首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD5 activates casein kinase 2 (CK2), a serine/threonine kinase that constitutively associates with the CK2-binding domain at the end of its cytoplasmic tail. To determine the physiological significance of CD5-dependent CK2 activation in T cells, we generated a knock-in mouse that expresses a CD5 protein containing a microdeletion with selective inability to interact with CK2 (CD5ΔCK2BD). The levels of CD5 on developing and mature T cell populations from CD5ΔCK2BD mice and CD5 wild-type (WT) mice were similar. The thymus of CD5ΔCK2BD mice contained fewer double-positive thymocytes than did that of both CD5WT and CD5 knockout (KO) mice, although the numbers of all other immature and mature T cell populations were unaltered. CD5ΔCK2BD T cells hypoproliferated and exhibited enhanced activation-induced cell death when stimulated with anti-CD3 or cognate peptide in comparison with CD5WT T cells. We also found that functional CD5-dependent CK2 signaling was necessary for efficient differentiation of naive CD4(+) T cells into Th2 and Th17 cells, but not Th1 cells. We previously showed that experimental autoimmune encephalomyelitis (EAE) in CD5KO mice was less severe and delayed in onset than in CD5WT mice. Remarkably, CD5ΔCK2BD mice recapitulated both EAE severity and disease onset of CD5KO mice. Increasing the immunization dose of myelin oligodendrocyte glycoprotein 35-55 peptide, a model that mimics high-dose tolerance, led to decreased severity of EAE in CD5WT mice but not in CD5KO or CD5ΔCK2BD mice. This property was recapitulated in in vitro restimulation assays. These results demonstrate that CD5-CK2 signaling sets the threshold for T cell responsiveness and is necessary for efficient generation of Th2 and Th17 cells.  相似文献   

2.
In experimental autoimmune encephalomyelitis (EAE), the production of proinflammatory cytokines by neuroantigen-specific T cells is thought to initiate and maintain the inflammatory autoimmune pathology. Because gene knockout strategies have shown that IFN-gamma and TNF are not essential for EAE development, there is increasing interest in establishing the role of other proinflammatory cytokines, primarily IL-17 in EAE. We used an IL-17 ELISPOT assay to track the neuroantigen-specific IL-17-producing T cells at single-cell resolution in various organs of SJL mice undergoing PLP 139-151-induced EAE. Overall, the migration patterns and population kinetics of the PLP 139-151-specific IL-17-producing CD4 cells were reminiscent of the IFN-gamma-producing cells, with the exception of IL-17 producers far outnumbering the IFN-gamma and IL-2 producers in the inflamed CNS. The selective enrichment of IL-17-producing CD4 cells in the CNS is suggestive of the pathogenic role of an independent (non-Th1) IL-17-producing proinflammatory effector T cell class in EAE.  相似文献   

3.
IL-17-producing CD4+ T helper 17 (Th17) cells are pathogenic in a range of human autoimmune diseases and corresponding animal models. We now demonstrate that such T cells infiltrating the target organ during the induction of experimental autoimmune encephalomyelitis (EAE) and experimental autoimmune uveoretinitis (EAU) specifically express NR4A2. Further, we reveal a critical involvement of NR4A2 in Th17 cell functions and Th17 cell-driven autoimmune diseases. When NR4A2 expression was blocked with siRNA, full Th17 differentiation was prevented in vitro: although cells expressed the master Th17 regulator, RORγt, they expressed reduced levels of IL-23R and were unable to produce IL-17 and IL-21. Notably, Th17 differentiation in the absence of NR4A2 was restored by exogenous IL-21, indicating that NR4A2 controls full maturation of Th17 cells via autocrine IL-21 signalling. Preventing NR4A2 expression in vivo by systemic treatment with NR4A2-specific siRNA also reduced Th17 effector responses and furthermore protected mice from EAE induction. In addition, the lack of disease was associated with a reduction in autocrine IL-21 production and IL-23R expression. Similar modulation of NR4A2 expression was also effective as an intervention, reversing established autoimmune responses and ameliorating clinical disease symptoms. Thus, NR4A2 appears to control Th17 differentiation and so plays an essential role in the development of Th17-mediated autoimmune disease. As NR4A2 is also upregulated during human autoimmune disease, targeting NR4A2 may provide a new therapeutic approach in treating autoimmune disease.  相似文献   

