首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Class B scavenger receptors (SR-Bs) interact with native, acetylated and oxidized low-density lipoprotein (LDL, AcLDL and OxLDL), high-density lipoprotein (HDL3) and maleylated BSA (M-BSA). The aim of this study was to analyze the catabolism of CD36- and LIMPII-analogous-1 (CLA-1), the human orthologue for the scavenger receptor class B type I (SR-BI), and CD36 ligands in HepG2 (human hepatoma) cells. Saturation binding experiments revealed moderate-affinity binding sites for all the SR-B ligands tested with dissociation constants ranging from 20 to 30 microg.mL-1. Competition binding studies at 4 degrees C showed that HDL and modified and native LDL share common binding site(s), as OxLDL competed for the binding of 125I-LDL and 125I-HDL3 and vice versa, and that only M-BSA and LDL may have distinct binding sites. Degradation/association ratios for SR-B ligands show that LDL is very efficiently degraded, while M-BSA and HDL3 are poorly degraded. The modified LDL degradation/association ratio is equivalent to 60% of the LDL degradation ratio, but is three times higher than that of HDL3. All lipoproteins were good cholesteryl ester (CE) donors to HepG2 cells, as a 3.6-4.7-fold CE-selective uptake ([3H]CE association/125I-protein association) was measured. M-BSA efficiently competed for the CE-selective uptake of LDL-, OxLDL-, AcLDL- and HDL3-CE. All other lipoproteins tested were also good competitors with some minor variations. Hydrolysis of [3H]CE-lipoproteins in the presence of chloroquine demonstrated that modified and native LDL-CE were mainly hydrolyzed in lysosomes, whereas HDL3-CE was hydrolyzed in both lysosomal and extralysosomal compartments. Inhibition of the selective uptake of CE from HDL and native modified LDL by SR-B ligands clearly suggests that CLA-1 and/or CD36 are involved at least partially in this process in HepG2 cells.  相似文献   

2.
To determine the importance of hepatic apolipoprotein (apo) E in lipoprotein metabolism, HepG2 cells were transfected with a constitutive expression vector (pRc/CMV) containing either the complete or the first 474 base pairs of the human apoE cDNA inserted in an antisense orientation, for apoE gene inactivation, or the full-length human apoE cDNA inserted in a sense orientation for overexpression of apoE. Stable transformants were obtained that expressed 15, 24, 226, and 287% the apoE level of control HepG2 cells. The metabolism of low-density lipoprotein (LDL) and high-density lipoprotein-3 (HDL(3)), two lipoprotein classes following both holoparticle and cholesteryl esters (CE)-selective uptake pathways, was compared between all these cells. LDL-protein degradation, an indicator of the holoparticle uptake, was greater in low apoE expressing cells than in control or high expressing cells, while HDL(3)-protein degradation paralleled the apoE levels of the cells (r(2) = 0.989). LDL- and HDL(3)-protein association was higher in low apoE expressing cells compared to control cells. In opposition, LDL- and HDL(3)-CE association was not different from control cells in low apoE expressing cells but rose in high apoE expressing cells. In consequence, the CE-selective uptake (CE/protein association ratio) was positively correlated with the level of apoE expression in all cells for both LDL (r(2) = 0.977) and HDL(3) (r(2) = 0.998). We also show that, although in normal and low apoE expressor cells, 92% of LDL- and 80% HDL(3)-CE hydrolysis is sensitive to chloroquine suggesting a pathway linked to lysosomes for both lipoproteins, cells overexpressing apoE lost 60% of chloroquine-sensitive HDL(3)-CE hydrolysis without affecting that of LDL-CE. Thus, the level of apoE expression in HepG2 cells determines the fate of LDL and HDL(3).  相似文献   

