首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of habituation at reduced water activity (a(w)) on heat tolerance of Salmonella spp. was investigated. Stationary-phase cells were exposed to a(w) 0.95 in broths containing glucose-fructose, sodium chloride, or glycerol at 21 degrees C for up to a week prior to heat challenge at 54 degrees C. In addition, the effects of different a(w)s and heat challenge temperatures were investigated. Habituation at a(w) 0.95 resulted in increased heat tolerance at 54 degrees C with all solutes tested. The extent of the increase and the optimal habituation time depended on the solute used. Exposure to broths containing glucose-fructose (a(w) 0.95) for 12 h resulted in maximal heat tolerance, with more than a fourfold increase in D(54) values. Cells held for more than 72 h in these conditions, however, became as heat sensitive as nonhabituated populations. Habituation in the presence of sodium chloride or glycerol gave rise to less pronounced but still significant increases in heat tolerance at 54 degrees C, and a shorter incubation time was required to maximize tolerance. The increase in heat tolerance following habituation in broths containing glucose-fructose (a(w) 0.95) was RpoS independent. The presence of chloramphenicol or rifampin during habituation and inactivation did not affect the extent of heat tolerance achieved, suggesting that de novo protein synthesis was probably not necessary. These data highlight the importance of cell prehistory prior to heat inactivation and may have implications for food manufacturers using low-a(w) ingredients.  相似文献   

2.
Salmonella spp. are reported to have an increased heat tolerance at low water activity (aw; measured by relative vapor pressure [rvp]), achieved either by drying or by incorporating solutes. Much of the published data, however, cover only a narrow treatment range and have been analyzed by assuming first-order death kinetics. In this study, the death of Salmonella enterica serovar Typhimurium DT104 when exposed to 54 combinations of temperature (55 to 80°C) and aw (rvp 0.65 to 0.90, reduced using glucose-fructose) was investigated. The Weibull model (LogS = −btn) was used to describe microbial inactivation, and surface response models were developed to predict death rates for serovar Typhimurium at all points within the design surface. The models were evaluated with data generated by using six different Salmonella strains in place of serovar Typhimurium DT104 strain 30, two different solutes in place of glucose-fructose to reduce aw, or six low-aw foods artificially contaminated with Salmonella in place of the sugar broths. The data demonstrate that, at temperatures of ≥70°C, Salmonella cells at low aw were more heat tolerant than those at a higher aw but below 65°C the reverse was true. The same patterns were generated when sucrose (rvp 0.80 compared with 0.90) or NaCl (0.75 compared with 0.90) was used to reduce aw, but the extent of the protection afforded varied with solute type. The predictions of thermal death rates in the low-aw foods were usually fail-safe, but the few exceptions highlight the importance of validating models with specific foods that may have additional factors affecting survival.  相似文献   

3.
In this study we investigated the long-term survival of and morphological changes in Salmonella strains at low water activity (aw). Salmonella enterica serovar Enteritidis PT4 and Salmonella enterica serovar Typhimurium DT104 survived at low aw for long periods, but minimum humectant concentrations of 8% NaCl (aw, 0.95), 96% sucrose (aw, 0.94), and 32% glycerol (aw, 0.92) were bactericidal under most conditions. Salmonella rpoS mutants were usually more sensitive to bactericidal levels of NaCl, sucrose, and glycerol. At a lethal aw, incubation at 37°C resulted in more rapid loss of viability than incubation at 21°C. At aw values of 0.93 to 0.98, strains of S. enterica serovar Enteritidis and S. enterica serovar Typhimurium formed filaments, some of which were at least 200 μm long. Filamentation was independent of rpoS expression. When the preparations were returned to high-aw conditions, the filaments formed septa, and division was complete within approximately 2 to 3 h. The variable survival of Salmonella strains at low aw highlights the importance of strain choice when researchers produce modelling data to simulate worst-case scenarios or conduct risk assessments based on laboratory data. The continued increase in Salmonella biomass at low aw (without a concomitant increase in microbial count) would not have been detected by traditional microbiological enumeration tests if the tests had been performed immediately after low-aw storage. If Salmonella strains form filaments in food products that have low aw values (0.92 to 0.98), there are significant implications for public health and for designing methods for microbiological monitoring.  相似文献   

