首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
alpha-Amylase cDNA was cloned and sequenced from Aspergillus shirousamii RIB2504. The putative protein deduced from the cDNA open reading frame (ORF) consisted of 499 amino acids with a molecular weight of 55,000. The amino acid sequence was identical to that of the ORF of the Taka-amylase A gene of Aspergillus oryzae, while the nucleotide sequence was different at two and six positions in the cDNA ORF and 3' non-coding regions, respectively, so far determined. The alpha-amylase cDNA was expressed in Saccharomyces cerevisiae under the control of the yeast ADH1 promoter using a YEp-type plasmid, pYcDE1. The cDNA of glucoamylase, which was previously cloned from the same organism, was also expressed under the same conditions. Consequently, active alpha-amylase and glucoamylase were efficiently secreted into the culture medium. The amino acid sequence of the N-terminal regions of these enzymes purified from the yeast culture medium confirmed that the signal sequences of these enzymes were cleaved off at the same positions as those of the native enzymes of A. shirousamii.  相似文献   

3.
根据已报道的米根霉葡萄糖淀粉酶基因序列,通过PCR方法,从天然少根根霉的总DNA中克隆到含有四个内含子的葡萄糖淀粉酶基因。通过设计引物并采取重叠PCR方法删除内含子,获得了新的少根根霉葡萄糖淀粉酶(Rhizopus arrhizu glucoamylase,RaGA)cDNA序列(Accession number:DQ903853)。该基因在毕赤酵母中成功表达,表达产物具有较高的葡萄糖淀粉酶活性。  相似文献   

4.
AIMS: Chaetomium thermophilum is a soil-borne thermophilic fungus whose molecular biology is poorly understood. Only a few genes have been cloned from the Chaetomium genus. This study attempted to clone, to sequence and to express a thermostable glucoamylase gene of C. thermophilum. METHODS AND RESULTS: First strand cDNA was prepared from total RNA isolated from C. thermophilum and the glucoamylase gene amplified by using PCR. Degenerate primers based on the N-terminal sequences of the purified glucoamylase according to our previous works and a cDNA fragment encoding the glucoamylase gene was obtained through RT-PCR. Using RACE-PCR, full-length cDNA of glucoamylase gene was cloned from C. thermophilum. The full-length cDNA of the glucoamylase was 2016 bp and contained a 1797-bp open reading frame encoding a protein glucoamylase precursor of 599 amino acid residues. The amino-acid sequence from 31 to 45 corresponded to the N-terminal sequence of the purified protein. The first 30 amino acids were presumed to be a signal peptide. The alignment results of the putative amino acid sequence showed the catalytic domain of the glucoamylase was high homology with the catalytic domains of the other glucoamylases. The C. thermophilum glucoamylase gene was expressed in Pichia pastoris, and the glucoamylase was secreted into the culture medium by the yeast in a functionally active form. The recombinant glucoamylase purified was a glycoprotein with a size of about 66 kDa, and exhibited optimum catalytic activity at pH 4.5-5.0 and 65 degrees C. The enzyme was stable at 60 degrees C, the enzyme activity kept 80% after 60 min incubation at 70 degrees C. The half-life was 40 and 10 min under incubation at 80 and 90 degrees C respectively. CONCLUSIONS: A new thermostable glucoamylase gene of C. thermophilum was cloned, sequenced, overexpressed successfully in P. pastoris. SIGNIFICANCE AND IMPACT OF THE STUDY: Because of its thermostability and overexpression, this glucoamylase enzyme offers an interesting potential in saccharification steps in both starch enzymatic conversion and in alcohol production.  相似文献   

5.
6.
Y Hata  K Tsuchiya  K Kitamoto  K Gomi  C Kumagai  G Tamura  S Hara 《Gene》1991,108(1):145-150
The glucoamylase-encoding gene (glaA) from Aspergillus oryzae was cloned using its cDNA as a probe, which had been isolated previously. From comparison of nucleotide (nt) sequences of genomic clones with its cDNA, the glaA gene was found to contain four short putative introns, 45-56 nt in length. The A. oryzae glaA gene shared 62% homology at the nt level with the A. niger glaA gene with the four introns located at the same position. The 5'-flanking region contained a TATA box at nt-72 from the start codon, and two putative CAAT sequences at nt-87 and -331. Genomic Southern analysis and physical mapping showed that the glaA gene is located on the smallest chromosome (3.4 Mb) of six separated bands of chromosomes. Clones containing the glaA gene, when re-introduced intro A. oryzae, resulted in a three- to eightfold increase in glucoamylase activity.  相似文献   

