首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary We have measured the intracellular potassium activity, [K+]i and the mechanisms of transcellular K+ transport in reabsorptive sweat duct (RSD) using intracellular ion-sensitive microelectrodes (ISMEs). The mean value of [K+]i in RSD is 79.8±4.1mm (n=39). Under conditions of microperfusion, the [K+]i is above equilibrium across both the basolateral membrane, BLM (5.5 times) and the apical membrane, APM (7.8 times). The Na+/K+ pump inhibitor ouabain reduced [K+]i towards passive distribution across the BLM. However, the [K+]i is insensitive to the Na+/K+/2 Cl cotransport inhibitor bumetanide in the bath. Cl substitution in the lumen had no effect on [K+]i. In contrast, Cl substitution in the bath (basolateral side) depolarized BLM from –26.0±2.6 mV to –4.7*±2.4 mV (n=3;* indicates significant difference) and decreased [K+]i from 76.0±15.2mm to 57.7* ±12.7mm (n=3). Removal of K+ in the bath decreased [K+]i from 76.3±15.0mm to 32.3*±7.6mm (n=4) while depolarizing the BLM from –32.5±4.1 mV to –28.3*±3.0 mV (n=4). Raising the [K+] in the bath by 10-fold increased [K+]i from 81.7±9.0mm to 95.0*±13.5mm and depolarized the BLM from –25.7±2.4 mV to –21.3*±2.9 mV (n=4). The K+ conductance inhibitor, Ba2+, in the bath also increased [K+]i from 85.8±6.7mm to 107.0*±11.5mm (n=4) and depolarized BLM from –25.8±2.2 mV to –17.0*±3.1 mV (n=4). Amiloride at 10–6 m increased [K+]i from 77.5±18.8mm to 98.8*±21.6mm (n=4) and hyperpolarized both the BLM (from –35.5±2.6 mV to –47.8*±4.3 mV) and the APM (from –27.5±1.4 mV to –46.0* ±3.5 mV,n=4). However, amiloride at 10–4 m decreased [K+]i from 64.5±0.9mm to 36.0*±9.9mm and hyperpolarized both the BLM (from –24.7±1.4 mV to –43.5*±4.2 mV) and APM (from –18.3±0.9 mV to –43.5*±4.2 mV,n=6). In contrast to the observations at the BLM, substitution of K+ or application of Ba2+ in the lumen had no effect on the [K+]i or the electrical properties of RSD, indicating the absence of a K+ conductance in the APM. Our results indicate that (i) [K+]i is above equilibrium due to the Na+/K+ pump; (ii) only the BLM has a K+ conductance; (iii) [K+]i is subject to modulation by transport status; (iv) K+ is probably not involved in carrier-mediated ion transport across the cell membranes; and (v) the RSD does not secrete K+ into the lumen.  相似文献   

2.
Summary Intracellular pH (pHi) regulation was studied in crayfish neurons with pH-, and Na+-sensitive microelectrodes. It was confirmed to involve both a HCO 3 -dependent and a HCO 3 -independent mechanism. The latter was identified as the amiloride-sensitive Na+/H+ exchange described in vertebrate cells. Its dependence on extracellular pH (pHe) and Na+ concentration ([Na+]e) was studied in CO2-free external solutions at 20°C. The steady state pHi and the rate constant (k) of the exponential pHi recovery following an acid load were determined. At pHe=7.5 and [Na+]e=200 mM, the average steady state pHi was 7.09±0.12 (as compared to 7.30±0.10 in the presence of 5 mM bicarbonate). The dependence of the rate constant of recovery on [Na+]e could be described by Michaelis-Menten kinetics; at pHe=7.5 the apparentK m andK max were 39 mM and 1.4 mmol·l–1·min–1, respectively. Decreasing pHe reduced the rate of recovery, the variations ofk with pHe conforming to a simple titration curve with an apparent pK of 7.05±0.21. These kinetic properties of the Na+/H+ exchange in crayfish neurons are similar to those described in vertebrate cells.Preliminary results were presented at the First International Congress of Comparative Physiology and Biochemistry (Liège, Belgium, 1984)  相似文献   