4.
We found that Clostridium botulinum type A grew well and produced toxin in media with a water activity (aw) of 0.972 or 0.965 and a pH of 5.7, but no growth or toxin production was observed at or below an aw of 0.949 during incubation at 30°C for 52 to 59 days. aw and pH values of media were adjusted to those of cheese spreads commercially produced. Solutes used to adjust aw included combinations of NaCl, cheese whey powder, emulsifying salt, sodium tripolyphosphate, and glycerol. In agreement with results obtained for media, toxin was produced in samples of cheese spread (aw, 0.970; pH, 5.7) at 30 to 70 days of incubation at 30°C.  相似文献   

5.
  1. Arctic animals inhabit some of the coldest environments on the planet and have evolved physiological mechanisms for minimizing heat loss under extreme cold. However, the Arctic is warming faster than the global average and how well Arctic animals tolerate even moderately high air temperatures (T a) is unknown.
  2. Using flow‐through respirometry, we investigated the heat tolerance and evaporative cooling capacity of snow buntings (Plectrophenax nivalis; ≈31 g, N = 42), a cold specialist, Arctic songbird. We exposed buntings to increasing T a and measured body temperature (T b), resting metabolic rate (RMR), rates of evaporative water loss (EWL), and evaporative cooling efficiency (the ratio of evaporative heat loss to metabolic heat production).
  3. Buntings had an average (±SD) T b of 41.3 ± 0.2°C at thermoneutral T a and increased T b to a maximum of 43.5 ± 0.3°C. Buntings started panting at T a of 33.2 ± 1.7°C, with rapid increases in EWL starting at T a = 34.6°C, meaning they experienced heat stress when air temperatures were well below their body temperature. Maximum rates of EWL were only 2.9× baseline rates at thermoneutral T a, a markedly lower increase than seen in more heat‐tolerant arid‐zone species (e.g., ≥4.7× baseline rates). Heat‐stressed buntings also had low evaporative cooling efficiencies, with 95% of individuals unable to evaporatively dissipate an amount of heat equivalent to their own metabolic heat production.
  4. Our results suggest that buntings’ well‐developed cold tolerance may come at the cost of reduced heat tolerance. As the Arctic warms, and this and other species experience increased periods of heat stress, a limited capacity for evaporative cooling may force birds to increasingly rely on behavioral thermoregulation, such as minimizing activity, at the expense of diminished performance or reproductive investment.
  相似文献   

6.
Interaction of heat and salt shock in cultured tobacco cells   总被引:8,自引:2,他引:8       下载免费PDF全文
Cultured tobacco cells (Nicotiana tabacum L. var Wisconsin-38) developed tolerance to otherwise nonpermissive 54°C treatment when heat-shocked at 38°C (2 h) but not at 42°C. Heat-shocked cells (38°C) exhibited little normal growth when the 54°C stress came immediately after heat shock and normal growth when 54°C stress was administered 8 hours after heat shock. Heat shock extended the length of time that the cells tolerated 54°C. Tobacco cells developed tolerance to otherwise lethal 2% NaCl treatment when salt-shocked (1.2% NaCl for 3 hours). The time course for salt tolerance development was similar to that of thermotolerance. Heat-shocked cells (38°C) developed tolerance of nonpermissive salt stress 8 hours after heat shock. Alternatively, cells heat-shocked at 42°C exhibited immediate tolerance to lethal salt stress followed by a decline over 8 hours. Radioactive methionine incorporation studies demonstrated synthesis of heat shock proteins at 38°C. The apparent molecular weights range from 15 to 115 kilodaltons with a protein complex in the 15 to 20 kilodalton range. Synthesis of heat shock proteins appeared to persist at 42°C but with large decreases in incorporation into selected heat shock protein. During salt shock, the synthesis of normal control proteins was reduced and a group of salt shock proteins appeared 3 to 6 h after shock. Similarities between the physiology and salt shock proteins/heat shock proteins suggest that both forms of stress may share common elements.  相似文献   

