首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Government policy towards biotechnology has come a long way since the Spinks Report. Spinks advocated centralized coordination of policy, an approach deliberately rejected in 1981 by the Government in favour of continued pluralism, with each of the scientific research councils and various ministries 'doing their own thing'. This has led to considerable diversity of activity, and during these eight years more has in fact been achieved than is often recognized. But it also created an overlapping of responsibilities with concomitant friction and bad feeling that has wasted time and resources. The paper argues that some degree of friction is inevitable. By their nature new technologies cut across existing disciplines and blur institutional boundaries. The traditional approach has been to muddle through, allowing new institutions to emerge and adapting the old as seems appropriate. Lack of resources, however, argues against too brash a competitive approach. The paper suggests that strategic or precompetitive research should be seen as a complement to, rather than competitive with basic research, and cautions against too radical a restructuring of institutions at the present time.  相似文献   

2.
CRISPR家族新成员:CRISPR-Cpf1   总被引:2,自引:0,他引:2  
近年来,基因组编辑技术得到了飞速发展,该技术正在基础生物学研究、医学、生物技术等多个领域引起一场新的变革.Cpf1,作为CRISPR系统的新成员,极大地扩展了基因编辑靶位点的选择范围,同时其介导的多基因编辑具有明显的优势.另外,较短的crRNA序列也使Cpf1更容易产业化.本文将从Cpf1的结构和编辑特点、应用进展、目前面临的问题及展望等方面进行介绍和总结.  相似文献   

3.
Mining enzymes from extreme environments   总被引:1,自引:0,他引:1  
Current advances in metagenomics have revolutionized the research in fields of microbial ecology and biotechnology, enabling not only a glimpse into the uncultured microbial population and mechanistic understanding of possible biogeochemical cycles and lifestyles of extreme organisms but also the high-throughput discovery of new enzymes for industrial bioconversions. Nowadays, the genetic and enzymatic differences across the gradients from 'neutral and pristine' to 'extreme and polluted' environments are well documented. Yet, extremophilic organisms are possibly the least well understood because our ability to study and understand their metabolic potential has been hampered by our inability to isolate pure cultures. There are at least two obstacles for reaping the fruit of the microbial diversity of extremophiles: first, in spite of the recent progress in development of new culturing techniques most extremophiles cannot be cultured using traditional culturing technologies; and second, the problem of the very low biomass densities often occurs under the conditions hostile for life, which often do not yield enough DNA and reduces the effectiveness of cloning.  相似文献   

4.
Abe K  Gomi K  Hasegawa F  Machida M 《Mycopathologia》2006,162(3):143-153
Aspergillus oryzae is used extensively for the production of the traditional Japanese fermented foods sake (rice wine), shoyu (soy sauce), and miso (soybean paste). In recent years, recombinant DNA technology has been used to enhance industrial enzyme production by A. oryzae. Recently completed genomic studies using expressed sequence tag (EST) analyses and whole-genome sequencing are quickly expanding the industrial potential of the fungus in biotechnology. Genes that have been newly discovered through genome research can be used for the production of novel valuable enzymes and chemicals, and are important for designing new industrial processes. This article describes recent progress of A . oryzae genomics and its impact on industrial production of enzymes, metabolites, and bioprocesses.  相似文献   

5.
Fulfilling the promise of biotechnology   总被引:2,自引:0,他引:2  
Genetic engineering has produced pharmaceuticals, disease-resistant plants, cloned animals and research and industrial products. While the comparably mature field of medical biotechnology now reveals its true potential, marine biotechnology is still in the realm of the future. As we explore the earth for new sources of natural chemicals, we now search the waters. Myriad organisms, most unknown to us, live there. Many produce compounds that can be commercialized, or the organisms themselves may be commercialized, through genetic engineering methods. For decades, scientists studied the ocean depths searching for unique molecules and organisms. But not until the early 1980s was there a synthesis uniting marine natural products, ecology, aquaculture and bioremediation research under the heading of marine biotechnology. As harvesting enough products from marine sources to produce sufficient amounts, even for study, is nearly impossible, we need to use genomics techniques to identify biologically active compounds. As we damage our oceanic ecosystems through pollution, overfishing and destructive fishing methods, opportunities to learn more about marine organisms and their commercial potential may be limited. Although governments and intergovernmental agencies are committed to funding and expanding oceanic research, more funding is needed to discover and study the ocean's vast, unplumbed resources.  相似文献   

6.