3.
Summary Using intracellular microelectrode technique, we investigated the changes in membrane voltage (V) of cultured bovine pigmented ciliary epithelial cells induced by different extracellular solutions. (1)V in 213 cells under steady-state conditions averaged –46.1±0.6 mV (sem). (2) Increasing extracellular K+ concentration ([K+] o ) depolarizedV. Addition of Ba2+ could diminish this response. (3) Depolarization on doubling [K+] o was increased at higher [K+] o (or low voltage). (4) Removing extracellular Ca2+ decreasedV and reduced theV amplitude on increasing [K+] o . (5)V was pH sensitive. Extra-and intracellular acidification depolarizedV; alkalinization induced a hyperpolarization.V responses to high [K+] o were reduced at acidic extracellular pH. (6) Removing K o + depolarized, K o + readdition after K+ depletion transiently hyperpolarizedV. These responses were insensitive to Ba2+ but were abolished in the presence of ouabain or in Na+-free medium. (7) Na+ readdition after Na+ depletion transiently hyperpolarizedV. This reaction was markedly reduced in the presence of ouabain or in K+-free solution but unchanged by Ba2+. It is concluded that in cultured bovine pigmented ciliary epithelial cells K+ conductance depends on Ca2+, pH and [K+] o (or voltage). An electrogenic Na+/K+-transport is present, which is stimulated during recovery from K+ or Na+ depletion. This transport is inhibited by ouabain and in K+-or Na+-free medium.  相似文献   

4.
Patch-clamp experiments were performed on satellite glial cells wrapped around sympathetic neurons in the rabbit coeliac ganglion. With the cleaning method used, the glial cells could be kept in place and were directly accessible to the patch-clamp pipettes. Whole-cell recordings showed that glial cells had almost ohmic properties. Their resting potential (–79.1±1.2 mV) was found to be very nearly the same as the K+ reversal potential and 20 mV more negative than that of the neurons they encapsulated. Unitary currents from ionic channels present in the glial membrane were recorded in the cell-attached configuration with pipettes filled with various amounts of K+, Na+ and gluconate. Only K+-selective channels with slight inwardly rectifying properties (in the presence of 150 mM [K+]0) were detected. These channels were active (P 0=0.7–0.8) at the cell resting potential. The channel conductance, but not its opening probability, was dependent on the [K+] in the pipette. Cl-selective channels (outwardly rectifying and large conductance channels) were detected in excised patches.The properties of the K+ channels (increased inward current with [K+] and detectable outward current at low [K+]) are well suited for siphoning the K+ released by active neurons.  相似文献   

5.
Inastrocytes, as [K+]o was increased from 1.2 to 10 mM, [K+]i and [Cl]i were increased, whereas [Na+]i was decreased. As [K+]o was increased from 10 to 60 mM, intracellular concentration of these three ions showed no significant change. When [K+]o was increased from 60 to 122 mM, an increase in [K+]i and [Cl]i and a decrease in [Na+]i were observed.Inneurons, as [K+]o was increased from 1.2 to 2.8 mM, [Na+]i and [Cl]i were decreased, whereas [K+]i was increased. As [K+]o was increased from 2.8 to 30 mM, [K+]i, [Na+]i and [Cl]i showed no significant change. When [K+]o was increased from 30 to 122 mM, [K+]i and [Cl]i were increased, whereas [Na+]i was decreased. Inastrocytes, pHi increased when [K+]o was increased. Inneurons, there was a biphasic change in pHi. In lower [K+]o (1.2–2.8 mM) pHi decreased as [K+]o increased, whereas in higher [K+]o (2.8–122 mM) pHi was directly related to [K+]o. In bothastrocytes andneurons, changes in [K+]o did not affect the extracellular water content, whereas the intracellular water content increased as the [K+]o increased. Transmembrane potential (Em) as measured with Tl-204 was inversely related to [K+]o between 1.2 and 90 mM, a ten-fold increase in [K+]o depolarized the astrocytes by about 56 mV and the neurons about 52 mV. The Em values measured with Tl-204 were close to the potassium equilibrium potential (Ek) except those in neurons at lower [K+]o. However, they were not equal to the chloride equilibrium potential (ECl) at [K+]o lower than 30 mM in both astrocytes and neurons. Results of this study demonstrate that alteration of [K+]o produced different changes in [K+]i, [Na+]i, [Cl]i, and pHi in astrocytes and neurons. The data show that astrocytes can adapt to alterations in [K+]o, in such a way to maintain a more suitable environment for neurons.  相似文献   