3.
Plasma low- and high-density lipoproteins (LDL and HDL) are cleared from the circulation by specific receptors and are either totally degraded or their cholesteryl esters (CE) are selectively delivered to cells by receptors such as the scavenger receptor class B type I (SR-BI). The aim of the present study was to define the effect of apoC-II and apoC-III on the uptake of LDL and HDL by HepG2 cells. Stable transformants were obtained with sense or antisense strategies that secrete 47-294% the normal level of apoC-II or 60-200% that of apoC-III. Different levels of secreted apoC-II or apoC-III had little effect on LDL and HDL protein degradation by HepG2 cells. However, compared to controls, cells under-expressing apoC-II showed a 160% higher capacity to selectively take up HDL-CE, while cells under-expressing apoC-III demonstrated 70 and 160% higher capacity to take up CE from LDL and HDL, respectively. In experiments conducted with exogenously added apoC-II or apoC-III, no significant effect was observed on lipoprotein-protein association/degradation; however, LDL-CE and HDL-CE selective uptake was significantly reduced in a dose-dependent manner. These results indicate that apoC-II and apoC-III inhibit CE-selective uptake.  相似文献   

4.
The aim of this study was to quantify the abilities of mouse liver parenchymal and nonparenchymal cells with respect to (i) cholesteryl ester (CE) selective uptake from low-density lipoproteins (LDL), oxidized LDL (OxLDL), and high-density lipoprotein (HDL); and (ii) their free cholesterol efflux to HDL. The preparations of cells were incubated with lipoproteins labelled either in protein with iodine-125 or in CE with 3H-cholesterol oleate, and lipoprotein-protein and lipoprotein-CE associations were measured. The associations of LDL-protein and LDL-CE with nonparenchymal cells were 5- and 2-fold greater, respectively, than with parenchymal cells. However, in terms of CE-selective uptake (CE association minus protein association) both types of cell were equivalent. Similar results were obtained with OxLDL, but both types of cell showed higher abilities in OxLDL-CE than in LDL-CE selective uptake (on average by 3.4-fold). The association of HDL-protein with nonparenchymal cells was 3x that with parenchymal cells; however, nonparenchymal cells associated 45% less HDL-CE. Contrary to parenchymal cells, nonparenchymal cells did not show HDL-CE selective uptake activity. Thus parenchymal cells selectively take CE from the 3 types of lipoproteins, whereas nonparenchymal cells exert this function only on LDL and OxLDL. Efflux was 3.5-fold more important in nonparenchymal than in parenchymal cells.  相似文献   

5.
The mechanism of hepatic catabolism of human low density lipoproteins (LDL) by human-derived hepatoma cell line HepG2 was studied. The binding of 125I-labeled LDL to HepG2 cells at 4 degrees C was time dependent and inhibited by excess unlabeled LDL. The specific binding was predominant at low concentrations of 125I-labeled LDL (less than 50 micrograms protein/ml), whereas the nonsaturable binding prevailed at higher concentrations of substrate. The cellular uptake and degradation of 125I-labeled LDL were curvilinear functions of substrate concentration. Preincubation of HepG2 cells with unlabeled LDL caused a 56% inhibition in the degradation of 125I-labeled LDL. Reductive methylation of unlabeled LDL abolished its ability to compete with 125I-labeled LDL for uptake and degradation. Chloroquine (50 microM) and colchicine (1 microM) inhibited the degradation of 125I-labeled LDL by 64% and 30%, respectively. The LDL catabolism by HepG2 cells suppressed de novo synthesis of cholesterol and enhanced cholesterol esterification; this stimulation was abolished by chloroquine. When tested at a similar content of apolipoprotein B, very low density lipoproteins (VLDL), LDL and high density lipoproteins (HDL) inhibited the catabolism of 125I-labeled LDL to the same degree, indicating that in HepG2 cells normal LDL are most probably recognized by the receptor via apolipoprotein B. The current study thus demonstrates that the catabolism of human LDL by HepG2 cells proceeds in part through a receptor-mediated mechanism.  相似文献   

