首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After prolonged cultivation in the presence of increasing amounts of carboxyl-substituted tryptophan analogs (tryptamine and tryptophanol), cell lines resistant to high concentrations of these compounds were obtained. The initial culture was the Madin-Darby line of spontaneously transformed bovine kidney cells. In the resistant lines the amount of tryptophanyl-tRNA synthetase (E. C. 6.1.1.2) is manyfold increased as shown by two criteria: (i) enzymatic activity (ATP-PPi isotopic exchange) per mg of protein, (ii) binding of in vivo 35S-labeled proteins to polyclonal antibodies against tryptophanyl-tRNA synthetase. It was shown that tryptophanyl-tRNA synthetase is phosphorylated in vivo, and the degree of phosphorylation of the enzyme in initial cells seems to be higher then in the resistant ones. The Km value for tryptophan is not significantly changed for the enzyme from resistant cells. The permeability for tryptophan and its analogs is reduced in the resistant cells. It is proposed that the acquisition of the resistance against tryptophan analogs are due to alterations at the genomic level (for example, gene amplification etc.).  相似文献   

2.
The abilities of 14 tryptophan analogs to repress the tryptophan (trp) operon have been studied in Escherichia coli cells derepressed by incubation with 0.25 mM indole-3-propionic acid (IPA). trp operon expression was monitored by measuring the specific activities of anthranilate synthase (EC 4.1.3.27) and the tryptophan synthase (EC 4.2.1.20) beta subunit. Analogs characterized by modification or removal of the alpha-amino group or the alpha-carboxyl group did not repress the trp operon. The only analogs among this group that appeared to interact with the trp aporepressor were IPA, which derepressed the trp operon, and d-tryptophan. Analogs with modifications of the indole ring repressed the trp operon to various degrees. 7-Methyl-tryptophan inhibited anthranilate synthase activity and consequently derepressed the trp operon. Additionally, 7-methyltryptophan prevented IPA-mediated derepression but, unlike tryptophan, did so in a non-coordinate manner, with the later enzymes of the operon being relatively more repressed than the early enzymes. The effect of 7-methyltryptophan on IPA-mediated derepression was likely not due to the interaction of IPA with the allosteric site of anthranilate synthase, even though feedback-resistant mutants of anthranilate synthase were partially resistant to derepression by IPA. The effect of 7-methyltryptophan on derepression by IPA was probably due to the effect of the analog-aporepressor complex on trp operon expression.  相似文献   

3.
Strains of Catharanthus roseus suspension cells resistant to growth inhibition by various tryptophan analogs were selected. Tryptophan synthetase and anthranilate synthetase from the resistant cells differed from the normal cell enzymes by being more resistant to feedback inhibition by tryptophan. Though these altered enzymes allowed the free tryptophan level of the resistant cells to be 3–40 times higher than that of normal cells, the accumulation of tryptamine or ajmalicine could not be detected in the resistant cells.  相似文献   

4.
In an attempt to elucidate the effects of sustained administration of tryptophan on serotonin synthesis and turnover in mammalian brain, mini-osmotic pumps containing tryptophan or vehicle were implanted in albino mice for 24 and 96 h. Despite the extremely low dose of tryptophan administered by these pumps (8–12 mg/kg-day) statistically significant treatment effects were apparent with both treatment durations. Plasma and brain tryptophan concentrations varied in unison, and were inversely related to the tryptophan degradative capabilities of the liver as reflected in tryptophan pyrrolase activity. After 24 h of tryptophan infusion the hepatic enzyme activity was elevated and tryptophan values were no different from controls, and after 96 h the hepatic enzyme activity was reduced and tryptophan values in treated animals were greater than controls. Serotonin was elevated in treated animals after 24 h, but not after 96 h despite the elevated tryptophan concentration at this time. The turnover of serotonin, as evidenced by 5-hydroxyindoleacetic acid concentrations, was not significantly affected by either treatment.Hepatic degradation of tryptophan thus seemed to be an important determinant of total plasma tryptophan, and brain tryptophan values paralleled plasma tryptophan. It appears that serotonin biosynthesis is regulated by factors other than tryptophan availability when the latter is chronically elevated.  相似文献   

