首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The liver, through the afferent ways of the vagus hepatic nerve, may influence metabolic adaptations during exercise. This study assesses the functional significance of this hepatic innervation by determining the effect of a selective hepatic vagotomy (HV) on running endurance time during submaximal activity in rats subjected to an overnight 50% food restriction. The time to exhaustion was similar for the groups of HV and sham-operated (SHM) rats [66 +/- 15 vs. 64 +/- 21 (SD) min]. The HV group was associated with higher resting levels (P less than 0.05) of hepatic glycogen and plasma glucose. No significant differences were observed between HV and SHM rats at rest and after exercise for muscle glycogen, free fatty acids, insulin, glucagon, and lactate concentrations. These data indicate that if hepatic glucoreceptors do exist and contribute to the metabolic regulation of exercise, their functional significance is secondary to more important regulatory mechanisms.  相似文献   

2.
The influence of supranormal compared with normal hepatic glycogen levels on hepatic glucose production (Ra) during exercise was investigated in chronically catheterized rats. Supranormal hepatic glycogen levels were obtained by a 24-h fast-24-h refeeding regimen. During treadmill running for 35 min at a speed of 21 m/min, Ra and plasma glucose increased more (P less than 0.05) and liver glucogen breakdown was larger in fasted-refed compared with control rats, although the stimuli for Ra were higher in control rats, the plasma concentrations of insulin and glucose being lower (P less than 0.05) in control compared with fasted-refed rats. Also, plasma concentrations of glucagon and both catecholamines tended to be higher and muscle glycogenolysis lower in control compared with fasted-refed rats. Lipid metabolism was similar in the two groups. The results indicate that hepatic glycogenolysis during exercise is directly related to hepatic glycogen content. The smaller endocrine glycogenolytic signal in face of higher plasma glucose concentrations in fasted-refed compared with control rats is indicative of metabolic feedback control of glucose mobilization during exercise. However, the higher exercise-induced increase in Ra, plasma glucose, and liver glycogen breakdown in fasted-refed compared with control rats indicates that metabolic feedback mechanisms are not able to accurately match Ra to the metabolic needs of working muscles.  相似文献   

3.
The loss of glucose regulation of glycogen synthase in perfused livers from diabetic rats was associated with a substantial reduction in synthase phosphatase activity. Treatment of diabetic rats with insulin alone resulted in total restoration of the glucose effect and synthase phosphatase activity, while simultaneous treatment with cycloheximide severely reduced the hormonal effect. Although treatment of normal rats with cycloheximide had no effect on glucose activation of synthase, it did result in severe depletion of liver glycogen increased liver glycogen phosphorylase activity, and elevation of liver adenosine 3′,5′-monosphosphate (cyclic AMP), but without elevation of liver protein kinase activity. Simultaneous treatment of alloxan-diabetic rats with insulin and cycloheximide resulted in reduction of total liver glycogen, increased phosphorylase activity, a reduction in the ability of insulin to lower hepatic cyclic AMP, and a further reduction of protein kinase activity.In summary, the effect of insulin treatment of diabetic rats to restore glucose regulation of hepatic glycogen synthase probably involves synthesis of new protein, and the data remain consistent with the hypothesis that the defect may be due to a diabetes-related deficiency in a specific synthase phosphatase and/or alteration of the synthase molecule itself.  相似文献   

