolation, which makes it difficult to determine realistic and meaningful species boundaries. This becomes especially problematic when pest species are involved, and can result in undetected new invasions. The mango fruit fly, Bactrocera frauenfeldi (Schiner), is currently considered to be one of five morphologically similar members in a monophyletic species group distributed across Southeast Asia, Australasia, and Oceania, including three major pests. We used a phylogenomic approach with highly multiplexed amplicon sequencing to test species limits and evaluate the relationships among species in the B. frauenfeldi species complex and two closely related species. We obtained sequence data from 196 specimens for 395 nuclear DNA loci, totalling 102 kb, of which 2.2 kb were parsimony informative sites. Based on morphology, biogeography, and phylogenetic analyses, we conclude that there are five distinct species in the complex in our phylogeny. Our results show that the morphological differences between B. frauenfeldi and B. albistrigata (de Meijere) are part of a continuum that cannot be phylogenetically separated into monophyletic groups. We therefore synonymize the names of two major pests: B. albistrigata syn. rev. with B. frauenfeldi, making B. frauenfeldi now recognized as a widespread pest across Australasia and Southeast Asia. We evaluated the use of COI for pest recognition and conclude that it cannot reliably distinguish between six of the seven species we studied, thus new molecular approaches will be necessary for effective management and the prevention of incursions.  相似文献   

13.
The eastern Asian (EA)–eastern North American (ENA) floristic disjunction represents a major pattern of phytogeography of the Northern Hemisphere. Despite 20 years of studies dedicated to identification of taxa that display this disjunct pattern, its origin and evolution remain an open question, especially regarding post‐isolation evolution. The blue‐ or white‐fruited dogwoods (BW) are the most species‐rich among the four major clades of Cornus L., consisting of ~35 species divided into three subgenera (subg. Yinquania, subg. Mesomora, and subg. Kraniopsis). The BW group provides an excellent example of the EA–ENA floristic disjunction for biogeographic study due to its diversity distribution centered in eastern Asia and eastern North America, yet its species relationships and delineation have remained poorly understood. In this study, we combined genome‐wide markers from RAD‐seq, morphology, fossils, and climate data to understand species relationships, biogeographic history, and ecological niche and morphological evolution. Our phylogenomic analyses with RAxML and MrBayes recovered a strongly supported and well‐resolved phylogeny of the BW group with three intercontinental disjunct clades in EA and ENA or Eurasia and North America, of which two are newly identified within subg. Kraniopsis. These analyses also recovered a potential new species but failed to resolve relationships within the C. hemsleyiC. schindleri complex. In an effort to develop an approach to reduce computation time, analysis of different nodal age settings in treePL suggests setting a node's minimum age constraint to the lower bound of a fossil's age range to obtain similar ages to that of BEAST. Divergence time analyses with BEAST and treePL dated the BW stem back to the very Late Cretaceous and the divergence of the three subgenera in the Paleogene. By integrating fossil ages and morphology, a total evidence‐based dating approach was used in conjunction with time‐slice probabilities of dispersal under a DEC model to resolve ancestral ranges of each disjunct in the Miocene: Eurasia and ENA (disjunct 1), EA and western North America (disjunct 2), and EA (disjunct 3). The dated biogeographic history supports dispersal via the North Atlantic Land Bridge in the late Paleogene in disjunct 1 and dispersal via the Bering Land Bridge in the Miocene for disjuncts 2 and 3. Character mapping with a stochastic model in phytools and comparison of ecological niche, morphospace, and rate of evolution indicated differential divergence patterns in morphology, ecological niche, and molecules between disjunct sisters. Although morphological stasis was observed in most of the characters, evolutionary changes in growth habit and some features of leaf, flower, and fruit morphology occurred in one or both sister clades. A significant differentiation of ecological habitats in temperature, precipitation, and elevation between disjunct sisters was observed, suggesting a role of niche divergence in morphological evolution post‐isolation. The patterns of evolutionary rate between morphology and molecules varied among disjunct clades and were not always congruent between morphology and molecules, suggesting cases of non‐neutral morphological evolution driven by ecological selection. Our phylogenetic evidence and comparisons of evolutionary rate among disjunct lineages lend new insights into the formation of the diversity anomaly between EA and ENA, with particular support of an early diversification in EA. These findings, in conjunction with previous studies, again suggest that the EA–ENA disjunct floras are an assembly of lineages descended from the Mesophytic Forests that evolved from the early Paleogene “boreotropical flora” through varied evolutionary pathways across lineages.  相似文献   

