首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 938 毫秒
1.
Cultivated wheat Triticum turgidum is an allotetraploid (AABB) with diploid-like behaviour at metaphase I. This behaviour is mainly influenced by the action of the Ph1 locus. To study the effect of Ph1 on chromosome pairing in T. turgidum we have analysed the synaptic pattern in fully traced spread nuclei at mid- and late-zygotene and at pachytene of three different genotypes: a standard line, ph1c mutant and a duplication mutant, with zero, two and four doses of Ph1, respectively. The number of synaptonemal complex (SC) bivalents and of the different SC multivalent associations were determined in each nucleus. The mean number of lateral elements involved in SC multivalent associations (LEm) at mid-zygotene was relatively high in all lines and was similar in two and zero doses of Ph1. These means changed little with the progression of zygotene but decreased at pachytene because of the transformation of multivalents into bivalents. Multivalent correction was more efficient in the presence than in the absence of Ph1. The four doses of Ph1 genotype showed a higher number of SC bivalents at mid-zygotene, and the frequency of multivalents decreased progressively throughout zygotene and pachytene. The results suggest that the main action of the Ph1 locus on the diploidisation mechanism would be related to a process of checking for homology operating during prophase I. Received: 27 February 2000 / Accepted: 12 July 2000  相似文献   

2.
Triticum aestivum is an allohexaploid wheat (AABBDD) that shows diploid-like behaviour at metaphase-I. This behaviour is influenced by the action of several loci, Ph1 and Ph2 being the main loci involved. To study the effect of these two loci on chromosome pairing in T. aestivum we have analysed the synaptic pattern in fully traced spread nuclei at mid- and late-zygotene, and at pachytene, of three different genotypes of cv Chinese Spring: standard line, ph1b and ph2b mutants. The analysis of the synaptic progression showed that only a few nuclei accomplish synapsis in the ph2b genotype, whereas most nuclei completed synapsis in the standard and ph1b genotypes. This result indicates that the Ph2 locus affects synaptic progression. The number of synaptonemal complex (SC) bivalents and of the different SC multivalent associations were determined in each nucleus. The mean number of lateral elements involved in SC multivalent associations (LEm) at mid- zygotene was relatively high and showed similar values in the three genotypes. These values decreased progressively between mid-zygotene and pachytene in the genotypes with the Ph1 locus because of the transformation of multivalents into bivalents. In the ph1b genotype, this value only decreased between late-zygotene and pachytene. Therefore, multivalent correction was more efficient in the presence than in the absence of the Ph1 locus.It is concluded that the Ph1 and Ph2 loci bring about diploidization of allohexaploid wheat via a different mechanism. Received: 31 July 2000 / Accepted: 15 November 2000  相似文献   

3.
G. Jenkins 《Chromosoma》1985,92(5):387-390
Chromosome pairing and synaptonemal complex formation at zygotene and pachytene are described from serial section reconstructions of pollen mother cell nuclei in a triploid hybrid containing two haploid sets of Lolium perenne chromosomes, one of L. temulentum and two acces-sory B chromosomes. At pachytene the homologous L. perenne chromosomes form complete and continuous synaptonemal complexes while the L. temulentum chromosomes show extensive nonhomologous pairing both within and between themselves. At zygotene however, homoeologous pairing in the form of a trivalent and very little non-homologous pairing is observed. Evidently, there exists a mechanism that eliminates homoeologous association during zygotene to ensure strict bivalent formation between homologous chromosomes at pachytene. In Lolium this mechanism is under the influence of the B chromosomes and bears close similarity with that in allohexaploid wheat controlled by the Ph locus.  相似文献   

4.
The Ph1 locus in hexaploid wheat (Triticum aestivum L.) enforces diploid-like behavior in the first metaphase of meiosis. To test the hypothesis that this chromosome pairing control is exercised by affecting the degree of chromatin condensation, the dispersion of rye chromatin in interphase nuclei in somatic tissues of wheat-rye chromosome translocations 1RS.1BL, 2RS.2BL, 2BS.2RL, 3RS.3DL and 5RS.5BL was compared in Ph1 and ph1b isogenic backgrounds. No significant differences in rye chromatin condensation that could be attributed to the Ph1 locus were detected. Regardless of the Ph1 status, each rye chromosome arm tested conformed to the general Rabl's orientation and occupied portions of the nuclei proportional to their length. Earlier observations that indicated the involvement of Ph1 locus in rye chromatin condensation in wheat could have been due either to specific loci on the studied 5RL rye arm that control the chromosome condensation process or to damage to the genetic system controlling chromatin condensation in the existing ph1b stocks of wheat. That damage might have been caused by homoeologous recombination and uneven disjunction of chromosomes from multivalents.  相似文献   