7.
The combined effects of subzero temperature and high pressure on the inactivation of Escherichia coli K12TG1 were investigated. Cells of this bacterial strain were exposed to high pressure (50 to 450 MPa, 10-min holding time) at two temperatures (−20°C without freezing and 25°C) and three water activity levels (aw) (0.850, 0.992, and ca. 1.000) achieved with the addition of glycerol. There was a synergistic interaction between subzero temperature and high pressure in their effects on microbial inactivation. Indeed, to achieve the same inactivation rate, the pressures required at −20°C (in the liquid state) were more than 100 MPa less than those required at 25°C, at pressures in the range of 100 to 300 MPa with an aw of 0.992. However, at pressures greater than 300 MPa, this trend was reversed, and subzero temperature counteracted the inactivation effect of pressure. When the amount of water in the bacterial suspension was increased, the synergistic effect was enhanced. Conversely, when the aw was decreased by the addition of solute to the bacterial suspension, the baroprotective effect of subzero temperature increased sharply. These results support the argument that water compression is involved in the antimicrobial effect of high pressure. From a thermodynamic point of view, the mechanical energy transferred to the cell during the pressure treatment can be characterized by the change in volume of the system. The amount of mechanical energy transferred to the cell system is strongly related to cell compressibility, which depends on the water quantity in the cytoplasm.  相似文献   

8.
We investigated the effects of temperature, water activity (aw), and syrup film composition on the CFU growth of Wallemia sebi in crystalline sugar. At a high aw (0.82) at both high (20°C) and low (10°C) temperatures, the CFU growth of W. sebi in both white and extrawhite sugar could be described using a modified Gompertz model. At a low aw (0.76), however, the modified Gompertz model could not be fitted to the CFU data obtained with the two sugars due to long CFU growth lags and low maximum specific CFU growth rates of W. sebi at 20°C and due to the fact that growth did not occur at 10°C. At an aw of 0.82, regardless of the temperature, the carrying capacity (i.e., the cell concentration at t = ∞) of extrawhite sugar was lower than that of white sugar. Together with the fact that the syrup film of extrawhite sugar contained less amino-nitrogen relative to other macronutrients than the syrup film of white sugar, these results suggest that CFU growth of W. sebi in extrawhite sugar may be nitrogen limited. We developed a secondary growth model which is able to predict colony growth lags of W. sebi on syrup agar as a function of temperature and aw. The ability of this model to predict CFU growth lags of W. sebi in crystalline sugar was assessed.  相似文献   

9.
Wu MT  Wallner SJ 《Plant physiology》1984,75(3):778-780
Using cultured pear (Pyrus communis cv Bartlett) cells, heat tolerance induced by heat shock was compared to that developed during growth at high temperature. After growth at 22°C, cells exposed to 38°C for 20 minutes (heat shock) showed maximum increased tolerance within 6 hours. Cells grown at 30°C developed maximum heat tolerance after 5 to 6 days; this maximum was well below that induced by heat shock. Heat shock-induced tolerance was fully retained at 22°C for 2 days and was only partly lost after 4 days. However, pear cells acclimated at 30°C lost all acquired heat tolerance 1 to 2 days after transfer to 22°C. In addition, cells which had been heat-acclimated by growth at 30°C showed an additional increase in heat tolerance in response to 39°C heat shock. The most striking difference between heat shock and high growth temperature effects on heat tolerance was revealed when tolerance was determined using viability tests based on different cell functions. Growth at 30°C produced a general hardening, i.e. increased heat tolerance was observed with all three viability tests. In contrast, significantly increased tolerance of heat-shocked cells was observed only with the culture regrowth test. The two types of treatment evoke different mechanisms of heat acclimation.  相似文献   