Modern biotechnology has been characterized by being surrounded by scientific and public debate and by interest conflicts. An early Danish debate and regulation has been criticized for inhibiting or retarding development and thus growth. Though much regulation and debate have been transferred to the European arena, their role and extension are still an issue. In this paper, the often anticipated innovation-inhibiting effects of regulation are questioned by giving an account of regulations and debates in Denmark. An account which includes the shifting positions of industry, the research community, environmental groups, regulators and other interest groups. The paper indicates that the regulatory measures, introduced as a response to public and interest group critique, have generally reduced industrial uncertainty and promoted industrial Danish biotechnology development. It is further found that regulation and debate changed the rate and direction of new biotechnology development, contributing to technology acceptance, without however ensuring it. The paper thus questions the caricatured assumptions in economics and industrial policy that regulation restrict techno-economic growth. The paper further states regulation and controversies to have contributed actively to the specific technology development, but also states the difficulties in setting radically different technology development agendas.  相似文献   

7.
Thailand is very much aware of the potential and the opportunities in biotechnology and has given the utmost effort into the development of biotechnology. In 1983, the government has set up the National Center for Genetic Engineering and Biotechnology (NCGEB). The center operates through a network of research institutes and laboratories in order to maximize and consolidate the limited resources of the country. The center also plays a key role in formulating policies and plans relating to biotechnology as well as in supporting and coordinating biotechnology research and development. A sum of U.S. $8.6 million has been allocated for an initial 5-year program for R D & E activities. The priority consideration is on utilizing various levels of biotechnology for improvement in agriculture, industrial productivity, health, and environment. To facilitate and strengthen the link between research institutions and the private sector, the high-level Science and Technology Development Board (STDB) was established in 1986, with an initial allocation of U.S. $2.9 million between 1986 to 1992 for biotechnology. At present, there are between 400 to 500 scientists and technologists with M.S. or higher degrees actively working in research and development (R & D) in biotechnology and engineering, mostly in universities and government research laboratories. It is expected that approximately 500 graduates with advanced degrees in biotechnology and related fields will be produced during the 5-year plan (1987 to 1991).  相似文献   

8.
Constant progress in genetic engineering has given rise to a number of promising areas of research that facilitated the expansion of industrial biotechnology. The field of metabolic engineering, which utilizes genetic tools to manipulate microbial metabolism to enhance the production of compounds of interest, has had a particularly strong impact by providing new platforms for chemical production. Recent developments in synthetic biology promise to expand the metabolic engineering toolbox further by creating novel biological components for pathway design. The present review addresses some of the recent advances in synthetic biology and how these have the potential to affect metabolic engineering in the yeast Saccharomyces cerevisiae. While S. cerevisiae for years has been a robust industrial organism and the target of multiple metabolic engineering trials, its potential for synthetic biology has remained relatively unexplored and further research in this field could strongly contribute to industrial biotechnology. This review also addresses are general considerations for pathway design, ranging from individual components to regulatory systems, overall pathway considerations and whole-organism engineering, with an emphasis on potential contributions of synthetic biology to these areas. Some examples of applications for yeast synthetic biology and metabolic engineering are also discussed.  相似文献   

9.
Europe has led many aspects of gene research and yet it has been unable to translate these discoveries into a globally dominant industrial sector. There are valid societal, political and financial reasons for its reluctance to deploy agricultural biotechnology but this reluctance might have unintended consequences. It will be hard to de-commoditize agriculture and improve farmer's lives. Research in medical biotechnology and the global environment might suffer. Europe could damage its overall economy and its global competitive standing.  相似文献   

10.
胡建斌  柳俊 《植物学报》2008,25(1):14-19
本文对近20年来魔芋生物技术研究取得的进展进行了系统的回顾分析。组织培养是当前魔芋生物技术研究的主要内容, 魔芋离体植株再生以器官发生途径为主, 包括不定芽和拟球茎两种途径, 后者是当前研究的热点。利用组织培养进行有用突变体的筛选和种质资源的保存也取得了一些有价值的结果。以抗病和品质改良为目的的转基因技术取得了较快发展, 如抗病基因和抗除草剂基因等已实现成功转化。此外, 本文还分析了魔芋生物技术研究中存在的主要问题并提出了相应的对策。  相似文献   