4.
IL-27 has been shown to play a suppressive role in experimental autoimmune encephalomyelitis (EAE) as demonstrated by more severe disease in IL-27R-deficient (WSX-1(-/-)) mice. However, whether IL-27 influences the induction or effector phase of EAE is unknown. This is an important question as therapies for autoimmune diseases are generally started after autoreactive T cells have been primed. In this study, we demonstrate maximal gene expression of IL-27 subunits and its receptor in the CNS at the effector phases of relapsing-remitting EAE including disease peak and onset of relapse. We also show that activated astrocyte cultures secrete IL-27p28 protein which is augmented by the endogenous factor, IFN-gamma. To investigate functional significance of a correlation between gene expression and disease activity, we examined the effect of IL-27 at the effector phase of disease using adoptive transfer EAE. Exogenous IL-27 potently suppressed the ability of encephalitogenic lymph node and spleen cells to transfer EAE. IL-27 significantly inhibited both nonpolarized and IL-23-driven IL-17 production by myelin-reactive T cells thereby suppressing their encephalitogenicity in adoptive transfer EAE. Furthermore, we demonstrate a strong suppressive effect of IL-27 on active EAE in vivo when delivered by s.c. osmotic pump. IL-27-treated mice had reduced CNS inflammatory infiltration and, notably, a lower proportion of Th17 cells. Together, these data demonstrate the suppressive effect of IL-27 on primed, autoreactive T cells, particularly, cells of the Th17 lineage. IL-27 can potently suppress the effector phase of EAE in vivo and, thus, may have therapeutic potential in autoimmune diseases such as multiple sclerosis.  相似文献   

5.
Spleen cells from rats that have recovered from experimental autoimmune encephalomyelitis (EAE) suppress the production of IFN-gamma by effector T cells of EAE in an Ag-specific manner. These postrecovery suppressor cells also inhibit EAE in vivo. Fractionation of the postrecovery suppressor spleen cells on nylon wool and OX-8 coated plates yields a nylon wool-adherent CD4+ suppressor cell population that, when cocultured with effector T cells, suppresses IFN-gamma production by these effector cells. In contrast, the nylon wool-adherent, CD4+ postrecovery suppressor cell population fails to inhibit the production of IL-2 by the effector T cells. In further experiments, the effector T cell population was depleted of CD8+ cells and cocultured with the nylon wool-adherent, CD4+ postrecovery suppressor cells, and the supernatants were assayed for IFN-gamma and IL-2. IFN-gamma production was inhibited in these cultures but IL-2 production was not inhibited. Irradiated effector T cells were cocultured with CD4+ postrecovery suppressor cells, without myelin basic protein, in an effort to determine whether the mechanism of differential lymphokine suppression involved an anti-idiotypic response against effector T cells. No IL-2 was produced, indicating that there was no CD4+ suppressor cell mediated anti-idiotypic response against effector T cells. These studies suggest that the suppressor cell is a nylon wool adherent, CD4+ T cell that functions to down-regulate EAE effector T cells by differential inhibition of lymphokine production.  相似文献   

6.
Experimental autoimmune encephalomyelitis (EAE), a T cell-mediated inflammatory disease of the CNS, is a rodent model of human multiple sclerosis. IL-23 is one of the critical cytokines in EAE development and is currently believed to be involved in the maintenance of encephalitogenic responses during the tissue damage effector phase of the disease. In this study, we show that encephalitogenic T cells from myelin oligodendrocyte glycopeptide (MOG)-immunized wild-type (WT) mice caused indistinguishable disease when adoptively transferred to WT or IL-23-deficient (p19 knockout (KO)) recipient mice, demonstrating that once encephalitogenic cells have been generated, EAE can develop in the complete absence of IL-23. Furthermore, IL-12/23 double-deficient (p35/p19 double KO) recipient mice developed EAE that was indistinguishable from WT recipients, indicating that IL-12 did not compensate for IL-23 deficiency during the effector phase of EAE. In contrast, MOG-specific T cells from p19KO mice induced EAE with delayed onset and much lower severity when transferred to WT recipient mice as compared with the EAE that was induced by cells from WT controls. MOG-specific T cells from p19KO mice were highly deficient in the production of IFN-gamma, IL-17A, and TNF, indicating that IL-23 plays a critical role in development of encephalitogenic T cells and facilitates the development of T cells toward both Th1 and Th17 pathways.  相似文献   