6.
Apolipoprotein E (apoE) plays a major role in lipoprotein metabolism by mediating the binding of apoE-containing lipoproteins to receptors. The role of hepatic apoE in the catabolism of apoE-free lipoproteins such as low density lipoprotein (LDL) and high density lipoprotein-3 (HDL(3)) is however, unclear. We analyzed the importance of hepatic apoE by comparing human LDL and HDL(3) metabolism in primary cultures of hepatic cells from control C57BL/6J and apoE knockout (KO) mice. Binding analysis showed that the maximal binding capacity (Bmax) of LDL, but not of HDL(3), is increased by twofold in the absence of apoE synthesis/secretion. Compared to control hepatic cells, LDL and HDL(3) holoparticle uptake by apoE KO hepatic cells, as monitored by protein degradation, is reduced by 54 and 77%, respectively. Cleavage of heparan sulfate proteoglycans (HSPG) by treatment with heparinase I reduces LDL association by 21% in control hepatic cells. Thus, HSPG alone or a hepatic apoE-HSPG complex is partially involved in LDL association with mouse hepatic cells. In apoE KO, but not in normal hepatic cells, the same treatment increases LDL uptake/degradation by 2.4-fold suggesting that in normal hepatic cells, hepatic apoE increases LDL degradation by masking apoB-100 binding sites on proteoglycans. Cholesteryl ester (CE) association and CE selective uptake (CE/protein association ratio) from LDL and HDL(3) by mouse hepatic cells were not affected by the absence of apoE expression. We also show that 69 and 72% of LDL-CE hydrolysis in control and apoE KO hepatic cells, respectively, is sensitive to chloroquine revealing the importance of a pathway linked to lysosomes. In contrast, HDL(3)-CE hydrolysis is only mediated by a nonlysosomal pathway in both control and apoE KO hepatic cells. Overall, our results indicate that hepatic apoE increases the holoparticle uptake pathway of LDL and HDL(3) by mouse hepatic cells, that HSPG devoid of apoE favors LDL binding/association but impairs LDL uptake/degradation and that apoE plays no significant role in CE selective uptake from either human LDL or HDL(3) lipoproteins.  相似文献   

7.
The mechanism of inhibition by apolipoprotein C of the uptake and degradation of triglyceride-rich lipoproteins from human plasma via the low density lipoprotein (LDL) receptor pathway was investigated in cultured human skin fibroblasts. Very low density lipoprotein (VLDL) density subfractions and intermediate density lipoprotein (IDL) with or without added exogenous recombinant apolipoprotein E-3 were used. Total and individual (C-I, C-II, C-III-1, and C-III-2) apoC molecules effectively inhibited apoE-3-mediated cell metabolism of the lipoproteins through the LDL receptor, with apoC-I being most effective. When the incubation was carried out with different amounts of exogenous apoE-3 and exogenous apoC, it was shown that the ratio of apoE-3 to apoC determined the uptake and degradation of VLDL. Excess apoE-3 overcame, at least in part, the inhibition by apoC. ApoC, in contrast, did not affect LDL metabolism. Neither apoA-I nor apoA-II, two apoproteins that do not readily associate with VLDL, had any effect on VLDL cell metabolism. The inhibition of VLDL and IDL metabolism cannot be fully explained by interference of association of exogenous apoE-3 with or displacement of endogenous apoE from the lipoproteins. IDL is a lipoprotein that contains both apoB-100 and apoE. By using monoclonal antibodies 4G3 and 1D7, which specifically block cell interaction by apoB-100 and apoE, respectively, it was possible to assess the effects of apoC on either apoprotein. ApoC dramatically depressed the interaction of IDL with the fibroblast receptor through apoE, but had only a moderate effect on apoB-100. The study thus demonstrates that apoC inhibits predominantly the apoE-3-dependent interaction of triglyceride-rich lipoproteins with the LDL receptor in cultured fibroblasts and that the mechanism of inhibition reflects association of apoC with the lipoproteins and specific concentration-dependent effects on apoE-3 at the lipoprotein surface.  相似文献   