11.
Industrial biotechnology involves the use of enzymes and microorganisms to produce value-added chemicals from renewable sources. Because of its association with reduced energy consumption, greenhouse gas emissions, and waste generation, industrial biotechnology is a rapidly growing field. Here we highlight a variety of important tools for industrial biotechnology, including protein engineering, metabolic engineering, synthetic biology, systems biology, and downstream processing. In addition, we show how these tools have been successfully applied in several case studies, including the production of 1, 3-propanediol, lactic acid, and biofuels. It is expected that industrial biotechnology will be increasingly adopted by chemical, pharmaceutical, food, and agricultural industries.  相似文献   

12.
While humans have taken limited advantage of natural populations of microalgae for centuries (Nostoc in Asia and Spirulina in Africa and North America for sustenance), it is only recently that we have come to realize the potential of microalgal biotechnology. Microalgal biotechnology has the potential to produce a vast array of products including foodstuffs, industrial chemicals, compounds with therapeutic applications and bioremediation solutions from a virtually untapped source. From an industrial (i.e. commercial) perspective, the goal of microalgal biotechnology is to make money by developing marketable products. For such a business to succeed the following steps must be taken: identify a desirable metabolite and a microalga that produces and accumulates the desired metabolite, establish a large-scale production process for the desired metabolite, and market the desired metabolite. So far, the commercial achievements of microalgal biotechnology have been modest. Microalgae that produce dozens of desirable metabolites have been identified. Aided by high throughput screening technology even more leads will become available. However, the successes in large-scale production and product marketing have been few. We will discuss those achievements and difficulties from the industrial point of view by considering examples from industry, specially our own experience at Mera Pharmaceuticals.  相似文献   

13.
解脂耶氏酵母是一种可利用多种底物发酵生产多种产品的非常规酵母,环境适应性强、易培养、安全性高。因此,该物种作为一种新型的生物工程菌株引起了科学界的广泛关注。近年来,工业生物技术因绿色、循环、低碳等优势成为新兴工业技术,在国内外得到了快速发展。介绍了解脂耶氏酵母的特征及其代谢生产各类化合物的方法,并通过对工业生物技术与传统化学化工技术的比较分析,阐述了工业生物技术的特点、研究现状及应用前景。  相似文献   

14.
王颖 《生物技术通讯》2000,11(4):315-322
生物技术在全世界范围取得了飞速的进展,与此同时其应用和产业化在各国政府、科研机构和生物技术公司的大力参与和激烈竞争中也逐步加快,预计它将成为许多国家经济的重要支柱产业之一。一些重大生物研究项目如人类基因组计划、克隆技术等开始引起公众的广泛注意。综述了20世纪90 来动物生物技术的发展状况,对基因组研究、转基因动物、克隆技术和细胞培养等重要研究方向作了介绍和分析。  相似文献   

15.
蔡真  李寅 《生物工程学报》2011,27(7):971-975
以生物催化和生物转化为核心的工业生物技术是实现社会和经济可持续发展的有效手段。本期专刊分别从基因工程、代谢工程与合成生物学、生理工程、发酵工程与生化工程、生物催化与生物转化、生物技术与方法等方面,介绍了我国在工业生物技术领域的最新研究进展。  相似文献   

16.
Pup-蛋白酶体系统(Pup-proteasome system,PPS)是原核生物的一种翻译后蛋白质修饰降解体系,在去酰胺酶(deamidase of Pup,Dop)和蛋白酶体辅助因子A (proteasome accessory factorA,PafA)两种酶的作用下,原核生物类泛素蛋白(prokaryotic ubiquitin-like protein,Pup)可以标记靶蛋白,并介导靶蛋白经蛋白酶体降解。在分枝杆菌中PPS参与氧化应激、营养缺乏、热激、DNA损伤等多种应激反应,并在金属离子稳态调控、毒素-抗毒素系统(toxin-antitoxin system,TA system)的调节以及抵抗宿主免疫等过程中发挥作用。PPS与结核分枝杆菌(Mycobacterium tuberculosis,Mtb)的持留性和致病性直接相关,因此PPS中的PafA、Dop和蛋白酶体均是抗结核药物开发的新靶点,筛选针对PPS的小分子抑制剂将成为新型抗结核药物研发的一个新途径。此外,Paf A催化的蛋白质Pup化被应用于生物技术的研发,形成了一种新的邻近标记技术——基于Pup化的邻近标记技术...  相似文献   