7.
α-Amylase cDNA was cloned and sequenced from Aspergillus shirousamii RIB2504. The putative protein deduced from the cDNA open reading frame (ORF) consisted of 499 amino acids with a molecular weight of 55,000. The amino acid sequence was identical to that of the ORF of the Taka-amylase A gene of Aspergillus oryzae, while the nucleotide sequence was different at two and six positions in the cDNA ORF and 3? non-coding regions, respectively, so far determined. The α-amylase cDNA was expressed in Saccharomyces cerevisiae under the control of the yeast ADH1 promoter using a YEp-type plasmid, pYcDE1. The cDNA of glucoamylase, which was previously cloned from the same organism, was also expressed under the same conditions. Consequently, active α-amylase and glucoamylase were efficiently secreted into the culture medium. The amino acid sequence of the N-terminal regions of these enzymes purified from the yeast culture medium confirmed that the signal sequences of these enzymes were cleaved off at the same positions as those of the native enzymes of A. shirousamii.  相似文献   

8.
A glucoamylase gene has been cloned from a Rhizopus genomic DNA library using synthetic oligonucleotides corresponding to the amino acid sequence of the glucoamylase. Since this glucoamylase gene was not expressed in yeast cells, we have cloned a glucoamylase gene from a cDNA library prepared from Rhizopus mRNA. Sequence analysis of both glucoamylase genes revealed that the genomic gene contained 4 intervening sequences and the cDNA gene lacked 145 nucleotides corresponding to the N-terminal region. The glucoamylase consists of 604 amino acids including a putative signal peptide and its molecular weight was calculated to be 65,000. The glucoamylase gene to be expressed in yeast cells was constructed by recombination of both genes. The yeast cells containing this constructed glucoamylase gene secreted the glucoamylase into the culture fluid and grew at almost the normal rate on a medium containing starch as the sole carbon source.  相似文献   

9.
《Gene》1998,207(2):127-134
The DNA (glaB) and a cDNA-encoding glucoamylase produced in solid-state culture of Aspergillus oryzae were cloned using oligodeoxyribonucleotide probes derived from internal amino acid sequences of the enzyme. Comparison of the nucleotide sequences of a genomic DNA fragment with its cDNA showed the glaB gene carried three exons interrupted by two introns and had an open reading frame encoding 493 aa residues. The 5′-flanking region had a TATA box at nt −87 from the start codon and two putative CAAT sequences at nt −276 and −288. The glaB gene shared 57% homology at the aa level with the glaA gene which was cloned previously from A. oryzae. Interestingly, the glucoamylase encoded by the glaB gene had no C-terminal domain such as that proposed to have starch binding activity in Aspergillus glucoamylases. Introduction of cDNA of the glaB gene to Saccharomyces cerevisiae caused the secretion of active glucoamylase to culture medium and introduction of the glaB gene to A. oryzae increased glucoamylase productivity in solid-state culture. Northern blot analysis showed the glaB gene was expressed in solid-state culture, but not in submerged culture.  相似文献   

10.
Abstract The secreted yield of hen egg-white lysozyme (HEWL) from the filamentous fungus Aspergillus niger was increased 10–20-fold by constructing a novel gene fusion. The cDNA sequence encoding mature HEWL was fused in frame to part of the native A. niger gene encoding glucoamylase ( gla A), separated by a proteolytic cleavage site for in vivo processing. Using this construct, peak secreted HEWL yields of 1 g/l were obtained in A. niger shake flask cultures compared to about 50 mg/l when using an expression cassette lacking any gla A coding sequence. The portion of gla A used in the gene fusion encoded the first 498 amino acids of glucoamylase (G498) and comprised its secretion signal, the catalytic domain and most of the O-glycosylated linker region which, in the entire glucoamylase molecule, spatially separates and links the catalytic and starch-binding domains.  相似文献   