10.
Two DCM mutants (E40K and E54K) of tropomyosin (Tm) were examined using the thin-filament extraction/reconstitu­tion technique. The effects of the Ca2+, ATP, phos­phate (Pi), and ADP concentrations on isometric tension and its transients were studied at 25°C, and the results were com­pared to those for the WT protein. Our results indicate that both E40K and E54K have a significantly lower T HC (high Ca2+ ten­sion at pCa 4.66) (E40K: 1.21±0.06 T a, ±SEM, N = 34; E54K: 1.24±0.07 T a, N = 28), a significantly lower T LC (low- Ca2+ tension at pCa 7.0) (E40K: 0.07±0.02 T a, N = 34; E54K: 0.06±0.02 T a, N = 28), and a significantly lower T act (Ca2+ activatable tension) (T act = T HC–TLC, E40K: 1.15±0.08 T a, N = 34; E54K: 1.18±0.06 T a, N = 28) than WT (T HC = 1.53±0.07 T a, T LC = 0.12±0.01 T a, T act = 1.40±0.07 T a, N = 25). All tensions were normalized to T a ( = 13.9±0.8 kPa, N = 57), the ten­sion of actin-filament reconstituted cardiac fibers (myocardium) under the standard activating conditions. The Ca2+ sensitivity (pCa50) of E40K (5.23±0.02, N = 34) and E54K (5.24±0.03, N = 28) was similar to that of the WT protein (5.26±0.03, N = 25). The cooper­a­tivity increased significantly in E54K (3.73±0.25, N = 28) compared to WT (2.80±0.17, N = 25). Seven kinetic constants were deduced using sinusoidal analysis at pCa 4.66. These results enabled us to calculate the cross-bridge distribution in the strongly attached states, and thereby deduce the force/cross-bridge. The results indicate that the force/cross-bridge is ∼15% less in E54K than WT, but remains similar to that of the WT protein in the case of E40K. We conclude that over-inhibition of the actomyosin interaction by E40K and E54K Tm mutants leads to a decreased force-generating ability at systole, which is the main mechanism underlying the early pathogenesis of DCM.  相似文献   

11.
The heat resistance of Campylobacter jejuni strains AR6 and L51 and the heat resistance of Campylobacter coli strains DR4 and L6 were measured over the temperature range from 50 to 60°C by two methods. Isothermal measurements yielded D55 values in the range from 4.6 to 6.6 min and z values in the range from 5.5 to 6.3°C. Dynamic measurements using differential scanning calorimetry (DSC) during heating at a rate of 10°C/min yielded D55 values of 2.5 min and 3.4 min and z values of 6.3°C and 6.5°C for AR6 and DR4, respectively. Both dynamic and isothermal methods yielded mean D55 values that were substantially greater than those reported previously (0.75 to 0.95 min). DSC analysis of each strain during heating at a rate of 10°C/min yielded a complex series of overlapping endothermic peaks, which were assigned to cell wall lipids, ribosomes, and DNA. Measurement of the decline in the numbers of CFU in calorimetric samples as they were heated showed that the maximum rate of cell death occurred at 56 to 57°C, which is close to the value predicted mathematically from the isothermal measurements of D and z (61°C). Both estimates were very close to the peak m1 values, 60 to 62°C, which were tentatively identified with unfolding of the 30S ribosome subunit, showing that cell death in C. jejuni and C. coli coincided with unfolding of the most thermally labile regions of the ribosome. Other measurements indicated that several essential proteins, including the α and β subunits of RNA polymerase, might also unfold at the same time and contribute to cell death.  相似文献   

12.
The proposition is examined that measurements of chlorophyll fluorescence in vivo can be used to monitor cellular injury caused by environmental stresses rapidly and nondestructively and to determine the relative stress tolerances of different species. Stress responses of leaf tissue were measured by FR, the maximal rate of the induced rise in chlorophyll fluorescence. The time taken for FR to decrease by 50% in leaves at 0°C was used as a measure of chilling tolerance. This value was 4.3 hours for chilling-sensitive cucumber. In contrast, FR decreased very slowly in cucumber leaves at 10°C or in chilling-tolerant cabbage leaves at 0°C. Long-term changes in FR of barley, wheat, and rye leaves kept at 0°C were different in frost-hardened and unhardened material and in the latter appeared to be correlated to plant frost tolerance. To simulate damage caused by a thick ice cover, wheat leaves were placed at 0°C under N2. Kharkov wheat, a variety tolerant of ice encapsulation, showed a slower decrease in FR than Gatcher, a spring wheat. Relative heat tolerance was also indicated by the decrease in FR in heated leaves while changes in vivo resulting from photoinhibition, ultraviolet radiation, and photobleaching can also be measured.  相似文献   