8.
Plasma cholesterol from low- and high-density lipoproteins (LDL and HDL) are cleared from the circulation by specific receptors that either totally degrade lipoproteins as the LDL receptor or selectively take up their cholesteryl esters (CE) like the scavenger receptor class B type I (SR-BI). The aim of the present study was to define the effect of apoC-I on the uptake of LDL and HDL3 by HepG2 cells. In experiments conducted with exogenously added purified apoC-I, no significant effect was observed on lipoprotein–protein association and degradation; however, LDL- and HDL3-CE selective uptake was significantly reduced in a dose-dependent manner. This study also shows that apoC-I has the ability to associate with HepG2 cells and with LDL and HDL3. Moreover, pre-incubation of HepG2 cells with apoC-I reduces HDL3-CE selective uptake and pre-incubation of LDL and HDL3 with apoC-I decreases their CE selective uptake by HepG2 cells. Thus, apoC-I can accomplish its inhibitory effect on SR-BI activity by either binding to SR-BI or lipoproteins. We conclude that by reducing hepatic lipoprotein-CE selective uptake, apoC-I has an atherogenic character.  相似文献   

9.
Incubation of low (LDL), intermediate (IDL), or very low density lipoproteins (VLDL) with palmitic acid and either high density lipoproteins (HDL), delipidated HDL, or purified apolipoprotein (apo) A-I resulted in the formation of lipoprotein particles with discoidal structure and mean particle diameters ranging from 146 to 254 A by electron microscopy. Discs produced from IDL or LDL averaged 26% protein, 42% phospholipid, 5% cholesteryl esters, 24% free cholesterol, and 3% triglycerides; preparations derived from VLDL contained up to 21% triglycerides. ApoA-I was the predominant protein present, with smaller amounts of apoA-II. Crosslinking studies of discs derived from LDL or IDL indicated the presence of four apoA-I molecules per particle, while those derived from large VLDL varied more in size and contained as many as six apoA-I molecules per particle. Incubation of discs derived from IDL or LDL with purified lecithin:cholesterol acyltransferase (LCAT), albumin, and a source of free cholesterol produced core-containing particles with size and composition similar to HDL2b. VLDL-derived discs behaved similarly, although the HDL products were somewhat larger and more variable in size. When discs were incubated with plasma d greater than 1.21 g/ml fraction rather than LCAT, core-containing particles in the size range of normal HDL2a and HDL3a were also produced. A variety of other purified free fatty acids were shown to promote disc formation. In addition, some mono and polyunsaturated fatty acids facilitated the formation of smaller, spherical particles in the size range of HDL3c. Both discoidal and small spherical apoA-I-containing lipoproteins were generated when native VLDL was incubated with lipoprotein lipase in the presence of delipidated HDL. We conclude that lipolysis product-mediated dissociation of lipid-apoA-I complexes from VLDL, IDL, or LDL may be a mechanism for formation of HDL subclasses during lipolysis, and that the availability of different lipids may influence the type of HDL-precursors formed by this mechanism.  相似文献   

10.
Enzymatic and lipid transfer reactions involved in reverse cholesterol transport were studied in healthy and lecithin:cholesterol acyltransferase (LCAT), deficient subjects. Fasting plasma samples obtained from each individual were labeled with [3H]cholesterol and subsequently fractionated by gel chromatography. The radioactivity patterns obtained corresponded to the elution volumes of the three major ultracentrifugally isolated lipoprotein classes (very low density lipoproteins (VLDL), low density lipoproteins (LDL), and high density lipoproteins (HDL)). In healthy subjects, the LCAT activity was consistently found in association with the higher molecular weight portion of HDL. Similar observations were made when exogenous purified LCAT was added to the LCAT-deficient plasma prior to chromatography. Incubation of the plasma samples at 37 degrees C resulted in significant reduction of unesterified cholesterol (FC) and an increase in esterified cholesterol (CE). Comparison of the data of FC and CE mass measurements of the lipoprotein fractions from normal and LCAT-deficient plasma indicates that: (i) In normal plasma, most of the FC for the LCAT reaction originates from LDL even when large amounts of FC are available from VLDL. (ii) The LCAT reaction takes place on the surface of HDL. (iii) The product of the LCAT reaction (CE) may be transferred to either VLDL or LDL although VLDL appears to be the preferred acceptor when present in sufficient amounts. (iv) CE transfer from HDL to lower density lipoproteins is at least partially impaired in LCAT-deficient patients. Additional studies using triglyceride-rich lipoproteins indicated that neither the capacity to accept CE from HDL nor the lower CE transfer activity were responsible for the decreased amount of CE transferred to VLDL and chylomicrons in LCAT-deficient plasma.  相似文献   