7.
Experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, has long been thought to be mediated by Th1 CD4(+) T cells. Using adoptive transfer techniques, transfer of CNS specific Th1 T cells was sufficient to induce EAE in naive mice. However, recent studies found a vital role for IL-17 in induction of EAE. These studies suggested that a fraction of IL-17-producing T cells that contaminate Th1 polarized cell lines are largely responsible for initiation of EAE. In this study, we tracked the appearance and cytokine production capacity of adoptively transferred cells within the CNS of mice throughout EAE disease. IL-17-producing, adoptively transferred cells were not enriched over the low percentages present in vitro. Thus, there was no selective recruitment and/or preferential proliferation of adoptively transferred IL-17-producing cells during the induction of EAE. Instead a large number of CNS infiltrating host T cells in mice with EAE were capable of producing IL-17 following ex vivo stimulation. The IL-17-producing T cells contained both alphabeta and gammadelta TCR(+) T cells with a CD4(+)CD8(-) or CD4(-)CD8(-) phenotype. These cells concentrated within the CNS within 3 days of adoptive transfer, and appeared to play a role in EAE induction as adoptive transfer of Th1 lines derived from wild-type mice into IL-17-deficient mice induced reduced EAE clinical outcomes. This study demonstrates that an encephalitogenic Th1 cell line induces recruitment of host IL-17-producing T cells to the CNS during the initiation of EAE and that these cells contribute to the incidence and severity of disease.  相似文献   

8.
IL-12 was thought to be involved in the development of experimental autoimmune encephalomyelitis (EAE), a Th1 cell-mediated autoimmune disorder of the CNS. However, we have recently found that IL-12 responsiveness, via IL-12Rbeta2, is not required in the induction of EAE. To determine the role of IL-12Rbeta1, a key subunit for the responsiveness to both IL-12 and IL-23, in the development of autoimmune diseases, we studied EAE in mice deficient in this subunit of IL-12R. IL-12Rbeta1(-/-) mice are completely resistant to myelin oligodendrocyte glycoprotein (MOG)-induced EAE, with an autoantigen-specific Th2 response. To study the mechanism underlying this Th2 bias, we cocultured purified CD4(+) T cells and APCs of MOG-immunized mice. We demonstrate that IL-12Rbeta1(-/-) APCs drive CD4(+) T cells of both wild-type and IL-12Rbeta1(-/-) mice to an Ag-induced Th2 phenotype, whereas wild-type APCs drive these CD4(+) T cells toward a Th1 type. IL-12Rbeta1(-/-) CD4(+) T cells, in turn, appear to exert an immunoregulatory effect on the capacity of wild-type APCs to produce IFN-gamma and TNF-alpha. Furthermore, decreased levels of IL-12p40, p35, and IL-23p19 mRNA expression were found in IL-12Rbeta1(-/-) APCs, indicating an autocrine pathway of IL-12/IL-23 via IL-12Rbeta1. IL-18 production and IL-18Ralpha expression are also significantly decreased in IL-12Rbeta1(-/-) mice immunized with MOG. We conclude that in the absence of IL-12Rbeta1, APCs play a prominent regulatory role in the induction of autoantigen-specific Th2 cells.  相似文献   

9.
Experimental autoimmune encephalomyelitis (EAE) is a Th1 cell-mediated autoimmune disease that can be protected against by stimulating regulatory cells. Here we examined whether EAE can be purposefully modulated by stimulating Valpha14 NK T cells with the CD1d-restricted ligand alpha-galactosylceramide (alpha-GC). EAE induced in wild-type C57BL/6 (B6) mice was not appreciably altered by injection of alpha-GC. However, EAE induced in IL-4 knockout mice and IFN-gamma knockout mice was enhanced or suppressed by alpha-GC, respectively. This indicates that the IL-4 and IFN-gamma triggered by alpha-GC may play an inhibitory or enhancing role in the regulation of EAE. We next studied whether NK T cells of wild-type mice may switch their Th0-like phenotype toward Th1 or Th2. Notably, in the presence of blocking B7.2 (CD86) mAb, alpha-GC stimulation could bias the cytokine profile of NK T cells toward Th2, whereas presentation of alpha-GC by CD40-activated APC induced a Th1 shift of NK T cells. Furthermore, transfer of the alpha-GC-pulsed APC preparations suppressed or enhanced EAE according to their ability to polarize NK T cells toward Th2 or Th1 in vitro. These results have important implications for understanding the role of NK T cells in autoimmunity and for designing a therapeutic strategy targeting NK T cells.  相似文献   