17.
Oils and oleochemicals produced by microbial cells offer an attractive alternative to petroleum and food-crop derived oils for the production of transport fuel and oleochemicals. An emerging candidate for industrial single cell oil production is the oleaginous yeast Lipomyces starkeyi. This yeast is capable of accumulating storage lipids to concentrations greater than 60% of the dry cell weight. From the perspective of industrial biotechnology L. starkeyi is an excellent chassis for single-cell oil and oleochemical production as it can use a wide variety of carbon and nitrogen sources as feedstock. The strain has been used to produce lipids from hexose and pentose sugars derived from cellulosic hydrolysates as well as crude glycerol and even sewage sludge. L. starkeyi also produces glucanhydrolases that have a variety of industrial applications and displays potential to be employed for bioremediation. Despite its excellent properties for biotechnology applications, adoption of L. starkeyi as an industrial chassis has been hindered by the difficulty of genetically manipulating the strain. This review will highlight the industrial potential of L. starkeyi as a chassis for the production of lipids, oleochemicals and other biochemicals. Additionally, we consider progress and challenges in engineering this organism for industrial applications.  相似文献   

18.
我国水产养殖事业的发展及今后的努力方向曾呈奎(中国科学院海洋研究所青岛266071)我国水产养殖事业在新中国成立以前,只有个别零星古老的,传统的事业。在养殖海产鱼虾方面北方有几百年来的"港养对虾和鱼",而在南方也有类似的鱼塘。在海藻栽培方面,则有几百年来的福建金门县的礁养海萝及平潭县的礁养紫菜等。这些古老的传统养殖方法虽然产生一些效果,但产量较小。  相似文献   

19.
本文对近20年来魔芋生物技术研究取得的进展进行了系统的回顾分析。组织培养是当前魔芋生物技术研究的主要内容,魔芋离体植株再生以器官发生途径为主,包括不定芽和拟球茎两种途径,后者是当前研究的热点。利用组织培养进行有用突变体的筛选和种质资源的保存也取得了一些有价值的结果。以抗病和品质改良为目的的转基因技术取得了较快发展,如抗病基因和抗除草剂基因等已实现成功转化。此外,本文还分析了魔芋生物技术研究中存在的主要问题并提出了相应的对策。  相似文献   

20.
Abstract

Biotechnology, defined as the technological application that uses biological systems and living organisms, or their derivatives, to create or modify diverse products or processes, is widely used for healthcare, agricultural and environmental applications. The continuity in industrial applications of biotechnology enables the rise and development of the bioeconomy concept. Bioeconomy, including all applications of biotechnology, is defined as translation of knowledge received from life sciences into new, sustainable, environment friendly and competitive products. With the advanced research and eco-efficient processes in the scope of bioeconomy, more healthy and sustainable life is promised. Knowledge-based bioeconomy with its economic, social and environmental potential has already been brought to the research agendas of European Union (EU) countries. The aim of this study is to summarize the development of knowledge-based bioeconomy in EU countries and to evaluate Turkey’s current situation compared to them. EU-funded biotechnology research projects under FP6 and FP7 and nationally-funded biotechnology projects under The Scientific and Technological Research Council of Turkey (TUBITAK) Academic Research Funding Program Directorate (ARDEB) and Technology and Innovation Funding Programs Directorate (TEYDEB) were examined. In the context of this study, the main research areas and subfields which have been funded, the budget spent and the number of projects funded since 2003 both nationally and EU-wide and the gaps and overlapping topics were analyzed. In consideration of the results, detailed suggestions for Turkey have been proposed. The research results are expected to be used as a roadmap for coordinating the stakeholders of bioeconomy and integrating Turkish Research Areas into European Research Areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号