首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lateral sway of subjects in spontaneous dynamic balance conditions on a seesaw platform was measured during a visual stimulation monocularly produced by a rotating glass covered with a prism membrane. Prism rotation induced the perception of a circular translation of the whole visual field and an ocular pursuit movement. Therefore, the retinal slip that occurs in normal pursuit was cancelled. Strong stereo-typed postural reactions were observed in a direction that depended upon both the vertical visual field deviation and the eye stimulated: upper position of the right visual field induced a leftward sway resulting from an extension of the right hemibody; symmetrical reactions occurred for the left stimulation. The results suggest that the postural reactions recorded depend on the isolated oculomotor activity and, in addition, on retinal afferences corresponding to the temporal crescent of the stimulated side, which orientates the postural reaction on the homolateral lower limb muscles.  相似文献   

2.
The microstructure and composition of two mollusc shells were investigated using a combination of light microscopy, SEM, EPMA, and XANES. The shells of Pinna and Pinctada are composed of calcite prisms separated by organic walls. The prismatic units of Pinna are monocrystalline, and those of Pinctada are polycrystalline with internal organic radial membranes. High-spatial-resolution XANES maps for the different S species across adjacent prisms show that sulfate is the principal component in both the intraprismatic organic matrices and the outer membranes. Additionally, these maps confirm that the inner structures of the prismatic units are different for both genera. In many ways, the prisms of Pinna and Pinctada are different and invalidate the "simple prism" concept.  相似文献   

3.
The authors studied postural responses to bilateral vibratory stimulation (70 Hz, 1 mm, 2 s) of the calf triceps proprioceptors or anterior tibial muscles. Anteroposterior body tilts evoked by vibration were recorded by stabilography. The authors compared the values of postural responses under various conditions of visual control, namely, with normal vision, eyes closed, right–left inversion of the visual space by prismatic spectacles, central vision, and diffuse light. Visual inversion influenced the subjects' proprioceptive postural responses. The amplitude of vibration-evoked shifts of the feet pressure center was minimal with eyes open and significantly increased with eyes closed and inverted vision. Postural responses with visual inversion were significantly stronger than with eyes closed. Since inversion spectacles enabled a subject to see only the central part of the visual field (20°), the reference point was the condition of central vision, i.e., spectacles with same visual angle and without prisms. Postural responses were significantly weaker under these conditions than with visual inversion and eyes closed. Visual field inversion by prismatic spectacles made it impossible to use visual information for stabilizing the human upright posture and, moreover, destabized it. True, this holds only for a randomized experimental protocol, which prevents adaptation to prisms.  相似文献   

4.
Postural reactions elicited by monocular visual stimulation in the temporal crescent of the visual field were studied in adult subjects in dynamic balance on a rocking platform. Circular translation of a visual scene was induced in the temporal crescent by the rotation of membrane prisms placed laterally to the stimulated eye. In anteroposterior balance, postural reactions are identical whichever eyes is stimulated: ventral extension of the body when the visual scene moves upwards and dorsal extension when it moves downwards. In lateral balance, postural reactions vary with the stimulated eye: extension of the right side of the body when the right eye is stimulated by an upward displacement of the visual scene, extension of the left side when the left eye is stimulated. This difference, which contrasts with the similarity of reactions elicited by the stimulation of either para-foveal fields, suggests that the most peripheral part of the nasal retina has a specific role in head and body stabilisation.  相似文献   

5.
The present paper provides an analysis of the pointing errors of a patient with unilateral optic ataxia (O.K.) following right hemispheric damage, revealing the type of errors related tothe use of the contralesional hand and/or to the reaching of targets located in the contralesional visual field. In addition, comparison between immediate and delayed pantomime pointing allow testing of whether pointing deficits of this patient are specific to real-time visuo-motor control and, subsequently, whether delay could improve his pointing performance. The results show different patterns in the four hand-field combinations. The following conclusion can be drawn from the results of the delayed condition. In the case of patient O. K., the delay reduced the pointing variability for both hands in the left visual field but not in the right visual field. However, the pointing biases did not improve accordingly. As in healthy subjects, target locations tended to be coded in memory with a bias directed toward the fixation point. These results are discussed and contrasted with respect to those previously obtained in the literature in patients with bilateral optic ataxia.  相似文献   