10.
Molecules that regulate encephalitogenic T cells are of interest for multiple sclerosis. In this study we show that protein kinase Ctheta (PKCtheta) is critical for the development of Ag-specific Th1 cells in experimental allergic encephalomyelitis (EAE), a model of multiple sclerosis. PKCtheta-deficient mice immunized with myelin oligodendrocyte glycoprotein failed to develop cell infiltrates and Th1 cytokines in the CNS and were resistant to the development of clinical EAE. CD4 T cells became primed and accumulated in secondary lymphoid organs in the absence of PKCtheta, but had severely diminished IFN-gamma, TNF, and IL-17 production. Increasing Ag exposure and inflammatory conditions failed to induce EAE in PKCtheta-deficient mice, showing a profound defect in the myelin oligodendrocyte glycoprotein-reactive T cell population. These data provide evidence of a pivotal role for PKCtheta in the generation and effector function of autoimmune Th1 cells.  相似文献   

11.
12.
Regulation of IL-17 in human CCR6+ effector memory T cells   总被引:1,自引:0,他引:1  
IL-17-secreting T cells represent a distinct CD4(+) effector T cell lineage (Th17) that appears to be essential in the pathogenesis of numerous inflammatory and autoimmune diseases. Although extensively studied in the murine system, human Th17 cells have not been well characterized. In this study, we identify CD4(+)CD45RO(+)CCR7(-)CCR6(+) effector memory T cells as the principal IL-17-secreting T cells. Human Th17 cells have a unique cytokine profile because the majority coexpress TNF-alpha but not IL-6 and a minor subset express IL-17 with IL-22 or IL-17 and IFN-gamma. We demonstrate that the cytokines that promote the differentiation of human naive T cells into IL-17-secreting cells regulate IL-17 production by memory T cells. IL-1beta alone or in association with IL-23 and IL-6 markedly increase IL-17(+) CCR6(+) memory T cells and induce IL-17 production in CCR6(-) memory T cells. We also show that T cell activation induces Foxp3 expression in T cells and that the balance between the percentage of Foxp3(+) and IL-17(+) T cells is inversely influenced by the cytokine environment. These studies suggest that the cytokine environment may play a critical role in the expansion of memory T cells in chronic autoimmune diseases.  相似文献   

13.
IL-17 is a proinflammatory cytokine that activates T cells and other immune cells to produce a variety of cytokines, chemokines, and cell adhesion molecules. This cytokine is augmented in the sera and/or tissues of patients with contact dermatitis, asthma, and rheumatoid arthritis. We previously demonstrated that IL-17 is involved in the development of autoimmune arthritis and contact, delayed, and airway hypersensitivity in mice. As the expression of IL-17 is also augmented in multiple sclerosis, we examined the involvement of this cytokine in these diseases using IL-17(-/-) murine disease models. We found that the development of experimental autoimmune encephalomyelitis (EAE), the rodent model of multiple sclerosis, was significantly suppressed in IL-17(-/-) mice; these animals exhibited delayed onset, reduced maximum severity scores, ameliorated histological changes, and early recovery. T cell sensitization against myelin oligodendrocyte glycoprotein was reduced in IL-17(-/-) mice upon sensitization. The major producer of IL-17 upon treatment with myelin digodendrocyte glycopritein was CD4+ T cells rather than CD8+ T cells, and adoptive transfer of IL-17(-/-) CD4+ T cells inefficiently induced EAE in recipient mice. Notably, IL-17-producing T cells were increased in IFN-gamma(-/-) cells, while IFN-gamma-producing cells were increased in IL-17(-/-) cells, suggesting that IL-17 and IFN-gamma mutually regulate IFN-gamma and IL-17 production. These observations indicate that IL-17 rather than IFN-gamma plays a crucial role in the development of EAE.  相似文献   

