首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of stress caused by anthropogenic activities in rivers negatively act on the intricate system of trophic links within invertebrate communities and other components of the aquatic ecosystem. These effects can be made visible with the Index of Trophic Completeness (ITC), which was developed as an indicator for the functioning of the river ecosystem, based on the trophic classification of benthic macroinvertebrates. We tested the index using data collected from rivers exposed to different degree of anthropogenic pressure. In undisturbed rivers, all trophic guilds distinguished are present irrespective the part of the river studied and its geographical region. No significant seasonal effect on the outcomes was observed. Disturbances cause the extinction of specific trophic guilds, however due to overlap of effects, the result of an ITC outcome does not indicate the type of anthropogenic pressure. The ITC can be applied to the results of each combination of biotopes sampled, although one has to consider a varying biotope-density relation for species in the trophic guilds. Although the outcomes are projections of trophic guilds present, they can be arranged into quality classes.  相似文献   

2.
Synopsis As new arctic marine fisheries develop there is need for a comprehensive ecosystem approach to long-term management. This approach recognizes the importance of community interactions such as food web structure and trophic patterns. We determined whether hierarchical clustering (guild formation) is an effective method of trophic evaluation in deep-sea Artic fish communities using stomach content and parasite data with size class, and evaluated the application of endohelminth communities (parasite species transmitted in the food) as indicators of trophic status. Cluster analysis using food group abundance with size class of fish revealed the presence of 11 guilds within the community, however the same analysis using parasite data showed little correlation between food and parasites. Redundancy analysis (RDA) within the 11 guilds also revealed no significant correlations between food group and parasite abundance suggesting that this type of ordination is not suited for environments containing mainly generalist feeders. RDA of individual taxa without a priori guild designation found that taxa in benthic deep-sea communities are defined by their ability to exploit prey species in more than one habitat zone. Benthic fish species were significantly correlated with benthic food groups and parasites that utilize benthic intermediate hosts whereas benthopelagic–pelagic species fed on a higher diversity of prey species and were infected by a larger number of non-host specific parasites. Eigenanalysis and Monte Carlo results showed that parasites and food groups are highly correlated, indicating that parasite community analysis is an effective tool for predicting feeding strategies in Arctic marine environments. It also suggests that in most cases endoparasite infections alone could be used for trophic evaluation in the absence of stomach content data.  相似文献   

3.
马康  史璇  尤晓光  刘静玲 《生态学报》2021,41(5):2001-2010
河流岸带湿地栖息地完整性对河流水环境、水生态和水文的安全与健康具有重要意义,为探究河流岸带湿地表层沉积物重金属分布特征及其对植被和底栖动物的影响,对滦河干流上中下游河段表层沉积物、植物群落和底栖动物调查分析,采用生物毒性效应系数法和综合潜在生态风险指数法评价沉积物重金属污染特征,采用植被物种多样性指数和底栖动物完整性指数评价滦河植物和底栖动物群落特征,探究岸带湿地沉积物重金属空间分布与植被及底栖动物群落特征之间关系。结果表明,滦河表层沉积物总体呈清洁水平,但不同河段重金属空间分布差异较大,下游重金属生态危害系数和潜在生态风险指数高于上中游。湿地物种调查共识别维管束植物219种,大型无脊椎底栖动物105种,综合评价结果表明下游植物群落物种多样性和底栖动物群落完整性低于上中游。滦河下游岸带湿地沉积物重金属对生物群落具有生物毒性和潜在的生态风险,降低了植被物种多样性和底栖动物群落完整性。大型底栖动物完整性指数能够综合反映底栖动物群落结构特征变化,对河岸带湿地生态健康评价和监测具有重要意义。  相似文献   

4.
Diatoms are important primary producers in shallow water environments. Few studies have assessed the importance of biological interactions in structuring these communities. In the present study, benthic diatom community structure in relation to manipulated food webs was assessed using in situ mesocosms, whereby predator‐free environments and environments comprising two different fish species were assessed. Zooplankton abundance, settled algal biomass and the diatom community were monitored over a 12‐day period across each of the three trophic scenarios. Differences among treatments over time were observed in zooplankton abundances, particularly copepods. Similarly, the benthic diatom community structure changed significantly over time across the three trophic treatments. However, no differences in total algal biomass were found among treatments. This was likely the result of non‐diatom phytoplankton contributions. We propose that the benthic diatom community structure within the mesocosms was influenced by trophic cascades and potentially through direct consumption by the fish. The study highlights that not only are organisms at the base of the food web affected by predators at the top of the food web, but that predator identity is potentially an important consideration for predator–prey interaction outcomes with consequences for multiple trophic levels.  相似文献   