6.
Summary 1. The purpose of this study was (a) to identify if astrocytes show a similar non-Nernstian depolarization in low K+ or low Ca2+ solutions as previously found in human glial and glioma cells, and (b) to analyze the influence of the K+ conductance on the membrane potential of astrocytes.2. The membrane potential (Em) and the ionic conductance were studied with whole-cell patch-clamp technique in neonatal rat astrocytes (5–9 days in culture) and in human glioma cells (U-251MG).3. In 3.0 mM K+, Em was –75 ± 1.0 mV (mean ± SEM,n=39) in rat astrocytes and –79 ± 0.7 mV (n=5) in U-251MG cells. In both cell types Em changed linearly to the logarithm of [K+]0 between 3.0 and 160 mM K+. K+ free medium caused astrocytes to hyperpolarize to –93 ± 2.7 mV (n=21) and U-251MG cells to depolarize to –27 ± 2.1 mV (n=3).4. The I-E curve did not show inward rectification in astrocytes at this developmental stage. The slope conductance (g) exhibited only a small decrease (–19%) in K+ free solution and no significant change in 160 mM K+.5. Ba2+ (1.0 mM) depolarized astrocytes to –45 ± 2.9 mV (n=11), decreasing the slope conductance (g) by 42.4 ± 8.3% (n=11). Ca2+ free solution depolarized astrocytes to –53 ± 3.4 mV (n=12) and resulted in a positive shift of the I-E curve, increasing g by 15.3 ± 8.2% (n=8).6. Calculations indicated that a block of K+ channels explains the depolarizing effect of Ba2+. The effects of K+ free or Ca2+ free solutions on Em can be explained by a transformation of K+ channels to non-specific leakage channels. That astrocytes show a different reaction to low K+ than glioma cells can be related to the lack of inwardly rectifying K+ channels in astrocytes at this developmental stage.  相似文献   

7.
Pathways of K+ movement across the erythrocyte membrane of frog Rana temporaria were studied using 86Rb as a tracer. The K+ influx was significantly blocked by 0.1 mmol·l-1 ouabain (by 30%) and 1 mmol·l-1 furosemide (by 56%) in the red cells incubated in saline at physiological K+ concentration (2.7 mmol·l-1). Ouabain and furosemide had an additive effect on K+ transport in frog red cells. The ouabain-sensitive and furosemide-sensitive components of K+ influx saturated as f(K+)e with apparent K m values for external K e + concentration of 0.96±0.11 and 4.6±0.5 mmol·l-1 and V max of 0.89±0.04 and 2.8±0.4 mmol·l cells-1·h-1, respectively. The residual ouabain-furosemide-resistant component was also a saturable function of K e + medium concentration. Total K+ influx was significantly reduced when frog erythrocytes were incubated in NO - 3 medium. Furosemide did not affect K+ transport in frog red cells in NO 3 - media. At the same K e + concentration the ouabain-furosemide-insensitive K+ influx in Cl- medium was significantly greater than that in NO - 3 medium. We found no inhibitory effect of 1 mmol·l-1 furosemide on Na+ influx in frog red cells in Cl- medium. K+ loss from the frog erythrocytes in a K+-free medium was significantly reduced (mean 58%) after replacement of Cl- with NO - 3 . Furosemide (0.5 mmol·l-1) did not produce any significant reduction in the K+ loss in both media. The Cl--dependent component of K+ loss from frog red cells was 5.7±1.2 mmol·l-1·h-1. These results indicate that about two-thirds of the total K+ influx in frog erythrocytes is mediated by a K–Cl cotransport which is only partially blocked by furosemide.Abbreviations DMSO dimethyl sulphoxide - K e + external concentration of K+ - K m apparent Michaelis constant for external - K+ K e + at V max/2 - RBC red blood cell(s) - V max maximal velocity of the unidirectional K+ influx - TRIS tris(hydroxymethyl)aminomethane  相似文献   