11.
O-Methyltransferase I catalyzes both the conversion of demethylsterigmatocystin to sterigmatocystin and the conversion of dihydrodemethylsterigmatocystin to dihydrosterigmatocystin during aflatoxin biosynthesis. In this study, both genomic cloning and cDNA cloning of the gene encoding O-methyltransferase I were accomplished by using PCR strategies, such as conventional PCR based on the N-terminal amino acid sequence of the purified enzyme, 5' and 3' rapid amplification of cDNA ends PCR, and thermal asymmetric interlaced PCR (TAIL-PCR), and genes were sequenced by using Aspergillus parasiticus NIAH-26. A comparison of the genomic sequences with the cDNA of the dmtA region revealed that the coding region is interrupted by three short introns. The cDNA of the dmtA gene is 1,373 bp long and encodes a 386-amino-acid protein with a deduced molecular weight of 43,023, which is consistent with the molecular weight of the protein determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The C-terminal half of the deduced protein exhibits 76.3% identity with the coding region of the Aspergillus nidulans StcP protein, whereas the N-terminal half of dmtA exhibits 73.0% identity with the 5' flanking region of the stcP gene, suggesting that translation of the stcP gene may start at a site upstream from methionine that is different from the site that has been suggested previously. Also, an examination of the 5' and 3' flanking regions of the dmtA gene in which TAIL-PCR was used demonstrated that the dmtA gene is located in the aflatoxin biosynthesis cluster between (and in the same orientation as) the omtA and ord-2 genes. Northern blotting revealed that expression of the dmtA gene is influenced by both medium composition and culture temperature and that the pattern correlates with the patterns observed for other genes in the aflatoxin gene cluster. Furthermore, Southern blotting and PCR analyses of the dmtA gene showed that a dmtA homolog is present in Aspergillus oryzae SYS-2.  相似文献   

12.
The present study was carried out to characterize the DGAT1 gene of Riverine buffalo. Total RNA was extracted from the mammary tissue of buffalo and DGAT1cDNA were synthesized by RT-PCR, then cloned using pDRIVE cloning vector and sequenced. The sequencing revealed that the size of DGAT1 gene was 1470 bp with GC content of 62.30%. The gene encoded for 489 amino acid precursors and that it possessed 32 amino acids signal peptide. The similarity of buffalo DGAT1 mRNA sequence with that of cattle, pig, monkey, human, mice and rat were determined as 98.4, 90.7, 85.4, 85.0, 77.4 and 77.1%, respectively. Phylogenetic tree constructed from the derived DGAT1 protein sequences of 15 different species illustrated a unique branches for mammals, fly, nematode and plants. Among mammals, cattle and buffalo grouped together, whereas swine formed another group in the same branch. Four motifs were predicted in buffalo DGAT1 peptide sequence, one N-linked glycosylation site (246th position), two putative tyrosine phosphorylation site (316 and 261), one putative diacylglycerol binding site (382-392 amino acid position) and a conserved domain MBOAT (membrane bound acyl transferase from 150 to 474 amino acids) with a histidine as an active residue.  相似文献   

13.
Aspergillus oryzae produces at least three extracellular lipolytic enzymes, L1, L2 and L3 (cutinase, mono- and diacylglycerol lipase, and triacylglycerol lipase, respectively). We cloned the triacylglycerol lipase gene (provisionally designated tglA) by screening a genomic library using a PCR product obtained with two degenerate oligonucleotide primers corresponding to amino acid sequences of L3 as probes. Nucleotide sequencing of the genomic DNA and cDNA revealed that the L3 gene (tglA) has an open reading frame comprising 954 nucleotides, which contains three introns of 47, 83 and 62 bp. The deduced amino acid sequence of the tglA gene corresponds to 254 amino acid residues including a signal sequence of 30 amino acids and, in spite of the difference in substrate specificity, it is homologous to those of cutinases from fungi. Three residues presumed to form the catalytic triad, Ser, Asp and His, are conserved. The cloned cDNA of the tglA gene was expressed in Escherichia coli, and enzyme assaying and zymography revealed that the cloned cDNA encodes a functional triacylglycerol lipase.  相似文献   