5.
The Rhine ecosystem is highly influenced by anthropogenic stresses from pollution, intensive shipping and increased connectivity with other large European rivers. Canalization of the Rhine resulted in a reduction of heterogeneity to two main biotopes: sandy streambeds and riverbanks consisting of groyne stones. Both biotopes are heavily subjected to biological invasions, affecting the rivers food web structure. The Ponto-Caspian amphipods, Chelicorophium curvispinum and Dikerogammarus villosus, have exerted the highest impact on this food web. The filterfeeding C. curvispinum dominated the Rhine food web on the stones in 1998, swamping the stone substrata with mud. However, in 2001 it decreased in numbers, most likely due to top-down regulation caused by increased parasitic and predatory pressure of other more recently invaded Ponto-Caspian species. D. villosus showed a fast population increase after its invasion and particularly influenced the macroinvertebrate community on the stones by predaceous omnivory. This species seemed to have maintained its predatory level after its population established. Effects of these mass invaders on the macroinvertebrate community of sandy streambeds in the Rhine are unclear. Here, low densities of macroinvertebrates were observed with the Asiatic clam, Corbicula fluminea, as most abundant species. Stable isotope values of food webs from the stones and sand in 2001 were similar. Aquatic macrophytes are nearly absent and the food web is fuelled by phytoplankton and particulate organic matter, originating from riparian vegetation as indicated by similar δ13C values. Omnivores, filter-, deposit-, and detritus-feeders are the primary and secondary macroinvertebrate consumers and function as keystone species in transferring energy to higher trophic levels. Invaders comprise 90% of the macroinvertebrate numbers, and can be considered ecosystem engineers determining the functional diversity and food web structure of the Rhine by either bottom-up or top-down regulation.  相似文献   

6.
7.
Organic matter produced by the sea ice microbial community (SIMCo) is an important link between sea ice dynamics and secondary production in near‐shore food webs of Antarctica. Sea ice conditions in McMurdo Sound were quantified from time series of MODIS satellite images for Sept. 1 through Feb. 28 of 2007–2015. A predictable sea ice persistence gradient along the length of the Sound and evidence for a distinct change in sea ice dynamics in 2011 were observed. We used stable isotope analysis (δ13C and δ15N) of SIMCo, suspended particulate organic matter (SPOM) and shallow water (10–20 m) macroinvertebrates to reveal patterns in trophic structure of, and incorporation of organic matter from SIMCo into, benthic communities at eight sites distributed along the sea ice persistence gradient. Mass‐balance analysis revealed distinct trophic architecture among communities and large fluxes of SIMCo into the near‐shore food web, with the estimates ranging from 2 to 84% of organic matter derived from SIMCo for individual species. Analysis of patterns in density, and biomass of macroinvertebrate communities among sites allowed us to model net incorporation of organic matter from SIMCo, in terms of biomass per unit area (g/m2), into benthic communities. Here, organic matter derived from SIMCo supported 39 to 71 per cent of total biomass. Furthermore, for six species, we observed declines in contribution of SIMCo between years with persistent sea ice (2008–2009) and years with extensive sea ice breakout (2012–2015). Our data demonstrate the vital role of SIMCo in ecosystem function in Antarctica and strong linkages between sea ice dynamics and near‐shore secondary productivity. These results have important implications for our understanding of how benthic communities will respond to changes in sea ice dynamics associated with climate change and highlight the important role of shallow water macroinvertebrate communities as sentinels of change for the Antarctic marine ecosystem.  相似文献   