11.
R B Shireman  J F Remsen 《Life sciences》1983,33(22):2165-2171
It has been proposed that in vivo variability in response to certain hydrophobic chemicals or drugs, such as imipramine, may be due in part to the varying plasma lipid levels in patients. The distribution of [3H]imipramine into the lipoproteins of human plasma was therefore studied. Differential density centrifugation of plasma containing [3H]imipramine resulted in flotation of very low density, low density and high density lipoproteins (VLDL, LDL, HDL) and approximately one-third of the total 3H radioactivity. Twelve percent of the radioactivity was present in the sedimented fraction which included most of the plasma proteins. There appeared to be little specific binding of [3H]imipramine to VLDL or LDL, as shown by ultracentrifugation, dialysis and column chromatography. [3H]Imipramine was readily incorporated into cultured human fibroblasts;o no differences were observed in cellular uptake whether it was added to the medium in plasma, LDL or HDL. Also, no differences in uptake of [3H]imipramine by LDL-receptor positive and receptor negative cells were noted. These experiments indicate that LDL is not a major vehicle for the transport of this drug and that both the bound and free fractions are available for cellular uptake.  相似文献   

12.
The binding of human intermediate density lipoproteins (IDL) to HepG2 cells was studied. We found that human 125I-IDL interact with a binding site of high-affinity (Kd 0.74 micrograms/ml, Bmax 0.049 micrograms/mg cell protein) and a binding site of lower affinity (Kd 86.8 micrograms/ml; Bmax 0.53 micrograms/mg cell protein). The high-affinity binding sites show characteristics of LDL-receptors since they interact with IDL and low-density lipoproteins (LDL) and are calcium dependent. The low-affinity binding sites are calcium-independent and interact with IDL, LDL, high density lipoproteins-3 (HDL3), apolipoprotein (apo) E-liposomes, apoCs-liposomes, apoA-I-liposomes but not with liposomes containing albumin or erythrocyte membrane proteins. Therefore, HepG2 cells have on their surface a binding site that resembles or is identical to the lipoprotein binding site (LBS) that we found on rat liver membranes (Brissette and No?l (1986) J. Biol. Chem. 261, 6847-6852). Internalization, degradation and cholesterol ester selective uptake were determined in the presence or in the absence of a sufficient amount of human HDL3 to abolish the interaction of IDL to the LBS in order to obtain information on the function of this site. Our results suggest that the LBS participates in the internalization of IDL but not in their degradation and that it is responsible for the selective uptake of cholesterol esters of IDL.  相似文献   

13.
Rat hepatoma cells (Fu5AH) were studied as a model for the net delivery of apoE-free high-density lipoprotein (HDL) cholesterol to a cell. Incubating cells with HDL results in 1) a decrease in both media-free cholesterol and cholesteryl ester concentration; 2) decreased cell sterol synthesis; and 3) increased cell cholesteryl ester synthesis. HDL cholesteryl ester uptake is increased when cells are incubated for 18 hr in cholesterol poor media. Coincubation of 3H-cholesteryl ester-labeled low-density lipoprotein (LDL) with 50 microM chloroquine or 25 microM monensin results in a decrease in the cellular free cholesterol/cholesteryl ester (FC/CE) isotope ratio, indicating an inhibition in the conversion of cholesteryl ester to free cholesterol. In contrast, chloroquine and monensin do not alter the cellular FC/CE isotope ratio for 3H-CE HDL. This evidence indicates that acidic lysosomal cholesteryl ester hydrolase does not account for the hydrolysis of HDL-CE. Free cholesterol generated from 3H-cholesteryl ester of both LDL and HDL is reesterified intracellularly. At higher HDL concentrations (above 50 micrograms/ml) HDL cholesteryl ester hydrolysis is sensitive to chloroquine. We propose that an extralysosomal pathway is operating in the metabolism of HDL cholesterol and that at higher HDL concentrations a lysosomal pathway may be functioning in addition to an extralysosomal pathway.  相似文献   