6.
Hall MC  Willis JH 《Genetics》2005,170(1):375-386
We constructed a genetic linkage map between two divergent populations of Mimulus guttatus. We genotyped an F(2) mapping population (N = 539) at 154 AFLP, microsatellite, and gene-based markers. A framework map was constructed consisting of 112 marker loci on 14 linkage groups with a total map length of 1518 cM Kosambi. Nearly half of all markers (48%) exhibited significant transmission ratio distortion (alpha = 0.05). By using a Bayesian multipoint mapping method and visual inspection of significantly distorted markers, we detected 12 transmission ratio distorting loci (TRDL) throughout the genome. The high degree of segregation distortion detected in this intraspecific map indicates substantial genomic divergence that perhaps suggests genomic incompatibilities between these two populations. We compare the pattern of transmission ratio distortion in this map to an interspecific map constructed between M. guttatus and M. nasutus. A similar level of segregation distortion is detected in both maps. Collinear regions between maps are compared to determine if there are shared genetic patterns of non-Mendelian segregation distortion within and among Mimulus species.  相似文献   

7.
The visual topography within striate and lateral extrastriate visual cortices was studied in adult hamsters. The cortical areas 17 and 18a in the left hemisphere were electrophysiologically mapped upon stimulation of the right eye, correlating receptive field positions in the visual field with cortical recording sites. Reference lesions were placed at selected cortical sites. Like in rats and other mammals, the lateral extrastriate cortex contained multiple representations of the visual field. Rostral area 18a contained the rostrolateral maps, with medial and lateral divisions. More caudally and sharing a common border with V1, maps in lateromedial, posterolateral and posterior areas were found. More laterally and forming a "third tier" of visual maps, anterolateral, laterolateral-anterior, laterolateral and laterolateral-posterior areas were found. There was also an indication of a possible pararhinal map. The plan so defined is virtually identical to that of rats. The results may be useful to understand a basic mammalian plan in the organization of the visual cortex.  相似文献   

8.
 It has been reported that the OFF responses of cells in the visual pathway are stronger, on average, than the ON responses early in the life of cats and ferrets. In this study, we theoretically investigate the effects of this imbalance in activity on the orientation map formation. We carry out computer simulations based on our previously proposed self-organization model, in which the correlated activities between ON- and OFF-center cells in the lateral geniculate nucleus regulate the formation of orientation maps in the visual cortex. When imbalance between the activities of these ON- and OFF-center cells is assumed, we obtain orientation maps with spatial periodicity, as observed in the experiments. On the other hand, when balanced activities are assumed, orientation maps do not show periodicity. This suggests that the imbalance in activities between ON- and OFF-center cells contributes to the elaboration of orientation maps during the critical period. Received: 8 July 1999 / Accepted in revised form: 18 February 2000  相似文献   

9.
The decay of evanescent field intensity beyond a dielectric interface depends upon beam incident angle, enabling the 3-d distribution of fluorophores to be deduced from total internal reflection fluorescence microscopy (TIRFM) images obtained at multiple incident angles. Instrumentation was constructed for computer-automated multiple angle-TIRFM (MA-TIRFM) using a right angle F2 glass prism (n(r) 1.632) to create the dielectric interface. A laser beam (488 nm) was attenuated by an acoustooptic modulator and directed onto a specified spot on the prism surface. Beam incident angle was set using three microstepper motors controlling two rotatable mirrors and a rotatable optical flat. TIRFM images were acquired by a cooled CCD camera in approximately 0.5 degree steps for >15 incident angles starting from the critical angle. For cell studies, cells were grown directly on the glass prisms (without refractive index-matching fluid) and positioned in the optical path. Images of the samples were acquired at multiple angles, and corrected for angle-dependent evanescent field intensity using "reference" images acquired with a fluorophore solution replacing the sample. A theory was developed to compute fluorophore z-distribution by inverse Laplace transform of angle-resolved intensity functions. The theory included analysis of multiple layers of different refractive index for cell studies, and the anisotropic emission from fluorophores near a dielectric interface. Instrument performance was validated by mapping the thickness of a film of dihexyloxacarbocyanine in DMSO/water (n(r) 1.463) between the F2 glass prism and a plano-convex silica lens (458 mm radius, n(r) 1.463); the MA-TIRFM map accurately reproduced the lens spherical surface. MA-TIRFM was used to compare with nanometer z-resolution the geometry of cell-substrate contact for BCECF-labeled 3T3 fibroblasts versus MDCK epithelial cells. These studies establish MA-TIRFM for measurement of submicroscopic distances between fluorescent probes and cell membranes.  相似文献   