8.
The influence of cytosolic pH (pHi) in controlling K+-channel activity and its interaction with cytosolic-free Ca2+ concentration ([Ca2+]i) was examined in stomatal guard cells ofVicia faba L. Intact guard cells were impaled with multibarrelled microelectrodes and K+-channel currents were recorded under voltage clamp while pHi or [Ca2+]i was monitored concurrently by fluorescence ratio photometry using the fluorescent dyes 2,7-bis (2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) and Fura-2. In 10 mM external K+ concentration, current through inward-rectifying K+ channels (IK,in) was evoked on stepping the membrane from a holding potential of –100 mV to voltages from –120 to –250 mV. Challenge with 0.3-30 mM Na+-butyrate and Na+-acetate outside imposed acid loads, lowering pHi from a mean resting value of 7.64 ± 0.03 (n = 25) to values from 7.5 to 6.7. The effect on pHi was independent of the weak acid used, and indicated a H+-buffering capacity which rose from 90 mM H+/pH unit near 7.5 to 160 mM H+/pH unit near pHi 7.0. With acid-going pHi, (IK,in) was promoted in scalar fashion, the current increasing in magnitude with the acid load, but without significant effect on the current relaxation kinetics at voltages negative of –150 mV or the voltage-dependence for channel gating. Washout of the weak acid was followed by transient rise in pHi lasting 3–5 min and was accompanied by a reduction in (IK,in) before recovery of the initial resting pHi and current amplitude. The pHi-sensitivity of the current was consistent with a single, titratable site for H+ binding with a pKa near 6.3. Acid pHi loads also affected current through the outward-rectifying K+ channels (IK,out) in a manner antiparallel to (IK,in) The effect on IK, out was also scalar, but showed an apparent pKa of 7.4 and was best accommodated by a cooperative binding of two H+. Parallel measurements showed that Na+-butyrate loads were generally without significant effect on [Ca2+]i, except when pHi was reduced to 7.0 and below. Extreme acid loads evoked reversible increases in [Ca2+]i in roughly half the cells measured, although the effect was generally delayed with respect to the time course of pHi changes and K+-channel responses. The action on [Ca2+]i coincided with a greater variability in (IK,in) stimulation evident at pHi values around 7.0 and below, and with negative displacements in the voltage-dependence of (IK,in) gating. These results distinguish the actions of pHi and [Ca2+]i in modulating (IK,in) they delimit the effect of pHi to changes in current amplitude without influence on the voltage-dependence of channel gating; and they support a role for pHi as a second messenger capable of acting in parallel with, but independent of [Ca2+]i in controlling the K+ channels.Abbreviations BCECF 2,7-bis (2-carboxyethyl)-5(6)-carboxy fluorescein - [Ca2+]i cytosolic free Ca2+ concentration - gK ensemble (steady-state) K+-channel conductance - IK,out, IK,in outward-, inward-rectifying K+ channel (current) - IN current-voltage (relation) - Mes 2-(N-morpholinolethanesulfonic acid - pHi cytosolic pH - V membrane potential  相似文献   

9.
Summary Whole-cell sealed-on pipettes have been used to measure electrical properties of the plasmalemma surrounding protoplasts isolated from Black Mexican sweet corn shoot cells from suspension culture. In these protoplasts the membrane resting potential (V m ) was found to be –59±23 mV (n=23) in 1mm K o . The meanV m became more negative as [K] o decreased, but was more positive than the K+ equilibrium potential. There was no evidence of electrogenic pump activity. We describe four features of the current-voltage characteristic of the plasmalemma of these protoplasts which show voltagegated channel activity. Depolarization of the whole-cell membrane from the resting potential activates time- and voltage-dependent outward current through K+-selective channels. A local minimum in the outward current-voltage curve nearV m =150 mV suggests that these currents are mediated by two populations of K+-selective channels. The absence of this minimum in the presence of verapamil suggests that the activation of one channel population depends on the influx of Ca2+ into the cytoplasm. We identify unitary currents from two K+-selective channel populations (40 and 125 pS) which open when the membrane is depolarized; it is possible that these mediate the outward whole-cell current. Hyperpolarization of the membrane from the resting potential produces time- and voltage-dependent inward whole-cell current. Current activation is fast and follows an exponential time course. The current saturates and in some cases decreases at membrane potentials more negative than –175 mV. This current is conducted by poorly selective K+ channels, whereP Cl/P K=0.43±0.15. We describe a low conductance (20 pS) channel population of unknown selectivity which opens when the membrane is hyperpolarized. It is possible that these channels mediate inward whole-cell current. When the membrane is hyperpolarized to potentials more negative than –250 mV large, irregular inward current is activated. A third type of inward whole-cell current is briefly described. This activates slowly and with a U-shaped current-voltage curve over the range of membrane potentials –90<V m <0 mV.  相似文献   