14.
It has been suggested that besides the LDL-receptor, hepatocytes possess an apo E or remnant receptor. To evaluate which hepatic lipoprotein receptor is involved in VLDL remnant catabolism, we studied the binding of VLDL remnants to HepG2 cells. Native VLDL was obtained from type IIb hyperlipidemic patients and treated with bovine milk lipoprotein lipase (LPL). This LPL-treated VLDL (LPL-VLDL) was used as representative for VLDL remnants. Our results show that LPL-VLDL binds with high affinity to HepG2 cells. Competition experiments showed that the binding of 125I-labelled LPL-VLDL is inhibited to about 30% of the control value by the simultaneous addition of an excess of either unlabelled LDL or LPL-VLDL. Preincubation of HepG2 cells with LDL resulted in a reduction of the binding of LDL and LPL-VLDL to 34 and 55% of the control value, whereas preincubation of the cells with heavy HDL (density between 1.16 and 1.21 g/ml) stimulated the binding of LDL and LPL-VLDL to about 230% of the control value. Preincubation of the cells with insulin (250 nM/l) also stimulated the binding of both LDL and LPL-VLDL (175 and 143% of the control value, respectively). We conclude that LPL-VLDL binds to the LDL-receptor of HepG2 cells and that no evidence has been obtained for the presence on HepG2 cells of an additional receptor that is involved in the binding of VLDL remnants.  相似文献   

15.
The role of human plasma cholesteryl ester transfer protein (CETP) in the cellular uptake of high density lipoprotein (HDL) cholesteryl ester (CE) was studied in a liver tumor cell line (HepG2). When HepG2 cells were incubated with [3H]cholesteryl ester-labeled HDL3 in the presence of increasing concentrations of CETP there was a progressive increase in cell-associated radioactivity to levels that were 2.8 times control. The CETP-dependent uptake of HDL-CE was found to be saturated by increasing concentrations of both CETP and HDL. The CETP-dependent uptake of CE radioactivity increased continuously during an 18-h incubation. In contrast to the effect on cholesteryl ester, CETP failed to enhance HDL protein cell association or degradation. Enhanced uptake of HDL cholesteryl ester was shown for the d greater than 1.21 g/ml fraction of human plasma, partially purified CETP, and CETP purified to homogeneity, but not for the d greater than 1.21 g/ml fraction of rat plasma which lacks cholesteryl ester transfer activity. HDL cholesteryl ester entering the cell under the influence of CETP was largely degraded to free cholesterol by a process inhibitable by chloroquine. CETP enhanced uptake of HDL [3H]CE in cultured smooth muscle cells and to a lesser extent in fibroblasts but did not significantly influence uptake in endothelial cells or J774 macrophages. These experiments show that, in addition to its known role in enhancing the exchange of CE between lipoproteins, plasma CETP can facilitate the in vitro selective transfer of CE from HDL into certain cells.  相似文献   

16.
LDL and HDL enriched in triglyceride promote abnormal cholesterol transport   总被引:2,自引:0,他引:2  
Hypertriglyceridemia induces multiple changes in lipoprotein composition. Here we investigate how one of these modifications, triglyceride (TG) enrichment, affects HDL and LDL function when this alteration occurs under conditions in which more polar components can naturally re-equilibrate. TG-enriched lipoproteins were produced by co-incubating VLDL, LDL, and HDL with cholesteryl ester (CE) transfer protein. The resulting 2.5-fold increase in TG/CE ratio did not measurably alter the apoprotein composition of LDL or HDL, or modify LDL size. HDL mean diameter increased slightly from 9.1 to 9.4 nm. Modified LDL was internalized by fibroblasts normally, but its protein was degraded much less efficiently. This likely reflects an aberrant apolipoprotein B (apoB) conformation, as suggested by its resistance to V8 protease digestion and altered LDL electrophoretic mobility. TG-enriched LDL ineffectively down-regulated cholesterol biosynthesis compared with control LDL at the same protein concentration, but was equivalent in sterol regulation when compared on a cholesterol basis. TG-enriched HDL promoted greater net cholesterol efflux from cholesterol-loaded J774 cells. However, cholesterol associated with TG-enriched HDL was inefficiently esterified by lecithin:cholesterol acyltransferase, and TG-enriched HDLs were poor donors of CE to HepG2 hepatocytes by selective uptake. We conclude that TG-enrichment, in the absence of other significant alterations in lipoprotein composition, is sufficient to alter both cholesterol delivery and removal mechanisms. Some of these abnormalities may contribute to increased coronary disease in hypertriglyceridemia.  相似文献   