8.
In southern Finland, most of the rivers are turbid and suffer from eutrophication and leaching of suspended solids from diffuse sources. We first related benthic diatom and macroinvertebrate structure to environmental factors using direct ordination. Second, benthic diatoms and macroinvertebrates were simultaneously sampled in several South-Finnish rivers and streams to compare two monitoring methods. The study sites constituted of some large, moderately nutrient rich rivers and some smaller, less eutrophic streams situated on the south coast of Finland. Diatom species distribution was most affected by conductivity, total P and latitude. Species distribution of macroinvertebrates was mostly related to channel width, conductivity and pH. For diatoms, separation of community structure between sampling stations was clear, but corresponding macroinvertebrate communities were more similar to each other. Correlation between diatom and macroinvertebrate pollution indices was rather low and insignificant (r = 0.28). As a whole, variation of macroinvertebrate index values (CV = 4.7%) among replicate samples was slightly lower than for diatom index (CV = 6.0%). On the contrary, community similarity between the replicate samples was slightly lower among macroinvertebrates (r = 0.770) due probably to their larger local scale spatial variation, sampling of more habitats and lower density compared to diatoms (r = 0.874). In conclusion, multiple pressures affecting the river ecosystems at different spatial and temporal scales should lead to choosing more than one biological monitoring method with clearly identifiable responses.  相似文献   

9.
Andrade  Claudia  Ríos  Carlos  Gerdes  Dieter  Brey  Thomas 《Polar Biology》2016,39(12):2281-2297

Trophic structure is among the most fundamental characteristics of an ecosystem since it is a useful way to determine the main energy flow at the ecosystem level. In the Magellan Strait, the local spatial heterogeneity at the shallow-waters ecosystems may have a great variety of potential food sources; however, knowledge about their biological communities and their structure is still unclear. We examined the trophic structure of shallow-water-mixed bottom communities at two sites in the sub-Antarctic Magellan Strait based on carbon (δ 13C) and nitrogen (δ 15N) stable isotope ratios. The benthic communities were composed of 46 species from 20 major taxa at Bahía Laredo (BL) and 55 species from 18 major taxa at Punta Santa Ana (PSA). Benthic macroalgae and organic matter associated with sediment are the major primary food sources at both sites. Although both sites are quite similar in their food sources and in their vertical trophic structure (≥three trophic levels), the food web structure varied distinctly. Functionally, predators and grazers dominated both communities, but top predators were shorebirds, carnivore anemones and predatory nemerteans at BL, and sea stars, shorebirds, crabs and fishes at PSA. The distinct differences in the trophic structure at BL and PSA highlight the important variability of δ 15N at the base of the benthic food web, the role of local environmental conditions and community dynamics in structuring shallow-water communities.

  相似文献   

10.
Inverse trophic cascades are a well explored and common consequence of the local depletion or extinction of top predators in natural ecosystems. Despite a large body of research, the cascading effects of predator removal on ecosystem functions are not as well understood. Developing microcosm experiments, we explored food web changes in trophic structure and ecosystem functioning following biomass removal of top predators in representative temperate and tropical rock pool communities that contained similar assemblages of zooplankton and benthic invertebrates. We observed changes in species abundances following predator removal in both temperate and tropical communities, in line with expected inverse effects of a trophic cascade, where predation release benefits the predator’s preys and competitors and impacts the preys of the latter. We also observed several changes at the community and ecosystem levels including a decrease in total abundance and mean trophic level of the community, and changes in chlorophyll-a and total dissolved particles. Our results also showed an increase in variability of both community and ecosystem processes following the removal of predators. These results illustrate how predator removal can lead to inverse trophic cascades both in structural and functioning properties, and can increase variability of ecosystem processes. Although observed patterns were consistent between tropical and temperate communities following an inverse cascade pattern, changes were more pronounced in the temperate community. Therefore, aquatic food webs may have inherent traits that condition ecosystem responses to changes in top-down trophic control and render some aquatic ecosystems especially sensitive to the removals of top predators.  相似文献   

11.
1. The introduction of invasive species is one of the main threats to global biodiversity, ecosystem structure and ecosystem processes. In freshwaters, invasive crayfish alter macroinvertebrate community structure and destroy macrophyte beds. There is limited knowledge on how such invasive species‐driven changes affect consumers at higher trophic levels. 2. In this study, we explore how the invasive rusty crayfish Orconectes rusticus, a benthic omnivore, affects benthic macroinvertebrates, as well as the broader consequences for ecosystem‐level trophic flows in terms of fish benthivory and trophic position (TP). We expected crayfish to decrease abundance of benthic macroinvertebrates, making most fish species less reliant on benthic resources. We expected crayfish specialists (e.g. Lepomis sp. and Micropterus sp.) to increase their benthic dependence. 3. In 10 northern Wisconsin lakes, we measured rusty crayfish relative abundance (catch per unit effort, CPUE), macroinvertebrate abundance, and C and N stable isotope ratios of 11 littoral fish species. We used stable isotope data and mixing models to characterise the trophic pathways supporting each fish species, and related trophic structure to crayfish relative abundance, fish body size and abiotic predictors using hierarchical Bayesian models. 4. Benthic invertebrate abundance was negatively correlated with rusty crayfish relative abundance. Fish benthivory increased with crayfish CPUE for all 11 fish species; posterior probabilities of a positive effect were >95%. TP also increased slightly with crayfish CPUE for some species, particularly smallmouth bass, largemouth bass, rock bass and Johnny darter. Moreover, both fish body size and lake abiotic variables explained variation in TP, while their effects on benthivory were small. 5. Rusty crayfish abundance explained relatively little of the overall variation in fish benthivory and TP. Although rusty crayfish appear to have strong effects on abundances of benthic macroinvertebrates, energy flow pathways and trophic niches of lentic fishes were not strongly influenced by invasive rusty crayfish.  相似文献   

