首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The initial step in the fermentation of leucine to acetate, isobutyrate, and ammonia by Clostridium sporogenes is the B12 coenzyme-dependent conversion of alpha-leucine to beta-leucine (3-amino-4-methylpentanoate). The amino group migration reaction, catalyzed by leucine 2,3-aminomutase, is reversible and is inhibited by intrinsic factor. The enzyme activity has been found in several clostridia, in rat, sheep, rhesus, and African green monkey livers, and in human leukocytes.  相似文献   

2.
The development of lysine 2,3-aminomutase as a robust biocatalyst hinges on the development of an in vivo activation system to trigger catalysis. This is the first report to show that, in the absence of chemical reductants, lysine 2,3-aminomutase activity is dependent upon the presence of flavodoxin, ferredoxin, or flavodoxin-NADP(+) reductase.  相似文献   

3.
Extracts of potato tubers contain endogenous activities of two coenzyme B12-dependent enzymes, leucine 2,3-aminomutase and methylmalonyl-CoA mutase. These activities are stimulated by the addition of coenzyme B12 and are inhibited by intrinsic factor. The inhibition is overcome by coenzyme B12.  相似文献   

4.
Activation of lysine 2,3-aminomutase by S-adenosylmethionine   总被引:1,自引:0,他引:1  
Lysine 2,3-aminomutase, which catalyzes the interconversion of L-lysine and L-beta-lysine, is S-adenosyl-methionine-dependent, and the adenosyl-C-5' methylene group of this coenzyme mediates the transfer of hydrogen from C-3 of lysine to C-2 of beta-lysine. We here report experiments that address the mechanism by which S-adenosylmethionine activates lysine 2,3-aminomutase. We also describe an updated and improved purification procedure that produces enzyme with a specific activity substantially higher than that previously reported. Activation of the enzyme by less than 1 mol of S-adenosyl[1-14C]methionine/mol of subunits in the presence of lysine leads to the production of [14C] methionine in a kinetically biphasic process. After 1.8 min at 30 degrees C, 10% of the 14C is reisolated as [14C] methionine, and the cleavage increases to 19% after 10 min and to 51% after 40 min. Similar experiments with S-[8-14C]adenosylmethionine produce 5'-deoxy[14C]adenosine in amounts similar to the formation of methionine. The major radioactive products isolated in each case are [14C]methionine or 5'-deoxy[14C]adenosine, respectively, and unchanged 14C-labeled S-adenosylmethionine. These experiments support the hypothesis that activation of lysine 2,3-aminomutase involves a transfer of the 5'-deoxyadenosyl moiety from S-adenosylmethionine to another species associated with the enzyme, presumably another cofactor, to form an adenosyl cofactor that functions as the proximal, hydrogen abstracting species in the mechanism.  相似文献   

5.
Metal cofactors of lysine-2,3-aminomutase.   总被引:1,自引:0,他引:1  
Lysine-2,3-aminomutase from Clostridium SB4 contains iron and sulfide in equimolar amounts, as well as cobalt, zinc, and copper. The iron and sulfide apparently constitute an Fe-S cluster that is required as a cofactor of the enzyme. Although no B12 derivative can be detected, enzyme-bound cobalt is a cofactor; however, the zinc and copper bound to the enzyme do not appear to play a role in its catalytic activity. These conclusions are supported by the following facts reported in this paper. Purification of the enzyme under anaerobic conditions increases the iron and sulfide content. Lysine-2,3-aminomutase purified from cells grown in media supplemented with added CoCl2 contains higher levels of cobalt and correspondingly lower levels of zinc and copper relative to enzyme from cells grown in media not supplemented with cobalt. The specific activity of the purified enzyme increases with increasing iron and sulfide content, and it also increases with increasing cobalt and with decreasing zinc and copper content. The zinc and copper appear to occupy cobalt sites under conditions of insufficient cobalt in the growth medium, and they do not support the activity of the enzyme. The best preparations of lysine-2,3-aminomutase obtained to date exhibit a specific activity of approximately 23 units/mg of protein and contain about 12 g atoms of iron and of sulfide per mol of hexameric enzyme. These preparations also contain 3.5 g atoms of cobalt per mol, but even the best preparations contain small amounts of zinc and copper. The sum of cobalt, zinc, and copper in all preparations analyzed to date corresponds to 5.22 +/- 0.75 g atoms per mol of enzyme. An EPR spectrum of the enzyme as isolated reveals a signal corresponding to high spin Co(II) at temperatures below 20 K. The signal appears as a partially resolved 59Co octet centered at an apparent g value of 7. The 59Co hyperfine splitting (approximately 35 G) is prominent at 4.2 K. These findings show that lysine-2,3-aminomutase requires Fe-S clusters and cobalt as cofactors, in addition to the known requirement for pyridoxal 5'-phosphate and S-adenosylmethionine.  相似文献   