5.
During early meiosis, chromosomes pair via their telomeres and centromeres. This pairing induces a conformational change which propagates from these regions along each chromosome, making the chromatin of the partners accessible for intimate pairing. In the present study, we show by exploiting wheat–rye hybrids that the signal is initiated in both the presence and absence of either the Ph1 or Ph2 locus. However, the chromatin change only continues to propagate through rye telomeric heterochromatin when Ph1 is absent. This failure to propagate the chromatin change through the rye heterochromatin in the absence of Ph2 correlates with a subsequent lack of wheat–rye chromosome association at metaphase I.  相似文献   

6.
Different wild allopolyploid species of Triticeae show extensive bivalent formation at zygotene while a considerable number of multivalents is present in cultivated polyploid wheats. To study the chromosome behaviour at early meiotic stages in wild forms of tetraploid wheats Triticum turgidum and T timopheevii (2n = 4x = 28) we have analysed the synaptic pattern in fully traced spread nuclei at mid- and late zygotene and at pachytene of wild accessions of these species. The mean number of synaptonemal complex (SC) bivalents at mid-zygotene ranged from 12.22 to 13.14 among the accessions studied indicating a strong restriction of synapsis initiation to homologous chromosomes. The mean of bivalents increased at pachytene because of the transformation of multivalents into bivalents. Ring bivalents observed at metaphase I support that SC bivalents were formed by homologous chromosomes. The average values of SC bivalents at mid-zygotene in the wild forms are much higher than the average values observed in the cultivated tetraploid wheats but similar to that of a mutant line of T turgidum with a duplication that includes Ph1, the major homoeologous pairing suppressor locus. These results suggest that the efficiency of the mechanism operating in the homologous recognition for synapsis is higher in wild wheat populations than in cultivated varieties. Apparently, a relatively detrimental modification of the pairing regulating genetic system accompanied the domestication of the wild wheat forms.  相似文献   

7.
Chromosome pairing behaviour of the allotetraploid Aegilops species sharing the D genome, Ae. crassa (DDMM), Ae. cylindrica (DDCC) and Ae. ventricosa (DDNN), was analyzed by electron microscopy in surfacespread prophase-I nuclei. Synaptonemal-complex analysis at zygotene and pachytene revealed that synapsis in the allotetraploids was mostly between homologous chromosomes, although a few multivalents were also formed. Only homologous bivalents were observed at metaphase-I. It is concluded that the mechanism controlling bivalent formation in these species acts mainly at zygotene by restricting pairing to homologous chromosomes, but also acts at pachytene by preventing chiasma formation in homoeologous associations. These observations are discussed in relation to mechanisms of diploidization of polyploid meiosis.  相似文献   

8.
Synaptonemal complexes (SCs) were found in stage 3, premeiotic (S phase) pollen mother cell (PMC) nuclei of wheat which were labeled with 3H-thymidine. Three nucleoli are present in PMC nuclei at the beginning of stage 3, premeiotic interphase (S3). During S3, nucleoli move toward the nuclear envelope and fuse to form one nucleolus near the end of the stage. PMC nuclei labeled with 3H-thymidine were serially sectioned to show that more than one nucleolus was present and that SCs were also present in these DNA synthetic nuclei. Entire S3 PMC nuclei were serially sectioned to show the presence of SCs and all three nucleoli. Entire leptotene nuclei were also serially sectioned and segments of SCs were found. It is concluded that the association of homologous chromosomes in S3 of wheat is an early step in SC formation which proceeds through leptotene and is completed in zygotene and pachytene. Thus there is evidence that the continuum of chromosome pairing in wheat starts much earlier than was once thought.  相似文献   