5.
Experiments concerned with the regulation of the tryptophan synthetic enzymes in anaerobes were carried out with a strain of Clostridium butyricum. Enzyme activities for four of the five synthetic reactions were readily detected in wild-type cells grown in minimal medium. The enzymes mediating reactions 3, 4, and 5 were derepressed 4- to 20-fold, and the data suggest that these enzymes are coordinately controlled in this anaerobe. The first enzyme of the pathway, anthranilate synthetase, could be derepressed approximately 90-fold under these conditions, suggesting that this enzyme is semicoordinately controlled. Mutants resistant to 5-methyl tryptophan were isolated, and two of these were selected for further analysis. Both mutants retained high constitutive levels of the tryptophan synthetic enzymes even in the presence of repressing concentrations of tryptophan. The anthranilate synthetase from one mutant was more sensitive to feedback inhibition by tryptophan than the enzyme from wild-type cells. The enzyme from the second mutant was comparatively resistant to feedback inhibition by tryptophan. Neither strain excreted tryptophan into the culture fluid. Tryptophan inhibits anthranilate synthetase from wild-type cells noncompetitively with respect to chorismate and uncompetitively with respect to glutamine. The Michaelis constants calculated for chorismate and glutamine are 7.6 x 10(-5)m and 6.7 x 10(-5)m, respectively. The molecular weights of the enzymes estimated by zonal centrifugation in sucrose and by gel filtration ranged from 24,000 to 89,000. With the possible exception of a tryptophan synthetase complex, there was no evidence for the existence of other enzyme aggregates. The data indicate that tryptophan synthesis is regulated by repression control of the relevant enzymes and by feedback inhibition of anthranilate synthetase. That this enzyme system more closely resembles that found in Bacillus than that found in enteric bacteria is discussed.  相似文献   

6.
Anabaena sp. CA does not synthesize heterocysts or express nitrogenase activity when grown with nitrate as the nitrogen source. Heterocysts and nitrogenase are induced in such cultures by various tryptophan analogs. The effect does not require inhibition of de novo protein synthesis in the culture. It is restricted to tryptophan analogs only, and, more specifically, to those which can be incorporated into proteins. dl-7-Azatryptophan was effective at triggering both heterocysts and nitrogenase when incubated in the culture for only 1–2 h, even though 6–7 h was required for heterocysts to fully mature and nitrogenase activity to be expressed. Chloramphenicol completely negated this effect, supporting the idea that the analogs are either incorporated into protein themselves or trigger the synthesis of proteins which initiate complete development of mature heterocysts. Using toluene-permeabilized cells, we have shown that anthranilate synthetase, the first key enzyme in tryptophan biosynthesis, has glutamine-dependent activity. This activity can be effectively feedback inhibited by the various tryptophan analogs at concentrations which are also effective in triggering heterocyst differentiation. These data provide firm evidence for a link between tryptophan biosynthesis, nitrogenase synthesis, heterocyst differentiation, and primary ammonia assimilation.  相似文献   

7.
The following enzyme activities of the tryptophan-nicotinic acid pathway were studied in male New Zealand rabbits: liver tryptophan 2,3-dioxygenase, intestine indole 2,3-dioxygenase, liver and kidney kynurenine 3-monooxygenase, kynureninase, kynurenine-oxoglutarate transaminase, 3-hydroxyanthranilate 3,4-dioxygenase, and aminocarboxymuconate-semialdehyde decarboxylase. Intestine superoxide dismutase and serum tryptophan were also determined. Liver tryptophan 2,3-dioxygenase exists only as holoenzyme, but intestine indole 2,3-dioxygenase is very active and can be considered the key enzyme which determines how much tryptophan enters the kynurenine pathway also under physiological conditions. The elevated activity of indole 2,3-dioxygenase in the rabbit intestine could be related to the low activity of superoxide dismutase found in intestine. Kynurenine 3-monooxygenase appeared more active than kynurenine-oxoglutarate transaminase and kynureninase, suggesting that perhaps a major portion of kynurenine available from tryptophan may be metabolized to give 3-hydroxyanthranilic acid, the precursor of nicotinic acid. In fact, 3-hydroxyanthranilate 3,4-dioxygenase is much more active than the other previous enzymes of the kynurenine pathway. In the rabbit liver 3-hydroxyanthranilate 3,4-dioxygenase and aminocarboxymuconate-semialdehyde decarboxylase show similar activities, but in the kidney 3-hydroxyanthranilate 3,4-dioxygenase activity is almost double. These data suggest that in rabbit tryptophan is mainly metabolized along the kynurenine pathway. Therefore, the rabbit can also be a suitable model for studying tryptophan metabolism in pathological conditions.  相似文献   