6.
Leucine 2,3-aminomutase, the cobalamine-dependent enzyme involved in the conversion of β-leucine to leucine, has been shown to be widely distributed in rat organs. The activity is highest in skeletal and cardiac muscle, lower in brain, liver, and kidney, and very low in small intestine. In rat liver, the activity is nearly all in the cytosolic fraction.  相似文献   

7.
A gene eam in Clostridium difficile encodes a protein that is homologous to lysine 2,3-aminomutase (LAM) in many other species but does not have the lysyl-binding residues Asp293 and Asp330 in LAM from Clostridium subterminale SB4. The C. difficile protein has Lys and Asn, respectively, in the sequence positions of the essential Asp residues in LAM. The C. difficile gene has been cloned into an E. coli expression vector, expressed in E. coli, and the protein purified and characterized. The recombinant protein displays excellent activity as a glutamate 2,3-aminomutase and no activity toward l-lysine. The PLP-, iron-, and sulfide-content and ultraviolet/visible spectrum are similar to LAM, and the enzyme requires SAM and dithionite as activators, as does LAM. Freeze-quench EPR experiments in the presence of l-glutamate reveal a glutamate-based free radical in the steady state of the reaction. A number of other bacterial genomes include genes encoding proteins homologous to the glutamate 2,3-aminomutase from C. difficile, and four of these proteins display the activity of glutamate 2,3-aminomutase when produced in E. coli. All of the homologous proteins have the cysteine motif CSMYCRHC corresponding to the motif CxxxCxxC characteristic of radical SAM enzymes. It is concluded that glutamate 2,3-aminomutase from C. difficile is a representative of a family found in a number of bacteria. It is likely that the beta-glutamate found in a few bacterial and archeal species as an osmolyte arises from the action of glutamate 2,3-aminomutase.  相似文献   

8.
It has been reported (Poston, J. (1976) J. Biol. Chem. 251, 1859-1863; (1982) 255, 10067-10072; (1984) 259, 2059-2061) that mammalian tissues contain an adenosylcobalamin-dependent enzyme, leucine 2,3-aminomutase, which catalyzes the interconversion of beta-leucine and leucine. It was also reported that beta-leucine is detectable in normal human serum (mean = 4.8 mumol/liter, n = 37) and is elevated in serum from patients with cobalamin deficiency (mean = 24.7 mumol/liter, n = 17). Serum levels of leucine were claimed to be decreased in the cobalamin deficient patients (mean = 52 mumol/liter) as compared with the normal subjects (mean = 81 mumol/liter). It was also reported that rat liver supernatant catalyzed the formation of beta-leucine, leucine, or both amino acids from iso-fatty acids, and that the generation of leucine from iso-fatty acids was stimulated by adenosylcobalamin and inhibited by unsaturated cobalamin-binding protein. We have synthesized t-butyldimethylsilyl derivatives of beta-leucine and leucine and have used capillary gas chromatography-mass spectrometry for their analysis. Using forms of beta-leucine and leucine that contain several deuterium atoms in place of several hydrogen atoms as internal standards, techniques have been developed which make it possible to detect and quantitate as little as 0.1 mumol/liter of beta-leucine or leucine in human serum and in incubations containing rat liver supernatant. beta-Leucine was not detectable, i.e. less than 0.1 mumol/liter, in any sera from 50 normal human subjects or in any sera from 50 cobalamin-deficient patients. The mean level of leucine in the 50 cobalamin-deficient sera was 219 mumol/liter, which was not decreased with respect to that in the 50 control sera (167 mumol/liter). Experiments in which beta-leucine, leucine, isostearic acid, or isocaproic acid were incubated with rat liver supernatant in the presence or absence of adenosylcobalamin or cobalamin-binding protein failed to demonstrate the formation of leucine or beta-leucine or their interconversion under any of the conditions studied. We conclude that beta-leucine is not present in human blood and that the existence of leucine 2,3-aminomutase in mammalian tissues remains to be established.  相似文献   