12.
13.
14.
Temporal coherence or spatial synchrony refers to the tendency of population, community or ecosystem dynamics to behave similarly among locations through time as a result of spatially‐correlated environmental stochasticity (Moran effect), dispersal or trophic interactions. While terrestrial studies have treated synchrony mainly as a population‐level concept, the majority of freshwater studies have focused on community‐level patterns, particularly in lake planktonic communities. We used spatially and temporally hierarchical data on benthic stream invertebrates across six years, with three seasonal samples a year, in 11 boreal streams to assess temporal coherence at three spatial extents: 1) among regions (watersheds), 2) among streams within a region, and 3) among riffles within a stream, using the average of correlation coefficients for stream/riffle pairs across years. Our results revealed the primacy of strongly synchronized climatic factors (precipitation, air temperature) in inducing temporal coherence of macroinvertebrate assemblages across geographically distinct sites (i.e. Moran effect). Coherence tended to decrease with increasing spatial extent, but positive coherence was detected for most biological variables even at the largest extent (about 350 km). The generally high level of coherence reflected the strong seasonality of boreal freshwater communities. A hydrologically exceptional year enhanced the synchrony of biological variables, particularly total macroinvertebrate abundance. Regionally low precipitation in that year led to a substantial decrease in benthic densities across a broad spatial extent, followed by a rapid post‐drought recovery. Coherence at the among‐riffle (within‐stream) extent was lower than expected, implying that local‐scale habitat filters determine community dynamics at smaller spatial extents. Thus, temporal coherence of stream benthic communities appears to be controlled by partly different processes at different spatial scales.  相似文献   

15.
As a precursor to developing a biomonitoring program for rivers of the Coastal Hudson Bay Lowland, this study characterized and compared the benthic macroinvertebrate communities and water chemistry in 5 remote, previously undescribed, rivers near Fort Severn, Ontario, Canada. The pH of river water ranged from 8.1 to 8.7, total phosphorus from 11 to 26 μg L?1, dissolved organic carbon from 8 to 12 mg L?1, and chloride from 56 to 153 mg L?1. A total of 57 benthic macroinvertebrate taxa were represented, and the 10 most numerically dominant were the Chironominae (26 % of collected individuals), Orthocladiinae (16 %), oligochaetous clitellata (9 %), Hyalellidae (7 %), Hydropsychidae (6 %), Gammaridae (5 %), Elmidae (5 %), Sphaeriidae/Pisidiidae (4 %), Nemata (3 %), and Tanypodinae (3 %). Rivers’ positions in ordinations of chemical and biological datasets were similar, suggesting that water chemistry has a role in structuring riverine benthic communities in the study region. Correlations between water-chemistry or habitat predictors and site-scores in the ordination of benthic macroinvertebrate taxa counts suggested that biological community structure was most associated with river-water pH, nutrient concentrations (e.g., total phosphorus, nitrogenous compounds, dissolved organic carbon, calcium, and silicate), the relative abundance of submerged macrophytes, conductivity (i.e., the concentrations of chloride and various other dissolved ions), and several geomorphological variables (e.g., bank-full river width, current speed, and the size of the dominant inorganic particles in the pavement layer of the streambed). Interest in mineral extraction and other resource-based exploration in Ontario’s Far North is increasing. This study represents a start on baseline characterization for ecological monitoring and cumulative effects assessment that should proceed along with northern development.  相似文献   