8.
The intraperitoneal or oral administration of pyrazinamide and pyrazinoic acid (pyrazine 2-carboxylic acid) resulted in a marked increase of the NAD content in rat liver. The injections of pyrazine and pyrazine 2,3-dicarboxylic acid exhibited no significant effect on the hepatic NAD content. The boiled extract obtained from liver and kidney of rat injected with either pyrazinamide or pyrazinoic acid exhibited a potent inhibitory effect on the aminocarboxymuconate-semialdehyde decarboxylase (EC 4.1.1.45) activity in either lier or kidney, although pyrazinamide or pyrazinoic acid per se did not inhibit the enzyme activity. The unknown inhibitor of aminocarboxymuconate-semialdehyde decarboxylase was dialysable and heat-stable, and mostly excreted in urine by 6 and 12 h after injected of pyrazinoic acid and pyrazinamide, respectively. Pyrazine 2,3-dicarboxylic acid, pyrazine, nicotinamide, nicotinic acid, tryptophan, anthranilic acid, 5-hydroxyanthranilic acid and quinolinic acid exhibited no significant effect on the aminocarboxymuconate-semialdehyde decarboxylase activity in liver and kidney at the concentration of 1 mM in the reaction mixture. The expired 14CO2 from L-[benzen ring-U-14C]tryptophan was markedly decreased by the pyrazinamide injection, while the urinary excretion of 14C-labeled metabolites from L-tryptophan, mainly quinolinic acid, was markedly increased. These results suggest that the glutarate pathway of L-tryptophan was strongly inhibited by the inhibitor produced after the administration of pyrazinoic acid and pyrazinamide. Pyrazinamide but not pyrazinoic acid also exhibited a significant inhibition of the nuclear enzyme poly(ADP-ribose) synthetase in rat liver.  相似文献   

9.
In order to compare the biological effects of different thymidine (dT) analogs, two unusual cell lines (B-4 and HAB) previously isolated from a Syrian hamster melanoma line by selection with 5-bromodeoxyuridine (BrdU) were analyzed for their response to other analogs. B-4 cells require high concentrations of BrdU for optimal growth, and it was seen that the requirement for BrdU could be satisfied partially by 5-chlorodeoxyuridine (CldU) but not by the other dT analogs tested. HAB cells are able to grow with all the dT residues in nuclear DNA replaced by BrdU, and it was found that they could also grow with essentially all the dT residues in nuclear DNA replaced by CldU but not by other analogs. New cell lines resistant to 100 micrometer concentrations of CldU, 5-iododeoxyuridine (IdU), and 5-hydroxymethyldeoxyuridine (HMdU) were isolated from the melanoma line and tested for cross-resistance to the other dT analogs. A high level of cross-resistance was observed only with BrdU and CldU. The ability of the cell lines resistant to BrdU, CldU, and IdU to incorporate these analogs into nuclear DNA also was determined. BrdU and CldU were incorporated efficiently by all of the lines tested, but the IdU-resistant cells seemed to preferentially exclude IdU.  相似文献   

10.
Adjuvant arthritis (AA) is a condition that involves systemic oxidative stress. Unexpectedly, it was found that sarcoplasmic reticulum Ca2 +-ATPase (SERCA) activity was elevated in muscles of rats with AA compared to controls, suggesting possible conformational changes in the enzyme. There was no alteration in the nucleotide binding site but rather in the transmembrane domain according to the tryptophan polar/non-polar fluorescence ratio. Higher relative expression of SERCA, higher content of nitrotyrosine but no increase in phospholipid oxidation in AA SR was found. In vitro treatments of SR with HOCl showed that in AA animals SERCA activity was more susceptible to oxidative stress, but SR phospholipids were more resistant and SERCA could also be activated by phosphatidic acid. It was concluded that increased SERCA activity in AA was due to increased levels of SERCA protein and structural changes to the protein, probably induced by direct and specific oxidation involving reactive nitrogen species.  相似文献   