9.
l-beta-lysine and beta-glutamate are produced by the actions of lysine 2,3-aminomutase and glutamate 2,3-aminomutase, respectively. The pK(a) values have been titrimetrically measured and are for l-beta-lysine: pK(1)=3.25 (carboxyl), pK(2)=9.30 (beta-aminium), and pK(3)=10.5 (epsilon-aminium). For beta-glutamate the values are pK(1)=3.13 (carboxyl), pK(2)=3.73 (carboxyl), and pK(3)=10.1 (beta-aminium). The equilibrium constants for reactions of 2,3-aminomutases favor the beta-isomers. The pH and temperature dependencies of K(eq) have been measured for the reaction of lysine 2,3-aminomutase to determine the basis for preferential formation of beta-lysine. The value of K(eq) (8.5 at 37 degrees C) is independent of pH between pH 6 and pH 11; ruling out differences in pK-values as the basis for the equilibrium constant. The K(eq)-value is temperature-dependent and ranges from 10.9 at 4 degrees C to 6.8 at 65 degrees C. The linear van't Hoff plot shows the reaction to be enthalpy-driven, with DeltaH degrees =-1.4 kcal mol(-1) and DeltaS degrees =-0.25 cal deg(-1) mol(-1). Exothermicity is attributed to the greater strength of the bond C(beta)-N(beta) in l-beta-lysine than C(alpha)-N(alpha) in l-lysine, and this should hold for other amino acids.  相似文献   

10.
The conversion of L-lysine to L-beta-lysine is catalyzed by lysine 2,3-aminomutase. The reaction involves the interchange of the 2-amino group of lysine with a hydrogen at carbon 3. As such the reaction is formally analogous to adenosylcobalamin-dependent rearrangements. However, the enzyme does not contain and is not activated by this coenzyme. Instead it contains iron and pyridoxal phosphate and is activated by S-adenosylmethionine. Earlier experiments implicated adenosyl-C-5' of S-adenosylmethionine in the hydrogen transfer mechanism, apparently in a role similar or analogous to that of adenosyl moiety of adenosylcobalamin in the B12-dependent rearrangements. The question of whether both hydrogens or only one hydrogen at adenosyl-C-5' participate in the hydrogen-transfer process has been addressed by carrying out the lysine 2,3-aminomutase reaction with S-[5'-3H] adenosylmethionine in the presence of 10 times its molar concentration of enzyme. Under these conditions all of the tritium appeared in lysine and beta-lysine, showing that C-5'-hydrogens participate. To determine whether hydrogen transfer is compulsorily intermolecular and intramolecular, various molar ratios of [3,3-2H2]lysine and unlabeled lysine were submitted to the action of lysine 2,3-aminomutase under conditions in which 10-15% conversion to beta-lysine occurred. Mass spectral analysis of the beta-lysine for monodeutero and dideutero species showed conclusively that hydrogen transfer is both intramolecular and intermolecular. The results quantitatively support our postulate that activation of the enzyme involves a transformation of S-adenosylmethionine into a form that promotes the generation of an adenosyl-5' free radical, which abstracts hydrogen from lysine to form 5'-deoxyadenosine as an intermediate.  相似文献   