10.
Summary The conductance of the Ca2+-activated K+ channel (g K(Ca)) of the human red cell membrane was studied as a function of membrane potential (V m ) and extracellular K+ concentration ([K+]ex). ATP-depleted cells, with fixed values of cellular K+ (145mm) and pH (7.1), and preloaded with 27 m ionized Ca were transferred, with open K+ channels, to buffer-free salt solutions with given K+ concentrations. Outward-current conductances were calculated from initial net effluxes of K+, correspondingV m , monitored by CCCP-mediated electrochemical equilibration of protons between a buffer-free extracellular and the heavily buffered cellular phases, and Nernst equilibrium potentials of K ions (E K) determined at the peak of hyperpolarization. Zero-current conductances were calculated from unidirectional effluxes of42K at (V m –E K)0, using a single-file flux ratio exponent of 2.7. Within a [K+]ex range of 5.5 to 60mm and at (V m –E K) 20 mV a basic conductance, which was independent of [K+]ex, was found. It had a small voltage dependence, varying linearly from 45 to 70 S/cm2 between 0 and –100 mV. As (V m –E K) decreased from 20 towards zero mVg K(Ca) increased hyperbolically from the basic value towards a zero-current value of 165 S/cm2. The zero-current conductance was not significantly dependent on [K+]ex (30 to 156mm) corresponding toV m (–50 mV to 0). A further increase ing K(Ca) symmetrically aroundE K is suggested as (V m –E K) becomes positive. Increasing the extracellular K+ concentration from zero and up to 3mm resulted in an increase ing K(Ca) from 50 to 70 S/cm2. Since the driving force (V m –E K) was larger than 20 mV within this range of [K+]ex this was probably a specific K+ activation ofg K(Ca). In conclusion: The Ca2+-activated K+ channel of the human red cell membrane is an inward rectifier showing the characteristic voltage dependence of this type of channel.  相似文献   

11.
Summary Patch-clamp and single cell [Ca2+] i measurements have been used to investigate the effects of the potassium channel modulators cromakalim, diazoxide and tolbutamide on the insulin-secreting cell line RINm5F. In intact cells, with an average cellular transmembrane potential of –62±2 mV (n=42) and an average basal [Ca2+] i of 102±6nm (n=37), glucose (2.5–10mm): (i) depolarized the membrane, through a decrease in the outward KATP current, (ii) evoked Ca2+ spike potentials, and (iii) caused a sharp rise in [Ca2+] i . In the continued presence of glucose both cromakalim (100–200 m) and diazoxide (100 m) repolarized the membrane, terminated Ca2+ spike potentials and attenuated the secretagogue-induced rise in [Ca2+] i . In whole cells (voltage-clamp records) and excised outside-out membrane patches, both cromakalim and diazoxide enhanced the current by opening ATP-sensitive K+ channels. Diazoxide was consistently found to be more potent than cromakalim. Tolbutamide, a specific inhibitor of ATP-sensitive K+ channels, reversed the effects of cromakalim on membrane potential and KATP currents.  相似文献   

12.
Summary The effects of intracellular K+ and Na+ (K+ c, Na+ c) on the Na+,K+,Cl+– cotransport pathway of HeLa cells were studied by measuring ouabain-insensitive, furosemide-sensitive Rb+ influx (JRb) at various intracellular concentrations of K+ and Na+ ([K+]c, [Na+]c). When [K+]c was increased and [Na+]c was decreased, keeping the sums of their concentrations almost constant, JRb as a function of the extracellular Rb+ or Na+ concentration ([Rb+]e, [Na+]e) was stimulated. However, the apparent K 0.5 for Rb+ e or Na+ e remained unchanged and the ratio of the apparent K +0.5 for K+ c and the apparent K i for Na+ c was larger than 1. When JRb was increased by hypertonicity by addition of 200 mM mannitol, the apparent maximum JRb increased without change in the apparent K 0.5 for Rb+ e. These results show that K+ c stimulates and Na+ c inhibits JRb, without change in the affinities of the pathway for Rb+ e and Na+ e. The affinity for K+ c is slightly lower than that for Na+ c. Hypertonicity enhances JRb without any change in the affinity for Rb+ e. We derived a kinetic equation for JRb with respect to K+ c and Na+ c and proposed a general and a special model of the pathway. The special model suggests that, in HeLa cells, JRb takes place when Rb+ e binds to the external K+ binding site of the pathway after the binding of K+ c to the internal regulatory site.We thank Mr. T. Masuya for technical assistance. This study was supported in part by a Grant-in-Aid for Scientific Research on Priority Areas (No. 03202136) from the Japanese Ministry of Education, Science and Culture.  相似文献   