9.
Centromeres at premeiotic interphase are clustered and situated in a small area of the nucleus opposite to the nuclear envelope associated heterochromatic masses. The centromeres may occur singly or they may associate to form a structure composed of 2 or more centromeres. Many centromere associations are nonhomologous. Interphase centromeres are not attached to the nuclear envelope. — At zygotene and pachytene centromeres are no longer clustered at one pole of the nucleus but rather are distributed throughout the nucleus. Premeiotic associations appear to be resolved prior to meiotic pairing. Only homologous centromere associations occur during zygotene and pachytene. There is no indication that premeiotic centromere associations are involved in prezygotene alignment of homologous chromosomes.  相似文献   

10.
Triticum timopheevii (2n=4x=AtAtGG) is an allotetraploid wheat which shows a diploid-like behaviour at metaphase-I. The synaptic process was analyzed in fully traced spread nuclei at mid-zygotene, late-zygotene and pachytene. The length and type of synaptonemal complexes, as well as the number of bivalent and multivalent associations, were determined in each nucleus. A high number of bivalents per nucleus was detected at all three stages. Nuclei at pachytene showed a lower frequency of multivalents than did zygotene nuclei, which suggests the existence of a pairing correction mechanism. At metaphase-I only homologous bivalents and, rarely, one pair of univalents were observed. Similarities between the diploidization mechanism of T. timopheevii and that of allohexaploid wheat, controlled by chromosome 5B, are discussed.  相似文献   

11.
Mu C  Wang S  Zhang S  Pan J  Chen N  Li X  Wang Z  Liu H 《Plant cell reports》2011,30(10):1981-1989
Plant meiotic prophase I is a complicated process involving the late zygotene and pachytene stages, both crucial for completing synapsis and recombination. Using David Lily (Lilium davidii var. Willmottiae) as our research material, we performed suppression subtractive hybridization to construct EST library of anthers at various stages of development by the pollen mother cells. From this library, we identified small heat shock protein LimHSP16.45 was highly expressed during the late zygotene to pachytene stages. Our results also showed that LimHSP16.45 was almost specifically expressed in the anther compared with the root, stem, or leaf, and in situ expression of LimHSP16.45 mRNAs showed strong signals in the pollen mother cells and tapetal cells. LimHSP16.45 could be induced by heat and cold in lily anthers, and its ectopic expression enhanced the viability of E. coli cells under both high and low temperatures. In vitro, it acted as molecular chaperone and could help luciferase refolding after heat shock stress. All of these data suggest that LimHSP16.45, working as molecular chaperone, possibly protects pollen mother cells and tapetal cells against extreme temperatures during late zygotene to pachytene stages of meiotic prophase I in David Lily.  相似文献   

12.
The normal course of meiosis depends on regular pairing of homologous chromosomes. In intergeneric hybrids, including those of wheat, there is no chromosome pairing because there are no homologs. In F1 wheat/rye hybrids, pairing is largely prevented by the pairing homoeologous1 (Ph1) gene. In its presence, there are only rare instances of pairing; most chromosomes are univalent, and their orientation at metaphase I initiates different pathways of the meiotic cycle. The meiotic-like pathway includes a combination of the reductional and the equational + reductional steps at AI followed by the second division. The resulting gametes are mostly non-functional. The mitotic-like pathway involves equational division of univalents at AI and the absence of the second division. Any fertility of wheat/rye hybrids depends on the production of unreduced gametes arising from meiotic restitution (mitotic-like division). We examined the meiotic pairing in wheat/rye hybrids created from wheat lines with single rye chromosome substitutions and Ph1 present. This guaranteed F1 meiosis with one pair of rye homologs. All hybrids formed bivalents, but proportions of meiocytes with bivalents varied. In the meiocytes where bivalents were present, there was a higher tendency for the meiotic-like pathway, while in meiocytes where bivalent pairing failed, the tendency was stronger for the mitotic-like pathway. Among the equationally dividing cells, we observed more than 90 % of meiocytes without bivalents, where rye homologs did not form bivalents, too. The data indicate a potential application of wheat/rye lines in producing genetic stocks of amphidiploids with designated genomic constitutions.  相似文献   