14.
The eastern Asian (EAS)-eastern North American (ENA) floristic disjunction is one of the best-known biogeographic patterns in the Northern Hemisphere. Recent paleontological and molecular analyses have illuminated the origins of the biogeographic pattern, but subsequent diversification and evolution of the disjunct floras in each of the two continents after isolation remains poorly understood. Although similar in climate and floristic composition, EAS has twice as many species as ENA in genera occurring in both regions. Explaining such differences in species diversity between regions with similar environmental conditions (diversity anomalies) is an important goal of the study of the global patterns of biodiversity. We used a phylogenetic approach to compare rates of net speciation and molecular evolution between the two regions. We first identified EAS-ENA disjunct sister clades from ten genera (Asarum, Buckleya, Carpinus, Carya, Cornus, Hamamelis, Illicium, Panax, Stewartia, and Styrax) that represent diverse angiosperm lineages using phylogenetic analyses of ITS (internal transcribed spacer of nuclear ribosomal DNA) sequence data. Species richness and substitution rate of ITS between sister clades were compared. The results revealed a pattern of greater species diversity in the EAS counterparts. A positive relationship between species diversity and ITS substitution rate was also documented. These results suggest greater net speciation and accelerated molecular evolution in EAS. The data support the idea that a regional difference in net speciation rate related to topographic heterogeneity contributes to the diversity anomaly between EAS and ENA. The close relationship between rates of ITS evolution and species richness further suggests that species production may be directly linked to rate of nucleotide substitution.  相似文献   

15.
16.
Plant disjunctions have provided some of the most intriguing distribution patterns historically addressed by biogeographers. We evaluated the three hypotheses that have been postulated to explain these patterns [vicariance, stepping‐stone dispersal and long‐distance dispersal (LDD)] using Munroa, an American genus of grasses with six species and a disjunct distribution between the desert regions of North and South America. The ages of clades, cytology, ancestral characters and areas of distribution were investigated in order to establish relationships among species, to determine the time of divergence of the genus and its main lineages, and to understand further the biogeographical and evolutionary history of this genus. Bayesian inference recovered the North American M. pulchella as sister species to the rest. Molecular dating and ancestral area analyses suggest that Munroa originated in North America in the late Miocene–Pliocene (7.2 Mya; 8.2–6.5 Mya). Based on these results, we postulate that two dispersal events modelled the current distribution patterns of Munroa: the first from North to South America (7.2 Mya; 8.2–6.5 Mya) and the second (1.8 Mya; 2–0.8 Mya) from South to North America. Arid conditions of the late Miocene–Pliocene in the Neogene and Quaternary climatic oscillations in North America and South America were probably advantageous for the establishment of populations of Munroa. We did not find any relationship between ploidy and dispersal events, and our ancestral character analyses suggest that shifts associated with dispersal and seedling establishment, such as habit, reproductive system, disarticulation of rachilla, and shape and texture of the glume, have been important in these species reaching new areas. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 110–125.  相似文献   

17.
18.
The sunflower family (Asteraceae) is the largest and the most diverse flowering plant family, comprising 24 000–30 000 species and 1600–1700 genera. In China, Asteraceae are also the largest family, with approximately 2336 indigenous species in 248 genera. In the past two decades, molecular phylogenetic analyses has contributed greatly to our understanding of the systematics of Asteraceae. Nevertheless, the large-scale analyses and knowledge about the relationships of Chinese Asteraceae at the generic level as a whole are far from complete due to difficulties in sampling. In this study, we presented a three-marker (rbcL, ndhF, and matK) phylogeny of Asteraceae, including 506 genera (i.e., approximately one-third of Asteraceae genera). The study sampled 200 Chinese genera (i.e., approximately 80% of Chinese Asteraceae genera). The backbones of the new phylogeny were largely congruent with earlier studies, with 13 subfamilies and 45 tribes recognized. Chinese Asteraceae were distributed in 7 subfamilies (Mutisioideae, Wunderlichioideae, Carduoideae, Pertyoideae, Gymnarrhenoideae, Cichorioideae, and Asteroideae) and 22 tribes (Mutiseae, Hyalideae, Cardueae, Pertyeae, Gymnarrheneae, Vernonieae, Cichorieae, Doroniceae, Senecioneae, Astereae, Anthemideae, Gnaphalieae, Calenduleae, Inuleae, Athroismeae, Helenieae, Coreopsideae, Neurolaeneae, Tageteae, Millieae, Eupatorieae, and Heliantheae). Chinese Asteraceae lacked 6 basal subfamilies and 23 tribes. Several previously ambiguous relationships were clarified. Our analyses also resolved some unplaced genera within Chinese Asteraceae. Finally, our phylogenetic tree was used to revise the classification for all genera of Chinese Asteraceae. In total, 255 genera, 22 tribes, and 7 subfamilies in China are recognized.  相似文献   