13.
Photosynthetic and respiratory rates of two psychrophilic diatoms   总被引:1,自引:0,他引:1       下载免费PDF全文
The photosynthetic rates in two psychrophilic diatoms, Chaetoceros sp. strain K3-10 and Nitzschia sp. K3-3 for cells grown at 0°C were 8 to 10 microliters O2 evolved per milligram dry weight per hour, and 10-fold higher, about 80 for cells grown at 10°C. The respiration rates followed the same pattern, with a value of around 1 microliter dark uptake per milligram dry weight per hour for both organisms grown at 0°C, and 6 to 10 for cells grown at 10°C. When cells grown at 0°C were immediately shifted to 10°C or cells grown at 10°C were shifted to 0°C, the respiratory rates quickly adapted to values characteristic of cells grown at the shift temperature. On the other hand, the light-saturated rate of O2 evolution showed much less immediate adaptation, especially on the up shift, 0° to 10°C. The chlorophyll a content of 0°C grown cells was about 0.5% of dry weight, in 10°C grown cells 1.3% (strain K3-10) and 2.2% (strain K3-3). In addition to a diminished chlorophyll a content in 0°C grown cells, there seemed proportionally (by absorbance and calculation) less c to a than in 10°C grown cells. The relative fluorescence excitation spectra of 680-nm emission also showed a lower contribution by both chlorophyll c and fucoxanthin in 0°C grown cells of Chaetoceros sp. strain K3-10 as compared to 10°C grown cells. The data at hand suggest that in psychrophilic diatoms continuously growing at 0°C there may be problems associated with synthesis of an effective accessory pigment system, and as a working hypothesis it is suggested this is related to restriction of synthesis of one or several accessory pigment proteins.  相似文献   

14.
The effect of water activity (aw) reduction on growth and acid and diacetyl production by three lactic streptococci was studied. In addition, the influence of low moisture conditions on several bacteria of significance in the fermentation of sauerkraut was examined. The minimal aw supporting growth of dairy lactics was 0.93 in a medium adjusted with glycerol. Media adjusted with sucrose generally were more inhibitory than those in which glycerol was the humectant. Titratable acidity, although not related to the type of humectant, did depend on the aw of the medium and was directly related to the extent of growth. Diacetyl concentration increased in cultures of reduced aw when the media were adjusted with both humectants; however, the effect was greatest with glycerol. A lactic strain associated with sauerkraut fermentation appeared to grow at a lower minimal aw in a glycerol-adjusted medium than in a system adjusted with NaCl; however, none of the sauerkraut organisms grew at aw levels of <0.95 when NaCl was the solute. Acid production appeared to be related to the presence and extent of growth at all of the aw levels studied.  相似文献   

15.
High-pressure CO2 treatment has been studied as a promising method for inactivating bacterial spores. In the present study, we compared this method with other sterilization techniques, including heat and pressure treatment. Spores of Bacillus coagulans, Bacillus subtilis, Bacillus cereus, Bacillus licheniformis, and Geobacillus stearothermophilus were subjected to CO2 treatment at 30 MPa and 35°C, to high-hydrostatic-pressure treatment at 200 MPa and 65°C, or to heat treatment at 0.1 MPa and 85°C. All of the bacterial spores except the G. stearothermophilus spores were easily inactivated by the heat treatment. The highly heat- and pressure-resistant spores of G. stearothermophilus were not the most resistant to CO2 treatment. We also investigated the influence of temperature on CO2 inactivation of G. stearothermophilus. Treatment with CO2 and 30 MPa of pressure at 95°C for 120 min resulted in 5-log-order spore inactivation, whereas heat treatment at 95°C for 120 min and high-hydrostatic-pressure treatment at 30 MPa and 95°C for 120 min had little effect. The activation energy required for CO2 treatment of G. stearothermophilus spores was lower than the activation energy for heat or pressure treatment. Although heat was not necessary for inactivationby CO2 treatment of G. stearothermophilus spores, CO2 treatment at 95°C was more effective than treatment at 95°C alone.  相似文献   