17.
In blood circulation, low density lipoproteins (LDL) can undergo modification, such as oxidation, and become key factors in the development of atherosclerosis. Although the liver is the major organ involved in the elimination of oxidized LDL (oxLDL), the identity of the receptor(s) involved remains to be defined. Our work aims to clarify the role of the scavenger receptor class B type I (SR-BI) in the hepatic metabolism of mildly and standardly oxLDL as well as the relative contribution of parenchymal (hepatocytes) and nonparenchymal liver cells with a special emphasis on CE-selective uptake. The association of native LDL and mildly or standardly oxLDL labeled either in proteins or in cholesteryl esters (CE) was measured on primary cultures of mouse hepatocytes from normal and SR-BI knock-out (KO) mice. These in vitro assays demonstrated that hepatocytes are able to mediate CE-selective uptake from both LDL and oxLDL and that SR-BI KO hepatocytes have a 60% reduced ability to selectively take CE from LDL but not towards mildly or standardly oxLDL. When lipoproteins were injected in the mouse inferior vena cava, parenchymal and nonparenchymal liver cells accumulated more CE than proteins from native, mildly and standardly oxLDL, indicating that selective uptake of CE from these lipoproteins occurs in vivo in these two cell types. The parenchymal cells contribute near 90% of the LDL-CE selective uptake and SR-BI for 60% of this pathway. Nonparenchymal cells capture mainly standardly oxLDL while parenchymal and nonparenchymal cells equally take up mildly oxLDL. An 82% reduction of standardly oxLDL-CE selective uptake by the nonparenchymal cells of SR-BI KO mice allowed emphasizing the contribution of SR-BI in hepatic metabolism of standardly oxLDL. However, SR-BI is not responsible for mildly oxLDL metabolism. Thus, SR-BI is involved in LDL- and standardly oxLDL-CE selective uptake in parenchymal and nonparenchymal cells, respectively.  相似文献   

18.
Hypertriglyceridemic (HTG) very low density lipoproteins (VLDL) from subjects with type IV hyperlipoproteinemia induce both cholesteryl ester (CE) and triglyceride (TG) accumulation in cultured J774 macrophages. We examined whether the cytokine interferon-gamma (IFN-gamma), which is expressed by lymphocytes in atherosclerotic lesions, would modulate macrophage uptake of HTG -VLDL. Incubation of cells with HTG -VLDL alone significantly increased cellular CE and TG mass 17- and 4.3-fold, respectively, while cellular free cholesterol (FC) was unaffected. Pre-incubation of cells with IFN-gamma (50 U/ml) prior to incubation with HTG -VLDL caused a marked enhancement in cellular CE and TG 27- and 6-fold over no additions (controls), respectively, and a 1.5-fold increase in FC. IFN-gamma increased low density lipoprotein (LDL)-induced cellular CE 2-fold compared to LDL alone. IFN-gamma did not enhance the uptake of type III (apoE2/E2) HTG -VLDL or VLDL from apoE knock-out mice. Incubations in the presence of a lipoprotein lipase (LPL) inhibitor or an acylCoA:cholesterol acyltransferase (ACAT) inhibitor demonstrated that the IFN-gamma-enhanced HTG -VLDL uptake was dependent on LPL and ACAT activities. IFN-gamma significantly increased the binding and degradation of 125I-labeled LDL. Binding studies with 125I-labeled alpha2-macroglobulin, a known LDL receptor-related protein (LRP) ligand, and experiments with copper-oxidized LDL indicated that the IFN-gamma-enhanced uptake was not due to increased expression of the LRP or scavenger receptors. Thus, IFN-gamma may promote foam cell formation by accelerating macrophage uptake of native lipoproteins. IFN-gamma-stimulated CE accumulation in the presence of HTG -VLDL occurs via a process that requires receptor binding-competent apoE and active LPL. IFN-gamma-enhanced uptake of both HTG -VLDL and LDL is mediated by the LDL-receptor and requires ACAT-mediated cholesterol esterification.  相似文献   