13.
C. B. Gillies 《Chromosoma》1985,92(3):165-175
A spreading technique was used to allow ultrastructural analysis of seventeen zygotene nuclei of rye (Secale cereale). Twenty pachytene nuclei were also examined. Lateral element lengths of the haploid complements decreased from 742 m at the beginning of zygotene to 451 m at the end of zygotene. Variation in pachytene synaptonemal complex lengths was also noted. Zygotene synaptonemal complex formation in rye is characterised by: (1) existence of a bouquet, with telomeric pairing initiation earliest; (2) multiple sites of initiation in each bivalent (maximum of 76 synaptonemal complex segments seen in one nucleus); (3) the potential number of pairing initiation sites may be higher (the average spacing of 4.42 m would allow approximately 160 sites per nucleus); (4) new pairing initiations occur almost until the end of zygotene; (5) initiation of new synaptonemal complexes and extension of existing synaptonemal complexes occur simultaneously. A simple zipping up of a few initiation sites is not the case in rye. Pairing in different bivalents of a nucleus is not completely synchronised, and the NOR in particular is often late to pair. Interlocking of lateral elements and synaptonemal complexes may lead to delayed completion of pairing in portions of bivalents, but interlocks are ultimately resolved. This resolution may involve breakage and rejoining of lateral elements.  相似文献   

14.
Induction of recombination between rye chromosome 1RL and wheat chromosomes   总被引:2,自引:0,他引:2  
Summary The ph1b mutant in bread wheat has been used to induce homoeologous pairing and recombination between chromosome arm 1RL of cereal rye and wheat chromosome/s. A figure of 2.87% was estimated for the maximal frequency of recombination between a rye glutelin locus tightly linked to the centromere and the heterochromatic telomere on the long arm of rye chromosome 1R in the progeny of ph1b homozygotes. This equates to a gametic recombination frequency of 1.44%. This is the first substantiated genetic evidence for homoeologous recombination between wheat and rye chromosomes. No recombinants were confirmed in control populations heterozygous for ph1b. The ph1b mutant was also observed to generate recombination between wheat homoeologues.  相似文献   

15.
Allopolyploid wheat (Triticum aestivum L.) carries three pairs of homoeologous genomes but its meiotic pairing is diploid-like. This is the effect of the Ph (pairing homoeologous) system which restricts chromosome pairing to strictly homologous. Ph1 is the locus with the strongest effect. Disabling Ph1 permits pairing between homoeologues and is routinely used in chromosome engineering to introgress alien variation into breeding stocks. Whereas the efficiency of Ph1 and the general pattern of homoeologous crossovers in its absence are quite well known from numerous studies, other characteristics of such crossovers remain unknown. This study analyzed the crossover points in four sets of the ph1b-induced recombinants between wheat homologues as well as between three wheat and rye (Secale cereale) homoeologous chromosome arms, and compared them to crossovers between homologues in a reference wheat population. The results show the Ph1 locus also controls crossing over of homologues, and the general patterns of homologous (with Ph1) and homoeologous (with ph1b) crossing over are the same. In all intervals analyzed, homoeologous crossovers fell within the range of frequency distribution of homologous crossovers among individual families of the reference population. No specific DNA sequence characteristics were identified that could be recognized by the Ph1 locus; the only difference between homologous and homoeologous crossing over appears to be in frequency. It is concluded that the Ph1 locus likely recognizes DNA sequence similarity; crossing over is permitted between very similar sequences. In the absence of Ph1 dissimilarities are ignored, in proportion to the level of the sequence divergence.  相似文献   

16.
J M Vega  M Feldman 《Genetics》1998,150(3):1199-1208
The analysis of the pattern of isochromosome pairing allows one to distinguish factors affecting presynaptic alignment of homologous chromosomes from those affecting synapsis and crossing-over. Because the two homologous arms in an isochromosome are invariably associated by a common centromere, the suppression of pairing between these arms (intrachromosome pairing) would indicate that synaptic or postsynaptic events were impaired. In contrast, the suppression of pairing between an isochromosome and its homologous chromosome (interchromosome pairing), without affecting intrachromosome pairing, would suggest that homologous presynaptic alignment was impaired. We used such an isochromosome system to determine which of the processes associated with chromosome pairing was affected by the Ph1 gene of common wheat-the main gene that restricts pairing to homologues. Ph1 reduced the frequency of interchromosome pairing without affecting intrachromosome pairing. In contrast, intrachromosome pairing was strongly reduced in the absence of the synaptic gene Syn-B1. Premeiotic colchicine treatment, which drastically decreased pairing of conventional chromosomes, reduced interchromosome but not intrachromosome pairing. The results support the hypothesis that premeiotic alignment is a necessary stage for the regularity of meiotic pairing and that Ph1 relaxes this alignment. We suggest that Ph1 acts on premeiotic alignment of homologues and homeologues as a means of ensuring diploid-like meiotic behavior in polyploid wheat.  相似文献   