16.
Electron transport, using succinate as a substrate, was measured polarographically in mitochondria isolated from Phaseolus vulgaris and P. acutifolius plants at 25°C and 32°C. Mitochondria isolated from P. vulgaris plants grown at 32°C had reduced electron transport and were substantially uncoupled. Growth at 32°C had no effect on electron transport or oxidative phosphorylation in P. acutifolius compared to 25°C grown plants. Mitochondria isolated from 25°C grown P. vulgaris plants measured at 42°C were completely uncoupled. Similarly treated P. acutifolius mitochondria remained coupled. The uncoupling of P. vulgaris was due to increased proton permeability of inner mitochondrial membrane. The alternative pathway was more sensitive to heat than the regular cytochrome pathway. At 42°C, no alternative pathway activity was detected. The substantially greater heat tolerance of P. acutifollus compared to P. vulgaris mitochondrial electron transport suggests that mitochondrial sensitivity to elevated temperatures is a major limitation to growth of P. vulgaris at high temperatures and is an important characteristic conveying tolerance in P. acutifolius.  相似文献   

17.
Chou M  Chen YM  Lin CY 《Plant physiology》1989,89(2):617-621
Mitochondria isolated from 2-day-old etiolated soybean (Glycine max) seedlings which had been subjected to various heat shock treatments, i.e. (A) 28°C (2 h), (B) 38°C (2 h), (C) 38°C (2 h)-42.5°C (0.5 h), and (D) 38°C (2 h)-42.5°C (0.5 h)-28°C (4 h), were monitored for O2 uptake using an oxygen electrode. Mitochondria isolated after all four heat shock treatments were active in O2 consumption at 28°C in response to succinate and ADP (derived P/O ratios were 1.6, 1.7, 1.3, and 1.3, respectively.) The mitochondria from all four treatments were also active in O2 uptake at 42.5°C. However, only mitochondria isolated after treatment (C) were tightly coupling at 42.5°C (derived ADP/O ratio was about 1.4). Combined with our earlier findings on the subcellular localization of heat shock proteins, our present data demonstrate that association of heat shock proteins with mitochondria by treatment (C) enables them to phosphorylate at 42.5°C (i.e. they become thermotolerant). Isolated mitochondria from treatment (C) and treatment (A) were compared by electron microscopy. They appeared to be very similar and no significant ultrastructural differences were noted.  相似文献   

18.
Guy CL  Haskell D 《Plant physiology》1987,84(3):872-878
Spinach (Spinacia oleracea L. cv Bloomsdale) seedlings cultured in vitro were used to study changes in protein synthesis during cold acclimation. Seedlings grown for 3 weeks postsowing on an inorganic-nutrient-agar medium were able to increase their freezing tolerance when grown at 5°C. During cold acclimation at 5°C and deacclimation at 25°C, the kinetics of freezing tolerance induction and loss were similar to that of soil-grown plants. Freezing tolerance increased after 1 day of cold acclimation and reached a maximum within 7 days. Upon deacclimation at 25°C, freezing tolerance declined within 1 day and was largely lost by the 7th day. Leaf proteins of intact plants grown at 5 and 25°C were in vivo radiolabeled, without wounding or injury, to high specific activities with [35S]methionine. Leaf proteins were radiolabeled at 0, 1, 2, 3, 4, 7, and 14 days of cold acclimation and at 1, 3, and 7 days of deacclimation. Up to 500 labeled proteins were separated by two-dimensional gel electrophoresis and visualized by fluorography. A rapid and stable change in the protein synthesis pattern was observed when seedlings were transferred to the low temperature environment. Cold-acclimated leaves contained 22 polypeptides not found in nonacclimated leaves. Exposure to 5°C induced the synthesis of three high molecular weight cold acclimation proteins (CAPs) (Mr of about 160,000, 117,000, and 85,000) and greatly increased the synthesis of a fourth high molecular weight protein (Mr 79,000). These proteins were synthesized during day 1 and throughout the 14 day exposure to 5°C. During deacclimation, the synthesis of CAPs 160, 117, and 85 was greatly reduced by the first day of exposure to 25°C. However, CAP 79 was synthesized throughout the 7 day deacclimation treatment. Thus, the induction at low temperature and termination at warm temperature of the synthesis of CAPs 160, 117, and 85 was highly correlated with the induction and loss of freezing tolerance. Cold acclimation did not result in a general posttranslational modification of leaf proteins. Most of the observed changes in the two-dimensional gel patterns could be attributed to the de novo synthesis of proteins induced by low temperature. In spinach leaf tissue, heat shock altered the pattern of protein synthesis and induced the synthesis of several heat shock proteins (HSPs). One polypeptide synthesized in cold-acclimated leaves had a molecular weight and net charge (Mr 79,000, pI 4.8) similar to that of a HSP (Mr 83,000, pI 4.8). However, heat shock did not increase the freezing tolerance, and cold acclimation did not increase heat tolerance over that of nonacclimated plants, but heat-shocked leaf tissue was more tolerant to high temperatures than nonacclimated or cold-acclimated leaf tissue. When protein extracts from heat-shocked and cold-acclimated leaves were mixed and separated in the same two-dimensional gel, the CAP and HSP were shown to be two separate polypeptides with slightly different isoelectric points and molecular weights.  相似文献   