13.
Slo2.1 channels conduct an outwardly rectifying K+ current when activated by high [Na+]i. Here, we show that gating of these channels can also be activated by fenamates such as niflumic acid (NFA), even in the absence of intracellular Na+. In Xenopus oocytes injected with <10 ng cRNA, heterologously expressed human Slo2.1 current was negligible, but rapidly activated by extracellular application of NFA (EC50 = 2.1 mM) or flufenamic acid (EC50 = 1.4 mM). Slo2.1 channels activated by 1 mM NFA exhibited weak voltage dependence. In high [K+]e, the conductance–voltage (G-V) relationship had a V1/2 of +95 mV and an effective valence, z, of 0.48 e. Higher concentrations of NFA shifted V1/2 to more negative potentials (EC50 = 2.1 mM) and increased the minimum value of G/Gmax (EC50 = 2.4 mM); at 6 mM NFA, Slo2.1 channel activation was voltage independent. In contrast, V1/2 of the G-V relationship was shifted to more positive potentials when [K+]e was elevated from 1 to 300 mM (EC50 = 21.2 mM). The slope conductance measured at the reversal potential exhibited the same [K+]e dependency (EC50 = 23.5 mM). Conductance was also [Na+]e dependent. Outward currents were reduced when Na+ was replaced with choline or mannitol, but unaffected by substitution with Rb+ or Li+. Neutralization of charged residues in the S1–S4 domains did not appreciably alter the voltage dependence of Slo2.1 activation. Thus, the weak voltage dependence of Slo2.1 channel activation is independent of charged residues in the S1–S4 segments. In contrast, mutation of R190 located in the adjacent S4–S5 linker to a neutral (Ala or Gln) or acidic (Glu) residue induced constitutive channel activity that was reduced by high [K+]e. Collectively, these findings indicate that Slo2.1 channel gating is modulated by [K+]e and [Na+]e, and that NFA uncouples channel activation from its modulation by transmembrane voltage and intracellular Na+.  相似文献   

14.
Summary Transbasal electrical potential (V b) and intraepithelial potassium chemical activity ((K+) i ) were measured in isolated midgut epithelium of tobacco hornworm (Manduca sexta) using double-barrelled glass microelectrodes. Values ofV b ranging from +8 to –48 mV (relative to blood side) were recorded. For all sites, (K+) i is within a few millivolts of electrochemical equilibrium with the blood side bathing solution. Sites more negative than –20 mV show relatively high sensitivity ofV b to changes in blood side K+ concentration: 43% of these sites can be marked successfully with iontophoresed Lucifer yellow CH dye and shown to represent epithelial cells of all three types present in the midgut. In about half of successful marks, dye-coupling of several adjacent cells is seen. Low potential sites — those withV b less negative than –20 mV —typically do not show high sensitivity ofVb to changes of external K+, but rather (K+) i rapidly approaches the K+ activity of blood side bathing solution. These sites can seldom be marked with Lucifer yellow (4% success). The mean (K+) i of the high potential sites is 95±29 (sd)mm under standard conditions, a value which is in accord with published values for the whole tissue.  相似文献   

15.
Summary Patch-clamp techniques have been applied to characterize the channels in the basolateral membrane of resting (cimetidine-treated, nonacid secreting) oxyntic cells isolated from the gastric mucosa ofNecturus maculosa. In cell-attached patches with pipette solution containing 100mm KCl, four major classes of K+ channels can be distinguished on the basis of their kinetic behavior and conductance: (1) 40% of the patches contained either voltage-independent (a) or hyperpolarization-activated (b), inward-rectifying channels with short mean open times (16 msec fora, and 8 msec forb). Some channels showed subconductance levels. The maximal inward conductanceg max was 31±5 pS (n=13) and the reversal potentialE rev was atV p=–34±6 mV (n=9). (2) 10% of the patches contained depolarization-activated and inward-rectifying channels withg max=40 ±18 pS (n=3) andE rev was atV p=–31±5 mV (n=3). With hyperpolarization, the channels open in bursts with rapid flickerings within bursts. Addition of carbachol (1mm) to the bath solution in cell-attached patches increased the open probabilityP o of these channels. (3) 10% of the patches contained voltage-independent inward-rectifying channels withg max=21±3 pS (n=4) andE rev was atV p=–24±9 mV (n=4). These channels exhibited very high open probability (P o=0.9) and long mean open time (1.6 sec) at the resting potential. (4) 20% of the patches contained voltage-independent channels with limiting inward conductance of 26±2 pS (n=3) andE rev atV p=–33±3 mV (n=3). The channels opened in bursts consisting of sequential activation of multiple channels with very brief mean open times (10 msec). In addition, channels with conductances less than 6 pS were observed in 20% of the patches. In all nine experiments with K+ in the pipette solution replaced by Na+, unitary currents were outward, and inward currents were observed only for large hyperpolarizing potentials. This indicates that the channels are more selective for K+ over Na+ and Cl. A variety of K+ channels contributes to the basolateral K+ conductance of resting oxyntic cells.  相似文献   