14.
15.
16.
17.
18.
A cDNA clone encoding a monofunctional aspartate kinase (AK, ATP:L-aspartate 4-phosphotransferase, EC 2.7.2.4) has been isolated from an Arabidopsis thaliana cell suspension cDNA library using a homologous PCR fragment as hybridizing probe. Amplification of the PCR fragment was done using a degenerate primer designed from a conserved region between bacterial monofunctional AK sequences and a primer identical to a region of the A. thaliana bifunctional aspartate kinase-homoserine dehydrogenase (AK-HSDH). By comparing the deduced amino acid sequence of the fragment with the bacterial and yeast corresponding gene products, the highest identity score was found with the Escherichia coli AKIII enzyme that is feedback-inhibited by lysine (encoded by lysC). The absence of HSDH-encoding sequence at the COOH end of the peptide further implies that this new cDNA is a plant lysC homologue. The presence of two homologous genes in A. thaliana is supported by PCR product sequences, Southern blot analysis and by the independent cloning of the corresponding second cDNA (see Tang et al., Plant Molecular Biology 34, pp. 287–294 [this issue]). This work is the first report of cloning a plant putative lysine-sensitive monofunctional AK cDNA. The presence of at least two genes is discussed in relation to possible different physiological roles of their respective product.  相似文献   

19.
beta-Defensins are broad spectrum antimicrobial peptides expressed at epithelial surfaces. Two human beta-defensins, HBD-1 and HBD-2, have been identified. In the lung, HBD-2 is an inducible product of airway epithelia and may play a role in innate mucosal defenses. We recently characterized rat homologs (RBD-1, RBD-2) of the human genes and used these sequences to identify novel mouse genes. Mouse beta-defensin-4 (MBD-4) was amplified from lung cDNA using polymerase chain reaction primers designed from conserved sequences of RBD-2 and HBD-2. A full-length cDNA was cloned which encodes a putative peptide with the sequence MRIHYLLFTFLLVLLSPLAAFTQIINNPITCMTNGAICWGPCPTAFRQIGNCGHFKVRCCKIR. The peptide shares approximately 40% identity with HBD-2. MBD-4 mRNA was expressed in the esophagus, tongue, and trachea but not in any of 20 other tissues surveyed. Cloning of the genomic sequence of MBD-4 revealed two nearly (>99%) identical sequences encoding MBD-4 and the presence of numerous additional highly similar genomic sequences. Radiation hybrid mapping localized this gene to a region of chromosome 8 near several other defensins, MBD-2, MBD-3, and alpha-defensins (cryptdins)-3 and -17, consistent with a gene cluster. Our genomic cloning and mapping data suggest that there is a large beta-defensin gene family in mice. Identification of murine beta-defensins provides an opportunity to understand further the role of these peptides in host defense through animal model studies and the generation of beta-defensin-deficient animals by gene targeting.  相似文献   

20.
A simple and rapid method for cloning of amplification products directly from the polymerase chain reaction (PCR) has been developed. The method is based on the addition of a 12-base dUMP-containing sequence (CUACUACUACUA) to the 5' end of PCR primers. Incorporation of these primers during PCR results in the selective placement of dUMP residues into the 5' end of amplification products. Selective degradation of the dUMP residues in the PCR products with uracil DNA glycosylase (UDG) disrupts base pairing at the termini and generates 3' overhangs. Annealing of 3' protruding termini to vector DNA containing complementary 3' ends results in chimeric molecules which can be transformed, with high efficiency, without in vitro ligation. Directional cloning of PCR products has also been accomplished by incorporating different dU-containing sequences at the end of each PCR primer. Substitution of all dT residues in PCR primers with dU eliminates cloning of aberrant "primer dimer" products and enriches cloning of genuine PCR products. The method has been applied to cloning of inter-Alu DNA sequences from human placental DNA. Using a single primer, DNA sequences between appropriately oriented Alu sequences were amplified and cloned. Cloning of cDNA for the glyceraldehyde-3'-phosphate dehydrogenase gene from rat brain RNA was also demonstrated. The 3' end region of this gene was amplified by the 3' RACE method and the amplified DNA was cloned after UDG digestion. Characterization of cloned DNAs by sequence analysis showed accurate repair of the cloning junctions. The ligase-free cloning method with UDG should prove to be a widely applicable procedure for rapid cloning of PCR-amplified DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号