11.
Lysine 2,3-aminomutase from Clostridium SB4 has been studied by electron paramagnetic resonance (EPR) spectroscopy at 77 K. Although the reaction catalyzed by this enzyme is similar to rearrangements catalyzed by enzymes requiring adenosylcobalamin, lysine 2,3-aminomutase does not utilize this cofactor. The enzyme instead contains iron-sulfur clusters, cobalt, and pyridoxal phosphate and is activated by S-adenosylmethionine. Subsequent to a reductive incubation procedure that is required to activate the enzyme, EPR studies reveal the appearance of an organic radical signal (g = 2.001) upon addition of both L-lysine and S-adenosylmethionine. The radical signal is complex, having multiple hyperfine transitions. The total radical concentration is proportional to enzyme activity and decreases in parallel with the approach to chemical equilibrium between alpha-lysine and beta-lysine. The signal changes over the time course of the reaction in a way that suggests the presence of more than one radical species, with different relative proportions of species in the steady state and equilibrium state. Isotopic substitution experiments show that unpaired spin density resides on the molecular framework of lysine and that solvent-exchangeable protons do not participate in strong hyperfine coupling to the radical. The results indicate that lysine radicals participate in the rearrangement mechanism.  相似文献   

12.
M D Ballinger  P A Frey  G H Reed 《Biochemistry》1992,31(44):10782-10789
Electron paramagnetic resonance (EPR) spectroscopy has been used to characterize an organic radical that appears in the steady state of the reaction catalyzed by lysine 2,3-aminomutase from Clostridium SB4. Results of a previous electron paramagnetic resonance (EPR) study [Ballinger, M. D., Reed, G. H., & Frey, P. A. (1992) Biochemistry 31, 949-953] demonstrated the presence of EPR signals from an organic radical in reaction mixtures of the enzyme. The materialization of these signals depended upon the presence of the enzyme, all of its cofactors, and the substrate, lysine. Changes in the EPR spectrum in response to deuteration in the substrate implicated the carbon skeleton of lysine as host for the radical center. This radical has been further characterized by EPR measurements on samples with isotopically substituted forms of lysine and by analysis of the hyperfine splittings in resolution-enhanced spectra by computer simulations. Changes in the hyperfine splitting patterns in EPR spectra from samples with [2-2H]lysine and [2-13C]-lysine show that the paramagnetic species is a pi-radical with the unpaired spin localized primarily in a p orbital on C2 of beta-lysine. In the EPR spectrum of this radical, the alpha-proton, the beta-nitrogen, and the beta-proton are responsible for the hyperfine structure. Analysis of spectra for reactions initiated with L-lysine, [3,3,4,4,5,5,6,6-2H8]lysine, [2-2H]lysine, perdeuteriolysine, [alpha-15N]lysine, and [alpha-15N,2-2H]lysine permit a self-consistent assignment of hyperfine splittings.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Cobalamins and cobalamin-dependent enzymes in Candida utilis.   总被引:2,自引:0,他引:2       下载免费PDF全文
Candida utilis has been shown to contain 4.7 pmol of cobalamin per g of wet cell paste. Purification of the cobalamin showed it to be a mixture of methylcobalamin and adenosylcobalamin. Two cobalamin-dependent enzyme systems have been found in the yeast: methylcobalamin-dependent methionine biosynthesis and leucine 2,3-aminomutase. The cobalamin extracted from the yeast is as effective as authentic adenosylcobalamin in stimulating leucine 2,3-aminomutase.  相似文献   

14.
Cosper NJ  Booker SJ  Ruzicka F  Frey PA  Scott RA 《Biochemistry》2000,39(51):15668-15673
Lysine 2,3-aminomutase (KAM) belongs to a class of enzymes that use FeS clusters and S-adenosyl-L-methionine to initiate radical-dependent chemistry. Selenium K-edge X-ray absorption spectroscopic analysis of KAM poised at various stages of catalysis, in the presence of selenomethionine or Se-adenosyl-L-selenomethionine, reveals that the cofactor is cleaved only in the presence of dithionite and the substrate analogue trans-4,5-dehydrolysine. A new Fourier transform peak at 2.7 A, assigned as a Se-Fe interaction, appears concomitant with this cleavage. This is the first demonstration of a direct interaction of S-adenosyl-L-methionine, or its cleavage products, with the FeS cluster in this class of enzymes.  相似文献   