16.
Summary Active transport of potassium in K+-starvedNeurospora was previously shown to resemble closely potassium uptake in yeast,Chlorella, and higher plants, for which K+ pumps or K+/H+-ATPases had been proposed. ForNeurospora, however, potassium-proton cotransport was demonstrated to operate, with a coupling ratio of 1 H+ to 1 K+ taken inward so that K+, but not H+, moves against its electrochemical gradient (Rodriguez-Navarro et al.,J. Gen. Physiol. 87:649–674).In the present experiments, the current-voltage (I–V) characteristic of K+–H+ cotransport in spherical cells ofNeurospora has been studied with a voltage-clamp technique, using difference-current methods to dissect it from other ion-transport processes in theNeurospora plasma membrane. Addition of 5-200 M K+ to the bathing medium causes 10–150 mV depolarization of the unclamped membrane, and yields a sigmoidI–V curve with a steep slope (maximal conductance of 10–30 S/cm2) for voltages of –300 to –100 mV, i.e., in the normal physiologic range. Outside that range the apparentI–V curve of the K+-H+ symport saturates for both hyperpolarization and depolarization. It fails to cross the voltage axis at its predicted reversal potential, however, an effect which can be attributed to failure of theI–V difference method under reversing conditions.In the absence of voltage clamping, inhibitors—such as cyanide or vanadate—which block the primary proton pump inNeurospora also promptly inhibit K+ transport and K+-H+ currents. But when voltage clamping is used to offset the depolarizing effects of pump blockade, the inhibitors have no immediate effect on K+-H+ currents. Thus, the inhibition of K+ transport usually observed with these agents reflects the kinetic effect of membrane depolarization rather than any direct chemical action on the cotransport system itself.Detailed study of the effects of [K+]o and pHo on theI–V curve for K+-H+ symport has revealed that increasing membrane potential systematicallydecreases the apparent affinity of the transporter for K+, butincreases affinity for protons (K m range: for [K+]o, 15–45 M; for [H+]o, 10–35 nM). This behavior is consistent with two distinct reaction-kinetic models, in which (i) a neutral carrier binds K+ first and H+ last in the forward direction of transport, or (ii) a negatively charged carrier (–2) binds H+ first and K+ last.  相似文献   

17.
Summary In the isolated, superfused mouse lacrimal gland, intracellular Na+ activities (aNa i ) of the acinar cells were directly measured with double-barreled Na+-selective microelectrodes. In the nonstimulated conditionaNa i was 6.5±0.5 mM and membrane potential (V m ) was –38.9±0.4 mV. Addition of 1 mM ouabain or superfusion with a K+-free solution slightly depolarized the membrane and caused a gradual increase inaNa i . Stimulation with acetylcholine (ACh, 1 M) caused a membrane hyperpolarization by about 20 mV and an increase inaNa i by about 9 mM in 5 min. The presence of amiloride (0.1 mM) reduced the ACh-induced increase inaNa i by approximately 50%, without affectingV m and input resistance in both nonstimulated and ACh-stimulated conditions. Acid loading the acinar cells by an addition/withdrawal of 20 mM NH4Cl or by replacement of Tris+-buffer saline solution with HCO 3 /CO2-buffered solution increasedaNa i by a few mM. Superfusion with a Cl-free NO 3 solution or 1 mM furosemide or 0.5 mM bumetanide-containing solution had little effect on the restingaNa i levels, however, it reduced the ACh-induced increase inaNa i by about 30%. Elimination of metabolite anions (glutamate, fumarate and pyruvate) from the superfusate reduced both the restingaNa i and the ACh-induced increase inaNa i .The present results suggest the presence of multiple Na+ entry mechanisms activated by ACh, namely, Na+/H+ exchange, Na-K-Cl cotransport and organic substrate-coupled Na+ transport mechanisms.  相似文献   