10.
Popov  K. E.  Smetanin  B. N.  Kozhina  G. V. 《Neurophysiology》2001,33(4):258-265
In healthy volunteers, we recorded stabilograms and studied postural responses evoked by galvanic stimulation of the labyrinth (binaurally applied 1-mA current, 4 sec) with the subjects' eyes open and closed and under conditions of reversed visual perception. Horizontal reversal of the visual space was provided by using spectacles with the Dove's prisms. In series consisting of 10 sequential tests with eyes open, we observed a gradual drop in the response amplitude, while there were practically no changes in the maximum velocity of the displacement. Postural responses with eyes closed were considerably greater than those with eyes open, but their amplitude and velocity demonstrated no changes with sequential tests. Under conditions of reversal of the visual perception, both the amplitude and maximum velocity of the postural responses decreased with successive testing. Under the above conditions, at the beginning of a test series responses to vestibular stimulation were greater than those with eyes closed, but in repeated tests they decreased and attained the same magnitude as in the tests with eyes closed. Therefore, the effect of short-term adaptation to visual reversal on the system controlling vertical posture resulted in simple rejection of the information coming via the visual input. In another experimental mode, we studied the adaptation effects at longer (3 h long) visual reversal. Postural responses to galvanic stimulation of the labyrinth (monaurally applied, 2-mA current, 4 sec) were tested with 1-h-long intervals; tests with visual reversal and with eyes closed were made in a random order with each other. A 3-h-long interval with the prismatic spectacles on did not modify the amplitude and velocity of the vestibular postural responses when the tests were made with the eyes closed. When the tests were performed with the eyes open, but in the inverting spectacles, postural responses significantly decreased (by about 50-60%) to the 2nd and 3rd h of the experiment. Such selective suppression of the vestibular input under conditions of visual reversal can be interpreted as a result of adaptational transformation of the visual-vestibular relation directed toward minimization of the visual-vestibular conflict.  相似文献   

11.
During the procedure of prism adaptation, subjects execute pointing movements to visual targets under a lateral optical displacement: as consequence of the discrepancy between visual and proprioceptive inputs, their visuo-motor activity is characterized by pointing errors. The perception of such final errors triggers error-correction processes that eventually result into sensori-motor compensation, opposite to the prismatic displacement (i.e., after-effects). Here we tested whether the mere observation of erroneous pointing movements, similar to those executed during prism adaptation, is sufficient to produce adaptation-like after-effects. Neurotypical participants observed, from a first-person perspective, the examiner's arm making incorrect pointing movements that systematically overshot visual targets location to the right, thus simulating a rightward optical deviation. Three classical after-effect measures (proprioceptive, visual and visual-proprioceptive shift) were recorded before and after first-person's perspective observation of pointing errors. Results showed that mere visual exposure to an arm that systematically points on the right-side of a target (i.e., without error correction) produces a leftward after-effect, which mostly affects the observer's proprioceptive estimation of her body midline. In addition, being exposed to such a constant visual error induced in the observer the illusion "to feel" the seen movement. These findings indicate that it is possible to elicit sensori-motor after-effects by mere observation of movement errors.  相似文献   

12.
In optometry of binocular vision, the question may arise whether prisms should be included in eyeglasses to compensate an oculomotor and/or sensory imbalance between the two eyes. The corresponding measures of objective and subjective fixation disparity may be reduced by the prisms, or the adaptability of the binocular vergence system may diminish effects of the prisms over time. This study investigates effects of wearing prisms constantly for about 5 weeks in daily life. Two groups of 12 participants received eyeglasses with prisms having either a base-in direction or a base-out direction with an amount up to 8 prism diopters. Prisms were prescribed based on clinical fixation disparity test plates at 6 m. Two dependent variables were used: (1) subjective fixation disparity was indicated by a perceived offset of dichoptic nonius lines that were superimposed on the fusion stimuli and (2) objective fixation disparity was measured with a video based eye tracker relative to monocular calibration. Stimuli were presented at 6 m and included either central or more peripheral fusion stimuli. Repeated measurements were made without the prisms and with the prisms after about 5 weeks of wearing these prisms. Objective and subjective fixation disparity were correlated, but the type of fusion stimulus and the direction of the required prism may play a role. The prisms did not reduce the fixation disparity to zero, but induced significant changes in fixation disparity with large effect sizes. Participants receiving base-out prisms showed hypothesized effects, which were concurrent in both types of fixation disparity. In participants receiving base-in prisms, the individual effects of subjective and objective effects were negatively correlated: the larger the subjective (sensory) effect, the smaller the objective (motor) effect. This response pattern was related to the vergence adaptability, i.e. the individual fusional vergence reserves.  相似文献   