15.
Molecular properties of lysine-2,3-aminomutase   总被引:1,自引:0,他引:1  
Lysine-2,3-aminomutase purified from Clostridium subterminale SB4 is reported to exhibit an apparent subunit Mr of 48,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the undenatured enzyme exhibits an apparent Mr of 285,000, as determined by electrophoretic mobility and gel permeation chromatography (Chirpich, T. P., Zappia, V., Costilow, R. N., and Barker, H. A. (1970) J. Biol. Chem. 245, 1778-1789). The diffusion coefficient of the enzyme is 3.36 x 10(-7) cm2/s, as determined by quasielastic light scattering. The overall Mr calculated from the diffusion coefficient and the published sedimentation coefficient is 259,000. Cross-linking experiments using glutaraldehyde and dithiobis(succinimidylpropionate) as cross-linking reagents indicate that the enzyme has a hexameric quaternary structure. The number of major cyanogen bromide peptides, compared with the methionine content of the enzyme, is consistent with the subunits being identical, and isoelectric focusing also is consistent with identical subunits. The circular dichroism of the enzyme indicates that it is a highly ordered structure, which is estimated to consist of 26% alpha-helix and 48% beta-sheet. The enzyme contains approximately six molecules of pyridoxal 5'-phosphate per hexamer, as determined by the phenyl-hydrazine method. The amino acid analysis of the enzyme, after performic acid oxidation, indicates that it contains approximately 13 cysteine residues per subunit. Six sulfhydryl groups per hexamer react readily with 5,5'-dithiobis-2-nitrobenzoate, indicating that one sulfhydryl group is accessible per subunit.  相似文献   

16.
Lysine 2,3-aminomutase catalyzes the interconversion of L-lysine and L-beta-lysine. 4-Thia-L-lysine (4-thialysine) is an alternative substrate for Lysine 2,3-aminomutase. The organic free radical that appears in the steady state of the reaction of 4-thialysine is structurally analogous to the first lysine-based radical in the chemical mechanism (Wu, W., Lieder, K. W., Reed, G. H., and Frey, P. A. (1995) Biochemistry 34, 10532-10537). 4-Thialysine is a much more potent inhibitor of the reaction of lysine than would be anticipated on the basis of the value of Km for its reaction as a substrate. 4-Thialysine is here shown to be a competitive reversible inhibitor with respect to L-lysine, displaying an inhibition constant of 0.12 +/- 0.01 mM. The value of Km for 4-thialysine is 1.4 +/- 0.1 mM, and the maximum velocity Vm = 0.19 +/-0.02 micromol min(-1) mg-1 at 37 degrees C and pH 8.0. The kinetic parameters for the reaction of lysine under the same conditions are: Km = 4.2 +/- 0.5 mM and Vm = 43 +/- 1 micromol min(-1) mg(-1). The discrepancy between Km and the apparent Ki for 4-thialysine arises from the fact that the maximal velocity for 4-thialysine is only 0.44% that for L-lysine. The electron paramagnetic resonance spectra of the organic radical generated at the active site from 4-thialysine and those generated from deuterium and 3-13C-labeled forms of 4-thialysine were analyzed by simulation. Based on the resulting hyperfine splitting constants, the conformation and distribution of the unpaired spin of the radical at the active site were evaluated.  相似文献   