18.
Summary Techniques were developed for the measurement of intracellular potentials and potassium activities in rat proximal tubule cells using double barreled K+ liquid-ion-exchanger microelectrodes. After obtaining measurements of stable and reliable control values, the effects of K+ depletion and metabolic and respiratory acidosis on the intracellular potential and K+ activity in rat kidney proximal tubular cells were determined. At a peritubular membrane potential of –66.3±1.3 mV (mean±se), intracellular K+ activity was 65.9±2.0 mEq/liter in the control rats. In metabolic acidosis [70 mg NH4 Cl/100 g body wt) the peritubular membrane potential was significantly reduced to –47.5±1.9 mV, and cellular K+ activity to 53.5±2.0 mEq/liter. In contrast, in respiratory acidosis (15% CO2) the peritubular membrane potential was significantly lowered to –46.1±1.39 mV, but the cellular K+ activity was maintained at an almost unchanged level of 63.7±1.9 mEq/liter. In K+ depleted animals (6 weeks on low K+ diet), the peritubular membrane potential was significantly higher than in control animals, –74.8±2.1 mV, and cellular K+ activity was moderately but significantly reduced to 58.1±2.7 mEq/liter. Under all conditions studied, cellular K+ was above electrochemical equilibrium. Consequently, an active mechanism for cellular K+ accumulation must exist at one or both cell membranes. Furthermore, peritubular HCO3 appears to be an important factor in maintaining normal K+ distribution across the basolateral cell membrane.  相似文献   

19.
The interaction between ATP- and high K+-evoked increase in intracellular free calcium concentration ([Ca2+]i) was investigated to gain an insight into the mechanism of interaction of ATP with voltage-sensitive calcium channels. [Ca2+]i was measured in the neuronal model, neuroblastoma × glioma hybrid cells (NG 108–15), using the fluorescence indicator fura-2. In the presence of 1.8 mM extracellular Ca2+, ATP induced a rapid, concentration-dependent increase in [Ca2+]i. High K+ (50 mM) evoked a [Ca2+]i rise from 109 ± 11 nM to 387 ± 81 nM (n = 16). The application of either of these two [Ca2+]i-increase provoking agents in sequence with the other caused impairment of the latter effect. The mutual desensitization of the responses to ATP and high K+ strongly suggests that both agents rely at least in part on the same source of Ca2+ for elevation of [Ca2+]i in NG 108–15 cells.  相似文献   

20.
During resorption of mineralized tissues, osteoclasts are exposed to marked changes in the concentration of extracellular Ca2+ and H+. We examined the effects of these cations on two types of K+ currents previously described in these cells. Whole-cell patch clamp recordings of membrane currents were made from osteoclasts freshly isolated from neonatal rats. In control saline (1 mm Ca2+, pH 7.4), the voltage-gated, outwardly rectifying K+ current activates at approximately 45 mV and the conductance is half-maximally activated at –29 mV (V 0.5). Increasing [Ca2+]out rapidly and reversibly shifted the current-voltage (I–V) relation to more positive potentials. Current at –29 mV decreased to 28 and 9% of control current at 5 and 10 mm [Ca2+]out, respectively. This effect of elevating [Ca2+]out was due to a positive shift of the K+ channel voltage activation range. Zn2+ or Ni2+ (5 to 500 m) also shifted the I–V relation to more positive potentials and had additional effects consistent with blockade of the K+ channel. Based on the extent to which these divalent cations affected the voltage activation range of the outwardly rectifying K+ current, the potency sequence was Zn2+ > Ni2+ > Ca2+. Lowering or raising extracellular pH also caused shifts of the voltage activation range to more positive or negative potentials, respectively. In contrast to their effects on the outwardly rectifying K+ current, changes in the concentration of extracellular H+ or Ca2+ did not shift the voltage activation range of the inwardly rectifying K+ current. These findings are consistent with Ca2+ and other cations affecting voltage-dependent gating of the osteoclast outwardly rectifying K+ channel through changes in surface charge.This work was supported by The Arthritis Society and the Medical Research Council of Canada. S.M.S. is supported by a Scientist Award and S.J.D. by a Development Grant from the Medical Research Council.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号