11.
The intraperitoneal or oral administration of pyrazinamide and pyrazinoic acid (pyrazine 2-carboxylic acid) resulted in a marked increase of the NAD content in rat liver. The injections of pyrazine and pyrazine 2,3-dicarboxylic acid exhibited no significant effect on the hepatic NAD content. The boiled extract obtained from liver and kidney of rat injected with either pyrazinamide or pyrazinoic acid exhibited a potent inhibitory effect on the aminocarboxymuconate-semialdehyde decarboxylase (EC 4.1.1.45) activity in either liver or kidney, although pyrazinamide or pyrazinoic acid per se did not inhibit the enzyme activity. The unknown inhibitor of aminocarboxymuconate-semialdehyde decarboxylase was dialysable and heat-stable, and mostly excreted in urine by 6 and 12 h after injection of pyrazinoic acid and pyrazinamide, respectively. Pyrazine 2,3-dicarboxylic acid, pyrazine, nicotinamide, nicotinic acid, tryptophan, anthranilic acid, 5-hydroxyanthranilic acid and quinolinic acid exhibited no significant effect on the aminocarboxymuconate-semialdehyde decarboxylase activity in liver and kidney at the concentration of 1 mM in the reaction mixture. The expired 14CO2 from l-[benzen ring-U-14C]tryptophan was markedly decreased by the pyrazinamide injection, while the urinary excretion of 14C-labeled metabolites from l-tryptophan, mainly quinolinic acid, was markedly increased. These results suggest that the glutarate pathway of l-tryptophan was strongly inhibited by the inhibitor produced after the administration of pyrazinoic acid and pyrazinamide. Pyrazinamide but not pyrazinoic acid also exhibited a significant inhibition of the nuclear enzyme poly(ADP-ribose) synthetase in rat liver.  相似文献   

12.
Single doses of DL-alpha-amino-beta-(2-pyridine)propanoic acid (2-PA, 100 mg/kg) significantly decreased the holoenzyme and apoenzyme activities of rat liver tryptophan pyrrolase (TP) and increased brain tryptophan, serotonin (5-HT) and 5-hydroxyindole-3-ylacetic acid concentrations. 2-PA had no inhibitory effect on either of the enzyme activities in vitro, but its expected metabolites were effective. Single doses of DL-alpha-amino-beta-(3-pyridine)propanoic acid (3-PA, 100 mg/kg) decreased only the holoenzyme activity and elevated brain tryptophan and its metabolites levels in rats. 3-PA and its metabolite, 3-pyridylpyruvate, inhibited only the holoenzyme activity in vitro. DL-alpha-Amino-beta-(4-pyridine)propanoic acid (4-PA) caused significant changes in liver TP (holo- and apoenzyme forms) activity and brain tryptophan concentration only after repeated administration (100 mg/kg/day). 4-PA was a weak inhibitor of the holoenzyme, but its metabolites apparently inhibited the holo- and apoenzyme activities in vitro. These findings suggest that PA analogs (and/or their metabolites) increased brain tryptophan (and hence 5-HT synthesis) by directly inhibiting liver TP activity.  相似文献   

13.
Deoxycytidine nucleoside analogs must be first phosphorylated to become active anticancer drugs. The rate-limiting enzyme in this pathway is deoxycytidine kinase (dCK). Cells deficient in this enzyme are resistant to these analogs. To evaluate the potential of dCK to be used as suicide gene for deoxycytidine nucleoside analogs, we transduced both human A-549 lung carcinoma and murine NIH3T3 fibroblast cell lines with this gene. The dCK-transduced cells showed an increase in cytotoxicity to the analogs, cytosine arabinoside (ARA-C), and 5-aza-2'-deoxycytidine (5-AZA-CdR). Unexpectedly, the related analog, 2',2'-difluorodeoxycytidine (dFdC), was less cytotoxic to the dCK-transduced cells than the wild-type cells. For the A-549-dCK cells, the phosphorylation of dFdC by dCK was much greater than control cells. In accord with the elevated enzyme activity, we observed a 6-fold increased dFdC incorporation into DNA and a more pronounced inhibition of DNA synthesis in the A-549-dCK cells. In an attempt to clarify the mechanism of dFdC, we investigated its action on A549 and 3T3 cells transduced with both cytidine deaminase (CD) and dCK. We reported previously that overexpression of CD confers drug resistance to deoxycytidine analogs. In this study, when the CD-transduced cells were also transduced with dCK they became relatively more sensitive to dFdC. In addition, we observed that dFdU, the deaminated form of dFdC, was cytotoxic to the A-549-dCK cells, but not the wild-type cells. Our working hypothesis to explain these results is that the mitochondrial thymidine kinase (TK2), an enzyme reported to phosphorylate dFdC, acts as an important modulator of dFdC-induced cell toxicity. These findings may further clarify the action of dFdC and the mechanism by which it induces cell death.  相似文献   