13.
A genetic linkage map of an intraspecific cross between 2 Silene vulgaris s.l. ecotypes is presented. Three-hundred AFLP markers from 2 different restriction enzyme combinations were used to genotype an F2 mapping population. Maternal and paternal pure-coupling phase maps with 114 and 186 markers on 12 and 13 linkage groups, respectively, were constructed. Total map length of the paternal and maternal maps are 547 and 446 Kosambi cM, respectively. Nearly half of the markers (49%) exhibited significant transmission ratio distortion. Genome coverage and potential causes of the observed segregation ratio distortions are discussed. The maps represent a first step towards the identification of quantitative trait loci associated with habitat adaptation in the non-model species Silene vulgaris.  相似文献   

14.
Unionid shells are characterized by an outer aragonitic prismatic layer and an inner nacreous layer. The prisms of the outer shell layer are composed of single-crystal fibres radiating from spheruliths. During prism development, fibres progressively recline to the growth front. There is competition between prisms, leading to the selection of bigger, evenly sized prisms. A new model explains this competition process between prisms, using fibres as elementary units of competition. Scanning electron microscopy and X-ray texture analysis show that, during prism growth, fibres become progressively orientated with their three crystallographic axes aligned, which results from geometric constraints and space limitations. Interestingly transition to the nacreous layer does not occur until a high degree of orientation of fibres is attained. There is no selection of crystal orientation in the nacreous layer and, as a result, the preferential orientation of crystals deteriorates. Deterioration of crystal orientation is most probably due to accumulation of errors as the epitaxial growth is suppressed by thick or continuous organic coats on some nacre crystals. In conclusion, the microstructural arrangement of the unionid shell is, to a large extent, self-organized with the main constraints being crystallographic and geometrical laws.  相似文献   

15.
The spatial character of our reaching movements is extremely sensitive to potential obstacles in the workspace. We recently found that this sensitivity was retained by most patients with left visual neglect when reaching between two objects, despite the fact that they tended to ignore the leftward object when asked to bisect the space between them. This raises the possibility that obstacle avoidance does not require a conscious awareness of the obstacle avoided. We have now tested this hypothesis in a patient with visual extinction following right temporoparietal damage. Extinction is an attentional disorder in which patients fail to report stimuli on the side of space opposite a brain lesion under conditions of bilateral stimulation. Our patient avoided obstacles during reaching, to exactly the same degree, regardless of whether he was able to report their presence. This implicit processing of object location, which may depend on spared superior parietal-lobe pathways, demonstrates that conscious awareness is not necessary for normal obstacle avoidance.  相似文献   

16.
Abstract. Enamel formation in the developing tooth organ is the product of epithelial-mesenchymal interactions which result in the differentiation of ameloblasts, the secretion of enamel proteins, and the production of a highly organized extracellular matrix. The three-dimensional organization of enamel prisms is species-specific: irregular polygonshaped in rabbit and rectangular-shaped in mouse. We designed experiments to test the hypothesis that three-dimensional organization of enamel prism formation is genetically determined by epithelium; the prediction being that speciesspecific enamel prism pattern formation is expressed independent of mesenchymal instructions. Our strategy employs scanning electron microscopy to examine enamel prism patterns formed during rabbit and mouse tooth morphogenesis in situ and in vitro, and to then determine the specific tissue type required for regulating these patterns using heterotypic tissue recombinations. Morphometric analyses demonstrated that cap stage tooth organs cultured on the chick chorioallantoic membrane (CAM) formed enamel prisms equivalent to prism patterns observed for in situ controls. Heterotypic tissue recombinations, using cap stage molar organs, formed rabbit-like prisms with rabbit epithelium/mouse mesenchyme, and mouse-like prisms with mouse epithelium/rabbit mesenchyme. These results indicate that dental papilla mesenchyme has no apparent influence on enamel prism pattern formation. Enamel prism pattern appears to be genetically regulated by the inner enamel epithelium.  相似文献   

17.
In everyday life, humans interact with a dynamic environment often requiring rapid adaptation of visual perception and motor control. In particular, new visuo–motor mappings must be learned while old skills have to be kept, such that after adaptation, subjects may be able to quickly change between two different modes of generating movements (‘dual–adaptation’). A fundamental question is how the adaptation schedule determines the acquisition speed of new skills. Given a fixed number of movements in two different environments, will dual–adaptation be faster if switches (‘phase changes’) between the environments occur more frequently? We investigated the dynamics of dual–adaptation under different training schedules in a virtual pointing experiment. Surprisingly, we found that acquisition speed of dual visuo–motor mappings in a pointing task is largely independent of the number of phase changes. Next, we studied the neuronal mechanisms underlying this result and other key phenomena of dual–adaptation by relating model simulations to experimental data. We propose a simple and yet biologically plausible neural model consisting of a spatial mapping from an input layer to a pointing angle which is subjected to a global gain modulation. Adaptation is performed by reinforcement learning on the model parameters. Despite its simplicity, the model provides a unifying account for a broad range of experimental data: It quantitatively reproduced the learning rates in dual–adaptation experiments for both direct effect, i.e. adaptation to prisms, and aftereffect, i.e. behavior after removal of prisms, and their independence on the number of phase changes. Several other phenomena, e.g. initial pointing errors that are far smaller than the induced optical shift, were also captured. Moreover, the underlying mechanisms, a local adaptation of a spatial mapping and a global adaptation of a gain factor, explained asymmetric spatial transfer and generalization of prism adaptation, as observed in other experiments.  相似文献   