19.
Using an optical beating technique, the diffusion coefficients and relative scattered intensity of Escherichia coli 70S, 50S, and 30S ribosomes are measured as a function of temperature and Mg2+ concentration. For solutions at 10 mM Mg2+ and between 0°C and about 40°C, the values of D20,w obtained are 1.7, 1.9, and ≈2.1 × 10-7 cm2/s, respectively. Preparative procedures drastically affect these values and equivalent hydrodynamic ellipsoids of revolution models give large axial ratios indicating extensive hydration or a deviation from the assumed shape. Calculations also indicate that the subunits expand upon dissociation. Measurements of D20,w vs. temperature indicate that 70S particles undergo a conformational change prior to dissociation and can be heat dissociated at 30-32°C at low concentrations. Treatment of 70S ribosomes with EDTA causes a biphasic dissociation reaction. Addition of Mg2+ after dissociation with EDTA shows that longer waiting times yield fewer 70S particles and that even short waiting times may yield ribosomes differing from the native conformation. Addition of p-chloromercuribenzoic acid (PCMB) is shown to dissociate 70S particles, but to a lesser extent than ethylenediaminetetraacetic acid (EDTA).  相似文献   

20.
A pilot-scale pasteurizer operating under validated turbulent flow (Reynolds number, 11,050) was used to study the heat sensitivity of Mycobacterium avium subsp. paratuberculosis added to raw milk. The ATCC 19698 type strain, ATCC 43015 (Linda, human isolate), and three bovine isolates were heated in raw whole milk for 15 s at 63, 66, 69, and 72°C in duplicate trials. No strains survived at 72°C for 15 s; and only one strain survived at 69°C. Means of pooled D values (decimal reduction times) at 63 and 66°C were 15.0 ± 2.8 s (95% confidence interval) and 5.9 ± 0.7 s (95% confidence interval), respectively. The mean extrapolated D72°C was <2.03 s. This was equivalent to a >7 log10 kill at 72°C for 15 s (95% confidence interval). The mean Z value (degrees required for the decimal reduction time to traverse one log cycle) was 8.6°C. These five strains showed similar survival whether recovery was on Herrold's egg yolk medium containing mycobactin or by a radiometric culture method (BACTEC). Milk was inoculated with fresh fecal material from a high-level fecal shedder with clinical Johne's disease. After heating at 72°C for 15 s, the minimum M. avium subsp. paratuberculosis kill was >4 log10. Properly maintained and operated equipment should ensure the absence of viable M. avium subsp. paratuberculosis in retail milk and other pasteurized dairy products. An additional safeguard is the widespread commercial practice of pasteurizing 1.5 to 2° above 72°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号