首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
We have previously found that loss of C/EBPalpha in hepatocytes of newborn livers leads to increased proliferation, to a reduction in p21 protein levels and to an induction of S phase-specific E2F/p107 complexes. In this paper, we investigated C/EBPalpha-dependent regulation of E2F complexes in a well-characterized cell line, 3T3-L1, and in stable transformants that conditionally express C/EBPalpha. C/EBPalpha and C/EBPbeta proteins are induced in 3T3-L1 preadipocytes during differentiation with different kinetics and potentially may regulate E2F/Rb family complexes. In pre-differentiated cells, three E2F complexes are observed: cdk2/E2F/p107, E2F/p130 and E2F4. cdk2/E2F/p107 complexes are induced in nuclear extracts of 3T3-L1 cells during mitotic expansion, but are not detectable in nuclear extracts at later stages of 3T3-L1 differentiation. The reduction in E2F/p107 complexes is associated with elevation of C/EBPalpha, but is independent of C/EBPbeta expression. Bacterially expressed, purified His-C/EBPalpha is able to disrupt E2F/p107 complexes that are observed at earlier stages of 3T3-L1 differentiation. C/EBPbeta, however, does not disrupt E2F/p107 complexes. A short C/EBPalpha peptide with homology to E2F is sufficient to bring about the disruption of E2F/p107 complexes from 3T3-L1 cells in vitro. Induction of C/EBPalpha in stable 3T3-L1 clones revealed that C/EBPalpha causes disruption of p107/E2F complexes in these cells. In contrast, E2F/p130 complexes are induced in cells expressing C/EBPalpha. Our data suggest that induction of p130/E2F complexes by C/EBPalpha occurs via up-regulation of p21, which, in turn, leads to association with and inhibition of, cdk2 kinase activity. The reduction in cdk2 kinase activity correlates with alterations of p130 phosphorylation and with induction of p130/E2F complexes in 3T3-L1 stable clones. Our data suggest two pathways of C/EBPalpha-dependent regulation of E2F/Rb family complexes: disruption of S phase-specific E2F/p107 complexes and induction of E2F/p130 complexes.  相似文献   

14.
FGF signaling inhibits chondrocyte proliferation and requires the function of the p107 and p130 members of the Rb protein family to execute growth arrest. p107 dephosphorylation plays a critical role in the chondrocyte response to FGF, as overexpression of cyclin D1/CDK4 complexes (the major p107 kinase) in rat chondrosarcoma (RCS) cells overcomes FGF-induced p107 dephosphorylation and growth arrest. In cells overexpressing cyclin D1/CDK4, FGF-induced downregulation of cyclin E/CDK2 activity was absent. To examine the role of cyclin E/CDK2 complexes in mediating FGF-induced growth arrest, this kinase was overexpressed in RCS cells. FGF-induced dephosphorylation of either p107 or p130 was not prevented by overexpressing cyclin E/CDK2 complexes. Unexpectedly, however, FGF-treated cells exhibited sustained proliferation even in the presence of hypophosphorylated p107 and p130. Both pocket proteins were able to form repressive complexes with E2F4 and E2F5 but these repressors were not translocated into the nucleus and therefore were unable to occupy their respective target DNA sites. Overexpressed cyclin E/CDK2 molecules were stably associated with p107 and p130 in FGF-treated cells in the context of E2F repressive complexes. Taken together, our data suggest a novel mechanism by which cyclin E/CDK2 complexes can promote cell cycle progression in the presence of dephosphorylated Rb proteins and provide a novel insight into the key Retinoblastoma/E2F/cyclin E pathway. Our data also highlight the importance of E2F4/p130 complexes for FGF-mediated growth arrest in chondrocytes.  相似文献   

15.
FGF signaling inhibits chondrocyte proliferation and requires the function of the p107 and p130 members of the Rb protein family to execute growth arrest. p107 dephosphorylation plays a critical role in the chondrocyte response to FGF, as overexpression of cyclin D1/CDK4 complexes (the major p107 kinase) in rat chondrosarcoma (RCS) cells overcomes FGF-induced p107 dephosphorylation and growth arrest. In cells overexpressing cyclin D1/CDK4, FGF-induced downregulation of cyclin E/CDK2 activity was absent. To examine the role of cyclin E/CDK2 complexes in mediating FGF-induced growth arrest, this kinase was overexpressed in RCS cells. FGF-induced dephosphorylation of either p107 or p130 was not prevented by overexpressing cyclin E/CDK2 complexes. Unexpectedly, however, FGF-treated cells exhibited sustained proliferation even in the presence of hypophosphorylated p107 and p130. Both pocket proteins were able to form repressive complexes with E2F4 and E2F5 but these repressors were not translocated into the nucleus and therefore were unable to occupy their respective target DNA sites. Overexpressed cyclin E/CDK2 molecules were stably associated with p107 and p130 in FGF-treated cells in the context of E2F repressive complexes. Taken together, our data suggest a novel mechanism by which cyclin E/CDK2 complexes can promote cell cycle progression in the presence of dephosphorylated Rb proteins and provide a novel insight into the key Retinoblastoma/E2F/cyclin E pathway. Our data also highlight the importance of E2F4/p130 complexes for FGF-mediated growth arrest in chondrocytes.  相似文献   

16.
The mammalian Retinoblastoma (RB) family including pRB, p107, and p130 represses E2F target genes through mechanisms that are not fully understood. In D. melanogaster, RB-dependent repression is mediated in part by the multisubunit protein complex Drosophila RBF, E2F, and Myb (dREAM) that contains homologs of the C. elegans synthetic multivulva class B (synMuvB) gene products. Using an integrated approach combining proteomics, genomics, and bioinformatic analyses, we identified a p130 complex termed DP, RB-like, E2F, and MuvB (DREAM) that contains mammalian homologs of synMuvB proteins LIN-9, LIN-37, LIN-52, LIN-54, and LIN-53/RBBP4. DREAM bound to more than 800 human promoters in G0 and was required for repression of E2F target genes. In S phase, MuvB proteins dissociated from p130 and formed a distinct submodule that bound MYB. This work reveals an evolutionarily conserved multisubunit protein complex that contains p130 and E2F4, but not pRB, and mediates the repression of cell cycle-dependent genes in quiescence.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号