14.
In this study, we address whether TGFbeta signaling mediates vitamin D3 analog-induced growth inhibition in nonmalignant and malignant breast cells. Normal mammary epithelial cells (184), immortalized nonmalignant mammary epithelial cells (184A1 and MCF10A), and breast cancer cells (early passage MCF7: MCF7E) were sensitive to the inhibitory effects of vitamin D3 analogs (EB1089 and MC1288) while late passage MCF7 breast cancer (MCF7L) cells were relatively resistant. A similar pattern of sensitivity to TGFbeta was observed with these cells. Thus, the sensitivity to the vitamin D3 analogs correlated with the sensitivity to TGFbeta. MCF7L TGFbetaRII-transfected cells, which have autocrine TGFbeta activity, were more sensitive to EB1089 than MCF7L cells. TGFbeta neutralizing antibody was found to block the inhibitory effects of these analogs. These results are consistent with the idea that autocrine TGFbeta signaling mediates the anti-proliferative effects of the vitamin D3 analogs in these cells. The expression of TGFbeta isoforms and/or TGFbeta receptors was induced by the analogs in the vitamin D3 and TGFbeta sensitive cells. Vitamin D3 analogs did not induce TGFbeta or TGFbeta receptor expression in the resistant MCF7L cells. Therefore, EB1089 induces autocrine TGFbeta activity through increasing expression of TGFbeta isoforms and/or TGFbeta receptors. In addition, EB1089 induced nuclear VDR protein levels in the sensitive 184A1 cells but not in the resistant MCF7L cells. 184A1 cells were more sensitive to EB1089-induced VDR-dependent transactivation than MCF7L cells as measured by a luciferase reporter construct containing the VDRE, indicating a defect of VDR signaling in MCF7L cells. Smad3, a TGFbeta signaling mediator, coactivated VDR-dependent transactivation in 184A1 cells but not in MCF7L cells. These results indicate that Smad3 coactivates VDR to further enhance TGFbeta signaling and vitamin D3 signaling in the sensitive 184A1 cells. The results also indicate that Smad3 is not of itself sufficient to coactivate VDR in TGFbeta/vitamin D3 resistant MCF7L cells and other factors are required. We found that the PI 3-kinase pathway inhibitor LY29004 inhibited the synergy of TGFbeta and EB1089 on VDR-dependent transactivation activity. This indicates that the crosstalk between TGFbeta and vitamin D signaling is also PI 3-kinase pathway dependent.  相似文献   

15.
The relationship between the NAD-metabolism and the induction of the tyrosine aminotransferase was studied. The content of NAD+ + NADH differs markedly from organ to organ. The highest values can be found in the liver. In intact animals tryptophan leads to an increase of NAD in liver and kidney, but not in brain and spleen. Nicotinamide, on the other hand, induces NAD synthesis in all the organs tested. In adrenalectomized animals, however, there is practically no rise of the NAD content after application of tryptophan contrary to the effect of nicotinamide. The enzyme tyrosine aminotransferase can be induced in intact animals by nicotinamide and tryptophan. This effect is much less pronounced in adrenalectomized animals. In adrenalectomized animals the induction of the tyrosine aminotransferase by tryptophan is markedly elevated by caffeine and theophylline. Under these conditions there is a significant increase of the NAD content as well. The tryptophan promoted induction of the tyrosine aminotransferase is influenced by inhibitors of the ADPR-transferase. The data presented give further evidence that the NAD adenoribosylation metabolism is involved in the induction of the tyrosine aminotransferase.  相似文献   