16.
No detailed food web research on macroinvertebrate community of lacustrine ecosystem was reported in China. The present study is the first attempt on the subject in Lake Biandantang, a macrophytic lake in Hubei Province. Food webs of the macroinvertebrate community were compiled bimonthly from March, 2002 to March, 2003. Dietary information was obtained from gut analysis. Linkage strength was quantified by combining estimates of energy flow (secondary production) with data of gut analysis. The macroinvertebrate community of Lake Biandantang was based heavily on detritus. Quantitative food webs showed the total ingestion ranged from 6930 to 36,340 mg dry mass m−2 bimonthly. The ingestion of macroinvertebrate community was higher in the months with optimum temperature than that in other periods with higher or lower temperature. Through comparison, many patterns in benthic food web of Lake Biandantang are consistent with other detritus-based webs, such as stream webs, but different greatly from those based on autochthonous primary production (e.g. pelagic systems). It suggests that the trophic basis of the web is essential in shaping food web structure. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

17.
Studying food webs across contrasting abiotic conditions is an important tool in understanding how environmental variability impacts community structure and ecosystem dynamics. The study of extreme environments provides insight into community‐wide level responses to environmental pressures with relevance to the future management of aquatic ecosystems. In the western Lake Eyre Basin of arid Australia, there are two characteristic and contrasting aquatic habitats: springs and rivers. Permanent isolated Great Artesian Basin springs represent hydrologically persistent environments in an arid desert landscape. In contrast, hydrologically variable river waterholes are ephemeral in space and time. We comprehensively sampled aquatic assemblages in contrasting ecosystem types to assess patterns in community composition and to quantify food web attributes with stable isotopes. Springs and rivers were found to have markedly different invertebrate communities, with rivers dominated by more dispersive species and springs associated with species that show high local endemism. Qualitative assessment of basal resources shows autochthonous carbon appears to be a key basal resource in both types of habitat, although the particular sources differed between habitats. Food‐web variables such as trophic length, trophic breadth, and community isotopic niche size were relatively similar in the two habitat types. The basis for the similarity in food‐web structure despite differences in community composition appears to be broader isotopic niches for predatory invertebrates and fish in springs as compared with rivers. In contrast to published theory, our findings suggest that the food webs of the hydrologically variable river sites may show less dietary generalization and more compact food‐web modules than in springs.  相似文献   

18.
Most research that demonstrates enhancement and stabilization of ecosystem functioning due to biodiversity is based on biodiversity manipulations within one trophic level and measuring changes in ecosystem functions provided by that same trophic level. However, it is less understood whether and how modifications of biodiversity at one trophic level propagate vertically to affect those functions supplied by connected trophic levels or by the whole ecosystem. Moreover, most experimental designs in biodiversity–ecosystem functioning research assume random species loss, which may be of little relevance to non‐randomly assembled communities. Here, we used data from a published ecotoxicological experiment in which an insecticide gradient was applied as an environmental filter to shape consumer biodiversity. We tested how non‐random consumer diversity loss affected gross primary production (an ecosystem function provided by producers) and respiration (an ecosystem function provided by the ecosystem as whole) in species‐rich multitrophic freshwater communities (total of 128 macroinvertebrate and 59 zooplankton species across treatments). The insecticide decreased and destabilized macroinvertebrate and, to a lesser extent, zooplankton diversity. However, these effects on biodiversity neither affected nor destabilized any of the two studied ecosystem functions. The main reason for this result was that species susceptible to environmental filtering were different from those most strongly contributing to ecosystem functioning. The insecticide negatively affected the most abundant species, whereas much less abundant species had the strongest effects on ecosystem functioning. The latter finding may be explained by differences in body size and feeding guild membership. Our results indicate that biodiversity modifications within one trophic level induced by non‐random species loss do not necessarily translate into changes in ecosystem functioning supported by other trophic levels or by the whole community in the case of limited overlap between sensitivity and functionality.  相似文献   

19.
20.
The trophic structure of benthic macroinvertebrate communities in lakes varying in salinity levels (from oligohaline to hyperhaline) in the southern Ob–Irtysh interfluve has been investigated. Four trophic groups of macroinvertebrates have been identified in 48 lakes: (1) predators, (2) grinders, (3) scrapers, and (4) collectors–detritophages and facultative filter feeders. It is found that the proportion of different trophic groups in taxonomic composition and biomass of macroinvertebrate communities changes with increasing water salinity in lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号