17.
Meiosis occupies only a very short period of the life cycle of higher plants but it is a crucial process ensuring the correct passage and maintenance of genetic information from parent to offspring. A clone (designated pAWJL3) has been isolated from a cDNA library generated from RNA prepared from young wheat florets at early meiosis. The clone was identified through cross-hybridisation to a cDNA clone from maize that, in turn, had been isolated by hybridisation to a Lilium meiosis-specific cDNA clone. The genes encoding the sequence represented in the wheat cDNA clone have been assigned to chromosomes in wheat. The clone, pAWJL3, represents a small family of genes with about 20 members located on the short arms of group 3 and 5 chromosomes. The chromosomal regions harbour genes known to control chromosomal pairing in wheat. DNA prepared from a deletion mutation affecting one of the major genes controlling pairing, Ph2 located on the short arm of 3DS, lacks the 3DS-specific members of the pAWJL3 family bands. The genes are shown to be expressed only after leptotene and predominantly at zygotene and pachytene of meiosis I. The deduced amino acid sequence encoded by the cDNA clone shows two domains, one with three leucine-rich, 24-amino acid repeats and the other with four leucine heptad repeats that resemble those found in basic leucine zipper proteins.  相似文献   

18.
Sen Pathak  T. C. Hsu 《Chromosoma》1976,57(3):227-234
Using C-banded preparations of Mus dunni it is possible to study the behavior of constitutive heterochromatin in early stages of meiotic prophase. The X and the Y chromosomes, both of which contain a large amount of heterochromatin, lie apart in leptotene but move toward each other during zygotene. They then form the sex vesicle at late zygotene. In autosomes zygotene pairing appears to start from the telomeric ends. The centromere of the Y chromosome associates end-to-end with the terminal end of the long arm of the X chromosome. The autosomal heterochromatic short arms show forked morphology in certain bivalents at pachytene, suggesting probable incomplete synapsis.  相似文献   

19.
Recognition of Homeology by the Wheat Ph1 Locus   总被引:2,自引:0,他引:2       下载免费PDF全文
M. C. Luo  J. Dubcovsky    J. Dvorak 《Genetics》1996,144(3):1195-1203
Chromosome 1A(m) of Triticum monococcum is closely homeologous to T. aestivum chromosome 1A but recombines with it little in the presence of the wheat suppressor of homeologous chromosome pairing, Ph1. In the absence of Ph1, the two chromosomes recombine as if they were completely homologous. Chromosomes having either terminal or interstitial segments of chromosome 1A(m) in 1A were constructed and their recombination with 1A was investigated in the presence of Ph1. No recombination was detected in the homeologous (1A(m)/1A) segments, irrespective of whether terminally or interstitially positioned in a chromosome, whereas the levels of recombination in the juxtaposed homologous (1A/1A) segments was normal or close to normal relative to completely homologous 1A chromosomes. These observations show that Ph1 does not regulate chromosome pairing by premeiotic chromosome alignment and a mitotic spindle-centromere interaction, as has been suggested, but processes homology along the entire length of chromosomes.  相似文献   

20.
Meiotic prophase in rye was investigated by serial-section reconstruction of pollen mother cell nuclei. In the mid-late zygotene nucleus, all lateral elements were continuous from telomere to telomere, and 9–20 pairing initiation sites per bivalent were observed. Chromosome and bivalent interlockings detected during zygotene were resolved at early pachytene when pairing was completed. In the three pachytene nuclei, the relative synaptonemal complex (SC) lengths and arm ratios were found to be in good correlation with light microscopic data of pachytene bivalents. Spatial tracing of the bivalents showed that they occupy separate areas in the nucleus. Three types of recombination nodules were observed: large, ellipsoïdal and small nodules at early pachytene and irregularly shaped nodules mainly associated with chromatin at late pachytene. Their number and position along the bivalents correlated well with the number and distribution of chiasmata. The classification of the seven bivalents was based on arm ratio and heterochromatic knob distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号