4.
The loss of glucose regulation of glycogen synthase in perfused livers from diabetic rats was associated with a substantial reduction in synthase phosphatase activity. Treatment of diabetic rats with insulin alone resulted in total restoration of the glucose effect and synthase phosphatase activity, while simultaneous treatment with cycloheximide severely reduced the hormonal effect. Although treatment of normal rats with cycloheximide had no effect on glucose activation of synthase, it did result in severe depletion of liver glycogen, increased liver glycogen phosphorylase activity, and elevation of liver adenosine 3',5'-monophosphate (cyclic AMP), but without elevation of liver protein kinase activity. Simultaneous treatment of alloxan-diabetic rats with insulin and cycloheximide resulted in reduction of total liver glycogen, increased phosphorylase activity, a reduction in the ability of insulin to lower hepatic cyclic AMP, and a further reduction of protein kinase activity. In summary, the effect of insulin treatment of diabetic rats to restore glucose regulation of hepatic glycogen synthase probably involves synthesis of new protein, and the data remain consistent with the hypothesis that the defect may be due to a diabetes-related deficiency in a specific synthase phosphatase and/or alteration of the synthase molecule itself.  相似文献   

5.
Glycogen is the storage form of carbohydrate for virtually every organism from yeast to primates. Most mammalian tissues store glucose as glycogen, with the major depots located in muscle and liver. The French physiologist Claude Bernard first identified a starch-like substance in liver and muscle and coined the term glycogen, or "sugar former," in the 1850s. During the 150 years since its identification, researchers in the field of glycogen metabolism have made numerous discoveries that are now recognized as significant milestones in biochemistry and cell signaling. Even so, more questions remain, and studies continue to demonstrate the complexity of the regulation of glycogen metabolism. Under classical definitions, the functions of glycogen seem clear: muscle glycogen is degraded to generate ATP during increased energy demand, whereas hepatic glycogen is broken down for release of glucose into the bloodstream to supply other tissues. However, recent findings demonstrate that the roles of glycogen metabolism in energy sensing, integration of metabolic pathways, and coordination of cellular responses to hormonal stimuli are far more complex.  相似文献   

6.
The metabolic effects of a selective hepatic vagotomy (HV) were investigated at rest and immediately after a 50-min exercise period (26 m/min, 0% grade) in rats subjected to an overnight 50% food restriction. This dietary restriction reduced liver glycogen content to 50% of normal resting concentrations (2.2-2.8 g/100 g). No significant differences between HV and sham-operated rats were found in resting and exercising beta-hydroxybutyrate, glucose, glycerol, and insulin concentrations. Postexercise liver glycogen concentrations were reduced to approximately 1.0 g/100 g in both HV and sham-operated groups. This decrease was associated with significantly (P less than 0.01) lower postexercise glycogen levels in the soleus muscle of HV rats (2.6 times) along with higher plasma free fatty acid concentrations (P less than 0.01). These data provide evidence that HV combined with a progressive decrease in liver glycogen content may influence substrate regulation during exercise. They also support the concept of the existence of hepatic glucoreceptors responsive to a decrease in liver glycogen content.  相似文献   

7.
8.
Enterostatin selectively inhibits the intake of dietary fat after both peripheral and central administration. We have investigated the role of the hepatic vagus nerve in modulating the peripheral response to enterostatin in Sprague-Dawley rats adapted to a high fat (HF) diet. Intraperitoneal (ip) enterostatin reduced intake of HF diet after overnight starvation. This response was abolished by selective vagal hepatic branch transection. Immunohistochemical techniques were used to identify the location of Fos protein in brain nuclei after ip enterostatin. Fos protein was evident in the nucleus tractus solitarius (NTS), parabrachial, paraventricular and supraoptic nuclei. The pattern of expression of Fos-like immunoreactivity differed from that induced by the lipoprivic agent β-mercaptoacetate. Transection of the hepatic vagus blocked the central Fos responses to ip enterostatin. We conclude that afferent hepatic vagal nerve activity is required for the feeding response to peripheral enterostatin.  相似文献   