18.
Visual field maps in human cortex   总被引:7,自引:0,他引:7  
Wandell BA  Dumoulin SO  Brewer AA 《Neuron》2007,56(2):366-383
Much of the visual cortex is organized into visual field maps: nearby neurons have receptive fields at nearby locations in the image. Mammalian species generally have multiple visual field maps with each species having similar, but not identical, maps. The introduction of functional magnetic resonance imaging made it possible to identify visual field maps in human cortex, including several near (1) medial occipital (V1,V2,V3), (2) lateral occipital (LO-1,LO-2, hMT+), (3) ventral occipital (hV4, VO-1, VO-2), (4) dorsal occipital (V3A, V3B), and (5) posterior parietal cortex (IPS-0 to IPS-4). Evidence is accumulating for additional maps, including some in the frontal lobe. Cortical maps are arranged into clusters in which several maps have parallel eccentricity representations, while the angular representations within a cluster alternate in visual field sign. Visual field maps have been linked to functional and perceptual properties of the visual system at various spatial scales, ranging from the level of individual maps to map clusters to dorsal-ventral streams. We survey recent measurements of human visual field maps, describe hypotheses about the function and relationships between maps, and consider methods to improve map measurements and characterize the response properties of neurons comprising these maps.  相似文献   

19.
Electron microscope and electron diffraction studies of developing embryonic bovine enamel have revealed the organization of the organic matrix and the inorganic crystals. The most recently deposited inorganic crystals located at the ameloblast-enamel junction are thin plates, approximately 1300 A long, 400 A wide, and 19 A thick. During maturation of the enamel, crystal growth occurs primarily by an increase in crystal thickness. Statistical analyses failed to show a significant change in either the width or the length of the crystals during the period of maturation studied. Even in the earliest stages of calcification, the crystals are organized within the prisms so that their long axes (c-axes) are oriented parallel to the long axes of the prisms but randomly distributed about their long axes. With maturation of the enamel, the crystals become more densely packed and more highly oriented within the prisms. The organic matrix in decalcified sections of enamel is strikingly similar in its over-all organization to that of the fully mineralized tissue. When viewed in longitudinal prism profiles, the intraprismatic organic matrix is composed of relatively thin dense lines, approximately 48 A wide, which are relatively parallel to each other and have their fiber axes parallel to the long axes of the prisms within which they are located. Many of these dense lines, which have the appearance of thin filaments, are organized into doublets, the individual 48 A wide filaments of the doublets being separated by approximately 120 A. When observed in oblique prism profiles, the intraprismatic organic matrix is likewise remarkably similar in general orientation and organization to that of the fully mineralized tissue. Moreover, the spaces between adjacent doublets or between single filaments have the appearance of compartments. These compartments, more clearly visualized in cross- or near cross-sectional prism profiles, are oval or near oval in shape. Therefore, the appearance of the intraprismatic organic matrix (in longitudinal, oblique, and cross-sectional prism profiles) indicates that it is organized into tubular sheaths which are oriented with their long axes parallel to the long axes of the prisms in which they are located, but randomly oriented about their own long axes, an orientation again remarkably "blue printing" that of the inorganic crystals. The predominant feature of the walls of the tubular sheaths, when viewed in cross- or near cross-section, is that of continuous sheets, although in many cases closely packed dot-like structures of approximately 48 A were also observed, suggesting that the wall of the sheaths consists of a series of closely packed filaments. The 48 A wide dense lines (filaments) representing the width of the sheath wall were resolved into two dense strands when viewed in longitudinal prism profiles. Each strand was 12 A wide and was separated by a less electron-dense space 17 A wide. The intraprismatic organic matrix is surrounded by a prism sheath which corresponds in mineralized sections to the electron-lucent uncalcified regions separating adjacent prisms. Structurally, the prism sheaths appear to consist of filaments arranged in basket-weave fashion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号