14.
Th1 and Th17 T cells are often colocalized in pathological environments, yet Th1-derived IFN-gamma inhibits Th17 cell development in vitro. We explored the physiologic basis of this paradox in humans. In this study, we demonstrate increased the number of CD4(+) and CD8(+) IL-17(+) T cells in skin lesions of psoriasis. Furthermore, we show that myeloid APCs potently support induction of IL-17(+) T cells, and that this activity is greatly increased in psoriasis. We tested stimuli that might account for this activity. Th1 cells and IFN-gamma are increased in psoriatic blood and lesional skin. We show that IFN-gamma programs myeloid APCs to induce human IL-17(+) T cells via IL-1 and IL-23. IFN-gamma also stimulates APC production of CCL20, supporting migration of IL-17(+) T cells, and synergizes with IL-17 in the production of human beta-defensin 2, an antimicrobial and chemotactic protein highly overexpressed by psoriatic keratinocytes. This study reveals a novel mechanistic interaction between Th1 and IL-17(+) T cells, challenges the view that Th1 cells suppress Th17 development through IFN-gamma, and suggests that Th1 and IL-17(+) T cells may collaboratively contribute to human autoimmune diseases.  相似文献   

15.
Invariant NKT cells are CD1d-restricted T cells specific for glycolipid Ags. Their activation or transgenic enrichment abrogates the development of experimental autoimmune encephalomyelitis (EAE). Herein, we demonstrate that in NKT-enriched mice the protection from EAE is associated with the infiltration of NKT cells in the CNS and the local expression of CD1d. This indicates that the CNS acquires the potential for local glycolipid presentation when exposed to inflammatory stress, permitting the triggering of NKT cells. To address the importance of CD1d-mediated Ag presentation, we used transgenic mice that express CD1d solely in the thymus. Interestingly, enrichment of NKT cells in these mice also conferred resistance to EAE, with an efficacy indistinguishable from that of NKT-enriched CD1d-sufficient mice. This protection was due to an abrogation of the encephalitogenic Th1 and Th17 response in the spleen, revealing that endogenous glycolipid presentation is dispensable for the regulatory function of NKT cells in EAE. Moreover, abrogating extrathymic CD1d expression failed to affect both the recruitment of NKT cells and their effector phenotype. CNS-infiltrating NKT cells were characterized by a cytotoxic IFN-gamma(high)IL-4(low)IL-10(low)granzyme B(high) profile, irrespective of the local expression of CD1d. Glycolipid Ag presentation is therefore dispensable for the control of autoimmune demyelination by NKT cells, underlining the importance of alternative cognate and/or soluble factors in the control of NKT cell function.  相似文献   

16.
Recent reports have shown that IL-17-producing CD4+ T cells (Th17 cells) belong to a distinct helper T cell lineage and are critically involved in the pathogenesis of autoimmune diseases and allergies. However, the chemokine receptor profile of Th17 cells remains to be clarified. In this study, we report that human Th17 cells are identified as CCR2+CCR5- memory CD4+ T cells. Analysis of PBMC from healthy donors showed that CCR2+ cells produce much larger amounts of IL-17 than CCR2- cells, indicating the preferential expression of CCR2 on Th17 cells. Notably, CCR2+CCR5- memory CD4+ T cells produced a large amount of IL-17 and little IFN-gamma, whereas CCR2+CCR5+ cells reciprocally produced an enormous amount of IFN-gamma but little IL-17. Moreover, a higher expression of T-bet was seen in the CCR5+ memory T cells. These results indicate that absence of CCR5 distinguishes human Th17 cells from Th1 cells.  相似文献   

17.
Lately, IL-17-secreting Th cells have received an overwhelming amount of attention and are now widely held to be the major pathogenic population in autoimmune diseases. In particular, IL-22-secreting Th17 cells were shown to specifically mark the highly pathogenic population of self-reactive T cells in experimental autoimmune encephalomyelitis (EAE). As IL-17A itself was found to only play a minor role during the development of EAE, IL-22 is now postulated to contribute to the pathogenic function of Th17 cells. The goal of this study was to determine the role and function of IL-22 during the development of CNS autoimmunity in vivo. We found that CNS-invading encephalitogenic Th17 cells coexpress IL-22 and that IL-22 is specifically induced by IL-23 in autoimmune-pathogenic CD4+ T cells in a time- and dose-dependent manner. We next generated IL-22-/- mice, which--in contrast to the prediction that expression of inflammatory cytokines by CNS-invading T cells inevitably confers pathogenic function--turned out to be fully susceptible to EAE. Taken together, we show that self-reactive Th cells coexpress IL-17 and IL-22, but that the latter also does not appear to be directly involved in autoimmune pathogenesis of the CNS.  相似文献   