9.
The aetiology of muscle fatigue has yet not been clearly established. Administration of two nucleotides, cytosine monophosphate (CMP) and uridine monophosphate (UMP), has been prescribed for the treatment of neuromuscular affections in humans. Patients treated with CMP/UMP recover from altered neurological functions and experience pain relief, thus the interest to investigate the possible effect of the drug on exhausting exercise. With such aim, we have determined, in exercised rats treated with CMP/UMP, exercise endurance, levels of lactate, glucose and glycogen, and the activity of several metabolic enzymes such as, creatine kinase (CK), lactate dehydrogenase (LDH), and aspartate aminotransferase (AST). Our results show that rats treated with CMP/UMP are able to endure longer periods of exercise (treadmill-run). Before exercise, muscle glucose level is significantly higher in treated rats, suggesting that the administration of CMP/UMP favours the entry of glucose in the muscle. Liver glycogen levels remains unaltered during exercise, suggesting that CMP/UMP may be implicated in maintaining the level of hepatic glycogen constant during exercise. Lactate dehydrogenase and aspartate aminotransferase activity is significantly lower in the liver of treated rats. These results suggest that administration of CMP/UMP enable rats to endure exercise by altering some metabolic parameters.  相似文献   

10.
11.
The effects of acute alpha 1-adrenoceptor blockade with prazosin, beta 1-adrenoceptor blockade with atenolol, and nonselective beta-adrenoceptor blockade with propranolol were compared in a placebo-controlled crossover study of the hemodynamic and metabolic responses to acute exercise 2 h after prolonged prior exercise to induce skeletal muscle glycogen depletion, enhancing the dependence on hepatic glucose output and circulating free fatty acids (FFA). Plasma catecholamines were higher during exercise after, as opposed to before, glycogen depletion and were elevated further by all three drugs. Propranolol failed to produce a significant reduction in systolic blood pressure and elevated diastolic blood pressure. Atenolol reduced systolic blood pressure and did not change diastolic blood pressure. Both beta-blockers reduced FFA levels, but only propranolol lowered plasma glucose relative to placebo during exercise after glycogen depletion. In contrast, prazosin reduced systolic and diastolic blood pressures and resulted in elevated FFA and glucose levels. The results indicate important differences in the hemodynamic effects of beta 1-selective vs. nonselective beta-blockade during exercise after skeletal muscle glycogen depletion. Furthermore they confirm the importance of beta 2-mediated hepatic glucose production in maintaining plasma glucose levels during exercise. Acute alpha 1-blockade with prazosin induces reflex elevation of catecholamines, which in the absence of blockade of hepatic beta 2-receptors produces elevation of plasma glucose. The results suggest there is little role for alpha 1-mediated hepatic glucose production during exercise in humans.  相似文献   

12.
The aim of this paper is to precise the involvement of the nervous system in blood glucose regulation. The relevant mechanisms, triggered by blood glucose changes (increase or decrease of glycemia), intervene through the control of pancreatic and surrenal hormone release on the one hand, and hepatic glucose synthesis on the other hand. The part of various efferents and afferents, sensory endings and central "glucosensitive" neurons was analyzed in different situations. 1) Hyperglycemia increases the activation of the pancreatic parasympathetic fibres and decreases that of the surrenal sympathetic fibres. Hypoglycemia elicits reverse effects in the two types of efferents. 2) Hyperglycemia produces an activation in hepatic efferent vagal fibres and thus an acceleration of glycogen synthesis. Reversely, hypoglycemia stimulates both the hepatic sympathetic efferents and the glucose release by the liver. 3) The gustative receptors and the gastro-intestinal glucoreceptors are stimulated by glucose, which produces an insulin release. 4) The various kinds of afferents modify the efferent control of blood glucose level, through the "glucosensitive" central neurons located in hypothalamic and medullary regions.  相似文献   

13.
The effects of short-term food deprivation (7 days) and refeeding (2 days) on different biochemical and neuroendocrine parameters were studied in tench. A 7-days fast resulted in a significant reduction of plasma glucose and glycogen hepatic content, supporting the key role of liver glycogen as energy depot for being consumed during fasting. The rapid recovery of normal values of blood glucose and glycogen stores by refeeding indicates a rapid replenishment of liver glycogen stores. The short-term starvation decreased circulating thyroid hormones (both T3 and T4) and T4 release from thyroid, supporting an interaction between nutritional state and thyroid function in tench. All these metabolic and hormonal changes were partial or totally reversed under refeeding conditions. An increase in hypothalamic content of norepinephrine and dopamine was found in fasted fish. This result might be a consequence of stress induced by starvation.  相似文献   