17.
The interconversion of L-lysine and L-3,6-diamino-hexanoate (L-beta-lysine) catalyzed by lysine 2,3-aminomutase is known to be stimulated by added S-adenosylmethionine (Chirpich, T. P., Zappia, V., Costilow, R. N., and Barker, H. A. (1970) J. Biol. Chem. 245, 1778-1789). In this paper we show that enzyme activated by S-[2,8,5'-3H]adenosylmethionine catalyzes the conversion of L-lysine to the equilibrium mixture of L-lysine and L-beta-lysine with incorporation of high levels of tritium into both isomers. The tritium levels in the isomers reflect the equilibrium constant for their interconversion, 84% in the L-beta-lysine and 16% in L-lysine compared with Keq = 5.3 +/- 0.3 in the direction of the formation of L-beta-lysine at pH 7.7 and 30 degrees C. No significant tritium is incorporated into lysine from S-[2,8-3H]adenosylmethionine or S-adenosyl[methyl-3H] methionine under comparable conditions. Therefore, the tritium incorporated into lysine in the former reaction arises from the 5'-position of the 5'-deoxyadenosyl group in S-adenosylmethionine. These experiments implicate the 5'-deoxyadenosyl portion of S-adenosylmethionine in the hydrogen transfer mechanism of this reaction, perhaps in a role analogous to that played by the 5'-deoxyadenosyl moiety of deoxyadenosyl cobalamin in coenzyme B12-dependent rearrangements.  相似文献   

18.
5'-[N-[(3S)-3-Amino-carboxypropyl]-N-methylamino]-5(')-deoxyadenosine (azaSAM), an analog of S-adenosyl-L-methionine (SAM), was used to study the cofactor-dependent reduction of the [4Fe-4S](2+) center in lysine 2,3-aminomutase to the +1 oxidation state. azaSAM has a tertiary nitrogen in place of the sulfonium center of SAM. The analog binds to lysine 2,3-aminomutase with K(d)s of 1.4+/-0.3 microM at pH 8.0 and 2.2+/-0.6 microM at pH 6.5. Reduction of the [4Fe-4S](2+) center in the presence of this analog gives a 10K [4Fe-4S](1+) electron paramagnetic resonance (EPR) signal similar to that seen with SAM or S-adenosyl-L-homocysteine (SAH). The pH dependence of cofactor-induced reduction was examined to determine whether ionization of the tertiary nitrogen (pK(a)=7.08) might affect reduction of the [4Fe-4S](2+) center. The results show similar behavior in azaSAM and SAH, demonstrating that ionization of the aza group in azaSAM does not account for pH dependence in cofactor-dependent reduction of the [4Fe-4S](2+) center. The signal shape of the low-temperature EPR signal for the [4Fe-4S](1+) center in the SAM-induced reduction displayed a pH dependence that was not observed in the azaSAM- or SAH-induced spectra. Unique features of the signal are at a maximum at the pH activity optimum of pH 8 and are diminished as the pH is lowered or raised. These features are also absent in the spectra at all pHs examined when reduction is induced by azaSAM or SAH.  相似文献   

19.
The development of lysine 2,3-aminomutase as a robust biocatalyst hinges on the development of an in vivo activation system to trigger catalysis. This is the first report to show that, in the absence of chemical reductants, lysine 2,3-aminomutase activity is dependent upon the presence of flavodoxin, ferredoxin, or flavodoxin-NADP+ reductase.  相似文献   

20.
Elaborations to an earlier design of an electron paramagnetic resonance (EPR) spectroelectrochemical titrator are described. While maintaining the anaerobic capabilities of the original design, a number of modifications and revisions have been introduced. The most significant modification is the use of a detachable spectral cell, making the apparatus modular and adaptable for multiple forms of spectroscopy. Additional modifications include removable reference, auxiliary, and working electrodes; modifications to facilitate sample transfer; and adaptations for operation within an anaerobic chamber. This apparatus has been used successfully in the coulometric titration of a [4Fe-4S] enzyme, as measured by EPR spectroscopy. The midpoint reduction potential for the 2+/1+ couple in the [4Fe-4S] cluster of lysine 2,3-aminomutase is -479+/-5mV, a value that falls within the range typical of ferredoxin-like iron-sulfur clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号