18.
We previously showed that transgenically expressed chimeric Ag-MHC-zeta receptors can Ag-specifically redirect T cells against other T cells. When the receptor's extracellular Ag-MHC domain engages cognate TCR on an Ag-specific T cell, its cytoplasmic zeta-chain stimulates the chimeric receptor-modified T cell (RMTC). This induces effector functions such as cytolysis and cytokine release. RMTC expressing a myelin basic protein (MBP) 89-101-IAs-zeta receptor can be used therapeutically, Ag-specifically treating murine experimental allergic encephalomyelitis (EAE) mediated by MBP89-101-specific T cells. In initial studies, isolated CD8+ RMTC were therapeutically effective whereas CD4+ RMTC were not. We re-examine here the therapeutic potential of CD4+ RMTC. We demonstrate that Th2-differentiated, though not Th1-differentiated, CD4+ MBP89-101-IAs-zeta RMTC prevent actively induced or adoptively transferred EAE, and treat EAE even after antigenic diversification of the pathologic T cell response. The Th2 RMTC both Th2-deviate autoreactive T cells and suppress autoantigen-specific T cell proliferation. IL-10 is critical for the suppressive effects. Anti-IL-10R blocks RMTC-mediated modulation of EAE and suppression of autoantigen proliferation, as well as the induction of IL-10 production by autoreactive T cells. In contrast to IL-10, IL-4 is required for IL-4 production by, and hence Th2 deviation of autoreactive T cells, but not the therapeutic activity of the RMTC. These results therefore demonstrate a novel immunotherapeutic approach for the Ag-specific treatment of autoimmune disease with RMTC. They further identify an essential role for IL-10, rather than Th2-deviation itself, in the therapeutic effectiveness of these redirected Th2 T cells.  相似文献   

19.
Nylon wool adherent, CD4+ T cells from the spleens of rats that have recovered from experimental autoimmune encephalomyelitis (EAE) inhibit the in vitro production of IFN-gamma, but not IL-2, by effector cells of EAE when cocultured in the presence of myelin basic protein Ag. When anti-transforming growth factor-beta (TGF-beta) antibodies are added to the co-cultures, IFN-gamma production is restored to normal levels. Irrelevant control antibodies have no effect. The same pattern of response was obtained with cells incubated in serum-free medium. In other experiments, purified TGF-beta was added to cultures of effector cells in the presence of antigen. TGF-beta inhibited the production of IFN-gamma by these cells in a dose-dependent manner, but had no apparent inhibitory effect on IL-2 production. Finally, supernatants from cultures containing effector cells and CD4+ suppressor cells plus Ag contained measurable amounts of TGF-beta, whereas supernatants from cultures of effector cells plus Ag contained no measurable amounts of TGF-beta. These results suggest that CD4+ Ts cells of EAE regulate effector cells of EAE through a mechanism that involves the secretion of TGF-beta and that the inhibitory function of this cytokine can be reversed with neutralizing antibodies directed against TGF-beta.  相似文献   

20.
Multiple sclerosis and an animal model resembling multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), are inflammatory demyelinating diseases of the CNS that are suppressed by systemic mycobacterial infection in mice and BCG vaccination in humans. Host defense responses against Mycobacterium in mice are influenced by T lymphocytes and their cytokine products, particularly IFN-gamma, which plays a protective regulatory role in EAE. To analyze the counter-regulatory role of mycobacterial infection-induced IFN-gamma in the CNS on the function of the pathological Th17 cells and the clinical outcome of EAE, we induced EAE in mice that were intracerebrally infected with Mycobacterium bovis bacille Calmette-Guerin (BCG). In this study, we demonstrate that intracerebral (i.c.) BCG infection prevented inflammatory cell recruitment to the spinal cord and suppressed the development of EAE. Concomitantly, there was a significant decrease in the frequency of myelin oligodendrocyte glycoprotein-specific IFN-gamma-producing CD4(+) T cells in the CNS. IL-17(+)CD4(+) T cell responses were significantly suppressed in i.c. BCG-infected mice following EAE induction regardless of T cell specificity. The frequency of Foxp3(+)CD4(+) T cells in these mice was equivalent to that of control mice. Intracerebral BCG infection-induced protection of EAE and suppression of myelin oligodendrocyte glycoprotein-specific IL-17(+)CD4(+) T cell responses were similar in both wild-type and IFN-gamma-deficient mice. These data show that live BCG infection in the brain suppresses CNS autoimmunity. These findings also reveal that the regulation of Th17-mediated autoimmunity in the CNS can be independent of IFN-gamma-mediated mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号