14.
Carbohydrate nutrition before, during, and after exercise   总被引:1,自引:0,他引:1  
The role of dietary carbohydrates (CHO) in the resynthesis of muscle and liver glycogen after prolonged, exhaustive exercise has been clearly demonstrated. The mechanisms responsible for optimal glycogen storage are linked to the activation of glycogen synthetase by depletion of glycogen and the subsequent intake of CHO. Although diets rich in CHO may increase the muscle glycogen stores and enhance endurance exercise performance when consumed in the days before the activity, they also increase the rate of CHO oxidation and the use of muscle glycogen. When consumed in the last hour before exercise, the insulin stimulated-uptake of glucose from blood often results in hypoglycemia, greater dependence on muscle glycogen, and an earlier onset of exhaustion than when no CHO is fed. Ingesting CHO during exercise appears to be of minimal value to performance except in events lasting 2 h or longer. The form of CHO (i.e., glucose, fructose, sucrose) ingested may produce different blood glucose and insulin responses, but the rate of muscle glycogen resynthesis is about the same regardless of the structure.  相似文献   

15.
16.
Regulation of energy metabolism is controlled by the brain, in which key central neuronal circuits process a variety of information reflecting nutritional state. Special sensory and gastrointestinal afferent neural signals, along with blood-borne metabolic signals, impinge on parallel central autonomic circuits located in the brainstem and hypothalamus to signal changes in metabolic balance. Specifically, neural and humoral signals converge on the brainstem vagal system and similar signals concentrate in the hypothalamus, with significant overlap between both sensory and motor components of each system and extensive cross-talk between the systems. This ultimately results in production of coordinated regulatory autonomic and neuroendocrine cues to maintain energy homeostasis. Therapeutic metabolic adjustments can be accomplished by modulating viscerosensory input or autonomic motor output, including altering parasympathetic circuitry related to GI, pancreas, and liver regulation. These alterations can include pharmacological manipulation, but surgical modification of neural signaling should also be considered. In addition, central control of visceral function is often compromised by diabetes mellitus, indicating that circuit modification should be studied in the context of its effect on neurons in the diabetic state. Diabetes has traditionally been handled as a peripheral metabolic disease, but the central nervous system plays a crucial role in regulating glucose homeostasis. This review focuses on key autonomic brain areas associated with management of energy homeostasis and functional changes in these areas associated with the development of diabetes.  相似文献   

17.
Despite the crucial role of the liver in glucose homeostasis, a detailed mathematical model of human hepatic glucose metabolism is lacking so far. Here we present a detailed kinetic model of glycolysis, gluconeogenesis and glycogen metabolism in human hepatocytes integrated with the hormonal control of these pathways by insulin, glucagon and epinephrine. Model simulations are in good agreement with experimental data on (i) the quantitative contributions of glycolysis, gluconeogenesis, and glycogen metabolism to hepatic glucose production and hepatic glucose utilization under varying physiological states. (ii) the time courses of postprandial glycogen storage as well as glycogen depletion in overnight fasting and short term fasting (iii) the switch from net hepatic glucose production under hypoglycemia to net hepatic glucose utilization under hyperglycemia essential for glucose homeostasis (iv) hormone perturbations of hepatic glucose metabolism. Response analysis reveals an extra high capacity of the liver to counteract changes of plasma glucose level below 5 mM (hypoglycemia) and above 7.5 mM (hyperglycemia). Our model may serve as an important module of a whole-body model of human glucose metabolism and as a valuable tool for understanding the role of the liver in glucose homeostasis under normal conditions and in diseases like diabetes or glycogen storage diseases.  相似文献   