19.
Apple snails (Ampullariidae) are a diverse family of pantropical freshwater snails and an important evolutionary link to the common ancestor of the largest group of living gastropods, the Caenogastropoda. A clear understanding of relationships within the Ampullariidae, and identification of their sister taxon, is therefore important for interpreting gastropod evolution in general. Unfortunately, the overall pattern has been clouded by confused systematics within the family and equivocal results regarding the family's sister group relationships. To clarify the relationships among ampullariid genera and to evaluate the influence of including or excluding possible sister taxa, we used data from five genes, three nuclear and two mitochondrial, from representatives of all nine extant ampullariid genera, and species of Viviparidae, Cyclophoridae, and Campanilidae, to reconstruct the phylogeny of apple snails, and determine their affinities to these possible sister groups. The results obtained indicate that the Old and New World ampullariids are reciprocally monophyletic with probable Gondwanan origins. All four Old World genera, Afropomus, Saulea, Pila, and Lanistes, were recovered as monophyletic, but only Asolene, Felipponea, and Pomella were monophyletic among the five New World genera, with Marisa paraphyletic and Pomacea polyphyletic. Estimates of divergence times among New World taxa suggest that diversification began shortly after the separation of Africa and South America and has probably been influenced by hydrogeological events over the last 90 Myr. The sister group of the Ampullariidae remains unresolved, but analyses omitting certain outgroup taxa suggest the need for dense taxonomic sampling to increase phylogenetic accuracy within the ingroup. The results obtained also indicate that defining the sister group of the Ampullariidae and clarifying relationships among basal caenogastropods will require increased taxon sampling within these four families, and synthesis of both morphological and molecular data. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 61–76.  相似文献   

20.
The hawkmoth genus Hyles comprises some 29 species with a global distribution. In this study, we augment the previous taxon sampling with more species and add sequences from a nuclear gene to produce a refined phylogenetic hypothesis. A total evidence reconstruction based on Bayesian analysis of the combined mitochondrial (COI, t-RNA-Leu, COII; 2284 bp) and nuclear (EF1α; 773 bp) sequences is discussed and compared with the results from separate analyses of the two genes. The total evidence phylogeny corroborates many of the phylogenetic relationships previously postulated within the genus. In addition, the hitherto unsampled enigmatic species Hyles biguttata from Madagascar appears as sister group to Hyles livornicoides from Australia, although support for the relationship is relatively weak. The high level of differentiation of Hyles perkinsi from H. calida (both Hawaii), and the status of these two as sister species, is corroborated by both sources of sequence data. However, their phylogenetic position when mt DNA sequences alone are considered differs markedly from that under total evidence. The previously postulated relationships within the Hyles euphorbiae complex (HEC) s.s. are largely corroborated, but H. dahlii is now more closely related and the HEC s.l. is redefined to include H. zygophylli and H. stroehlei (two species that had not been studied previously using molecular data) and to exclude H. siehei and H. hippophaes. The nuclear sequences alone are insufficiently variable to fully resolve all lineages and the phylogeny suggests that nuclear gene swapping and incomplete lineage sorting have occurred implying recent divergence. The results from the total evidence analysis provide a phylogenetic hypothesis that both corroborates and complements the previous biogeographic scenario, and provides new insights into the origins of several of the included taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号