16.
The peptide named codesane (COD), consisting of 18 amino acid residues and isolated from the venom of wild bee Colletes daviesanus (Hymenoptera : Colletidae), falls into the category of cationic α‐helical amphipathic antimicrobial peptides. In our investigations, synthetic COD exhibited antimicrobial activity against Gram‐positive and Gram‐negative bacteria and Candida albicans but also noticeable hemolytic activity. COD and its analogs (collectively referred to as CODs) were studied for the mechanism of their action. The interaction of CODs with liposomes led to significant leakage of calcein entrapped in bacterial membrane‐mimicking large unilamellar vesicles made preferentially from anionic phospholipids while no calcein leakage was observed from zwitterionic liposomes mimicking membranes of erythrocytes. The preference of CODs for anionic phospholipids was also established by the blue shift in the tryptophan emission spectra maxima when the interactions of tryptophan‐containing COD analogs with liposomes were examined. Those results were in agreement with the antimicrobial and hemolytic activities of CODs. Moreover, we found that the studied peptides permeated both the outer and inner cytoplasmic membranes of Escherichia coli. This was determined by measuring changes in the fluorescence of probe N‐phenyl‐1‐naphthylamine and detecting cytoplasmic β‐galactosidase released during the interaction of peptides with E. coli cells. Transmission electron microscopy revealed that treatment of E. coli with one of the COD analogs caused leakage of bacterial content mainly from the septal areas of the cells. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
A 3'-5' exonuclease that excises the nucleotide analogs 1-beta-d-arabinofuranosylcytosine monophosphate and 9-beta-d-arabinofuranosyl-2-fluoroadenine 5'-monophosphate incorporated at 3' ends of DNA was purified from the nuclei of: 1) primary human chronic lymphocytic leukemia cells, 2) primary and established human acute myeloblastic leukemia cells, and 3) lymphocytes obtained from healthy individuals. The activity of this nuclear exonuclease (exoN) is elevated approximately 6-fold in 1-beta-d-arabinofuranosylcytosine-resistant leukemia cells as compared with drug-sensitive cells, and it differs between two healthy individuals and among three leukemia patients. exoN is a 46-kDa monomer, requires 50 mm KCl and 1 mm magnesium for optimal activity, and shows a preference for single-stranded over duplex DNA. Its physical and enzymatic properties indicate that exoN is a previously uncharacterized enzyme whose activity may confer resistance to clinical nucleoside analogs in leukemia cells.  相似文献   

18.
19.
Previous studies from this laboratory have established that acquired resistance of murine L1210 leukemia cells to L-phenylalanine mustard (L-PAM) and other alkylating agents is accompanied by a two-to threefold elevation in their glutathione (GSH) concentration (Biochem. Pharm. 31:121). In an attempt to gain insight into the mechanism by which resistant tumor cells maintain their increased GSH content, we have assessed the possible role of gamma-glutamyl transpeptidase (gamma-GT), a membrane bound enzyme involved in GSH metabolism. These results indicate that the enzyme is present in both sensitive and resistant murine L1210 leukemia cells but that the cellular content of gamma-GT is elevated two-to threefold in L-PAM resistant cells as compared to their sensitive counterparts. This elevation in enzymatic activity correlates well with the increased cellular GSH content in resistant cells. The results of a detailed kinetic analysis of gamma-GT activity indicate that there is no difference, between cell types, in the apparent Km of the enzyme for the gamma-glutamyl donor (L-gamma-glutamyl-p-nitroanilide) or the acceptor (glycylglycine). However, the apparent Vmax is increased two-to threefold in L-PAM resistant tumor cells. Investigation into the role of gamma-GT in the extracellular metabolism of GSH indicates that resistant tumor cells metabolize two-fold more GSH than do sensitive cells and that such metabolism results in a similar difference in the intracellular concentration of cysteine. Results of studies with cellular lysates also indicate a role for the enzyme in the supply of cysteine to the glutathione precursor pool of the tumor cell and in the maintenance of elevated GSH concentrations in cells resistant to alkylating agents.  相似文献   

20.
Optimal culture conditions for microbial production of tryptophan synthetase were studied. It was found that on cultivation of Escherichia coli 476, a tryptophan auxotroph, in a medium containing 5g/liter glycerol as C source, supplemented with 1 g/liter of acid-treated peptone, cells with high tryptophan synthetase activity could be obtained.

The enzyme was extracted from cells and 3-fold purified by heat treatment and ammonium sulfate precipitation. The overall yield of the isolation procedure was 60%.

The partially purified tryptophan synthetase was entrapped in cellulose triacetate fibres. Under storage conditions, in refrigerator, the entrapped enzyme was stable at least for 6 months. The activity of the entrapped enzyme was about 75% with respect to the free enzyme.

Similar behaviour for the free and entrapped enzyme was observed as to the effect of temperature and pH on the enzymic activity. The operational stability of the entrapped tryptophan synthetase was very good (activity unchanged after 50 days) provided the accumulation of indole on the fibres was avoided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号