18.
The importance of ketone bodies (acetoacetate and 3-hydroxybutyrate) as substrates for peripheral tissues, especially nervous tissue, of man is now firmly established. This has renewed interest in the factors that control the production of ketone bodies by the liver in various physiological situations, such as alterations of dietary status, stage of development or alteration in demand for circulating substrates (e.g. in exercise or lactation). In the discussion of the regulation of ketogenesis in the present paper, distinction is made between extrahepatic and intrahepatic control. The former is mainly concerned with the factors (e.g. hormonal status of animals) that alter the flux of non-esterified fatty acids to the liver, whereas intrahepatic regulation involves the fate (esterification versus beta-oxidation) of fatty acids within the liver. Emphasis is placed on the fact that alterations in blood glucose concentrations are indirectly responsible, via effects on insulin secretion, for the extrahepatic control of ketogenesis. By analogy, it is postulated that the carbohydrate status of the liver may play a role in the intrahepatic regulation of ketogenesis. Some support for this postulate is provided by comparison of measurements of blood ketone-body concentrations in various inborn errors of hepatic carbohydrate metabolism (e.g. deficiencies of glucose 6-phosphatase, fructose 1,6-bisphosphatase and glycogen synthase) in man and by experiments with isolated rat hepatocytes. Present information on the short- and long-term factors that may be responsible for the altered rates of ketogenesis during the foetal-neonatal and suckling-weanling transitions, in lactation, on feeding a high-fat diet and post-exercise is discussed. It is concluded that the major factors involved in the regulation of ketogenesis in these situations are (a) flux of non-esterified fatty acids to the liver and (b) the partitioning of long-chain acyl-CoA between the esterification and beta-oxidation pathways.  相似文献   

19.
Previous studies suggest that adrenal catecholamines mediate, in part, the glucose and pancreatic hormonal responses to exercise in sheep. This was examined in sheep whose adrenals were denervated to prevent stress-induced changes in catecholamine secretion. The innervation to the right adrenal gland was severed and the left adrenal was removed. Adrenal denervation was associated with a reduction in exercise-induced hyperglycemia and impairment, as measured by [2-3H]glucose, of the increase in glucose appearance during the first 10 min of exercise and increased metabolic clearance rate of glucose after 20 min of exercise. Insulin concentrations were significantly higher during exercise after adrenal denervation than in the controls. Adrenal denervation did not alter the rise in glucagon due to exercise. These effects are consistent with adrenomedullary hormonal stimulation of hepatic and muscular glycogenolysis, either directly or indirectly through the regulation of insulin secretion during exercise in sheep.  相似文献   

20.
Glucocorticoid excess causes insulin resistance and hypertension. Hepatic expression of PPARalpha (Ppara) is required for glucocorticoid-induced insulin resistance. Here we demonstrate that afferent fibers of the vagus nerve interface with hepatic Ppara expression to disrupt blood pressure and glucose homeostasis in response to glucocorticoids. Selective hepatic vagotomy decreased hyperglycemia, hyperinsulinemia, hepatic insulin resistance, Ppara expression, and phosphoenolpyruvate carboxykinase (PEPCK) enzyme activity in dexamethasone-treated Ppara(+/+) mice. Selective vagotomy also decreased blood pressure, adrenergic tone, renin activity, and urinary sodium retention in these mice. Hepatic reconstitution of Ppara in nondiabetic, normotensive dexamethasone-treated PPARalpha null mice increased glucose, insulin, hepatic PEPCK enzyme activity, blood pressure, and renin activity in sham-operated animals but not hepatic-vagotomized animals. Disruption of vagal afferent fibers by chemical or surgical means prevented glucocorticoid-induced metabolic derangements. We conclude that a dynamic interaction between hepatic Ppara expression and a vagal afferent pathway is essential for glucocorticoid induction of diabetes and hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号