19.
Cholesterol ester transfer protein (CETP) moves triglyceride (TG) and cholesteryl ester (CE) between lipoproteins. CETP has no apparent preference for high (HDL) or low (LDL) density lipoprotein as lipid donor to very low density lipoprotein (VLDL), and the preference for HDL observed in plasma is due to suppression of LDL transfers by lipid transfer inhibitor protein (LTIP). Given the heterogeneity of HDL, and a demonstrated ability of HDL subfractions to bind LTIP, we examined whether LTIP might also control CETP-facilitated lipid flux among HDL subfractions. CETP-mediated CE transfers from [3H]CE VLDL to various lipoproteins, combined on an equal phospholipid basis, ranged 2-fold and followed the order: HDL3 > LDL > HDL2. LTIP inhibited VLDL to HDL2 transfer at one-half the rate of VLDL to LDL. In contrast, VLDL to HDL3 transfer was stimulated, resulting in a CETP preference for HDL3 that was 3-fold greater than that for LDL or HDL2. Long-term mass transfer experiments confirmed these findings and further established that the previously observed stimulation of CETP activity on HDL by LTIP is due solely to its stimulation of transfer activity on HDL3. TG enrichment of HDL2, which occurs during the HDL cycle, inhibited CETP activity by approximately 2-fold and LTIP activity was blocked almost completely. This suggests that LTIP keeps lipid transfer activity on HDL2 low and constant regardless of its TG enrichment status. Overall, these results show that LTIP tailors CETP-mediated remodeling of HDL3 and HDL2 particles in subclass-specific ways, strongly implicating LTIP as a regulator of HDL metabolism.  相似文献   

20.
The binding to HepG2 cells of very low density lipoproteins (VLDL) and their remnants (IDL) was alternatively, in the past, attributed to the low density lipoprotein receptor (LDLr) or to an apoE-specific receptor. In order to resolve this issue, we have compared the binding of those lipoproteins labelled with iodine-125 to normal and LDLr deficient HepG2 cells. Those deficient cells were obtained by a constitutive antisense strategy and their LDLr level is 14% the level of normal HepG2 cells. By saturation curve analysis, we show that VLDL and IDL bind to high and low affinity sites on cells. The low affinity binding was eliminated by conducting the assay in presence of a 200-fold excess of HDL3 respective to the concentrations of 125I-labelled VLDL and IDL. For 125I-VLDL high affinity binding to normal HepG2 cells, we found a dissociation constant (Kd) of 21.2 +/- 3.7 micrograms prot./ml (S.E., N = 5) and a maximal binding capacity (Bmax) of 0.0312 +/- 0.0063 microgram prot./mg cell prot, while we have measured a Kd of 5.3 +/- 0.8 and a Bmax of 0.0081 +/- 0.0014 with LDLr deficient cells. This indicates that LDLr is responsible for 74% of VLDL binding to HepG2 cells and that the non-LDLr high affinity receptor has a higher affinity for VLDL than LDLr. A 53% loss of 125I-IDL binding capacity was measured with LDLr deficient cells compared with normal cells (Bmax: 0.028 +/- 0.005 versus 0.059 +/- 0.006), while no significant statistical difference was found between affinities. The study shows that the LDLr is almost the only contributor in VLDL binding, while it shares IDL binding capacity with another high affinity receptor. The physiological importance of LDLr is confirmed by an almost equivalent loss of IDL and VLDL degradation in LDLr deficient cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号