首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surfactant secretion by lung type II cells occurs when lamellar bodies (LBs) fuse with the plasma membrane and surfactant is released into the alveolar lumen. Surfactant protein A (SP-A) blocks secretagogue-stimulated phospholipid (PL) release, even in the presence of surfactant-like lipid. The mechanism of action is not clear. We have shown previously that an antibody to LB membranes (MAb 3C9) can be used to measure LB membrane trafficking. Although the ATP-stimulated secretion of PL was blocked by SP-A, the cell association of iodinated MAb 3C9 was not altered, indicating no effect on LB movement. FM1-43 is a hydrophobic dye used to monitor the formation of fusion pores. After secretagogue exposure, the threefold enhancement of the number of FM1-43 fluorescent LBs (per 100 cells) was not altered by the presence of SP-A. Finally, there was no evidence of a large PL pool retained on the cell surface through interaction with SP-A. Thus SP-A exposure does not affect these stages in the surfactant secretory pathway of type II cells.  相似文献   

2.
Pulmonary surfactant, a critical determinant of alveolar stability, is secreted by alveolar type II cells by exocytosis of lamellar bodies (LBs). To determine exocytosis mechanisms in situ, we imaged single alveolar cells from the isolated blood-perfused rat lung. We quantified cytosolic Ca(2+) concentration ([Ca(2+)](i)) by the fura 2 method and LB exocytosis as the loss of cell fluorescence of LysoTracker Green. We identified alveolar cell type by immunofluorescence in situ. A 15-s lung expansion induced synchronous [Ca(2+)](i) oscillations in all alveolar cells and LB exocytosis in type II cells. The exocytosis rate correlated with the frequency of [Ca(2+)](i) oscillations. Fluorescence of the lipidophilic dye FM1-43 indicated multiple exocytosis sites per cell. Intracellular Ca(2+) chelation and gap junctional inhibition each blocked [Ca(2+)](i) oscillations and exocytosis in type II cells. We demonstrated the feasibility of real-time quantifications in alveolar cells in situ. We conclude that in lung expansion, type II cell exocytosis is modulated by the frequency of intercellularly communicated [Ca(2+)](i) oscillations that are likely to be initiated in type I cells. Thus during lung inflation, type I cells may act as alveolar mechanotransducers that regulate type II cell secretion.  相似文献   

3.
To determine whether increases in the cytosolic free Ca2+ concentration ([Ca2+]i) accompany agonist-stimulated surfactant secretion by cultured alveolar type II cells, we measured the [Ca2+]i of quin2-loaded cells isolated from adult rats before and after cells were stimulated with ionomycin, terbutaline or tetradecanoylphorbol acetate (TPA). To determine whether increases in [Ca2+]i are necessary for stimulated surfactant secretion to occur, we measured secretion in cells after [Ca2+]i had been reduced by loading cells with quin2 in medium containing low [Ca2+]. Ionomycin increased [Ca2+]i and stimulated surfactant secretion in a dose-dependent manner. Reductions in [Ca2+]i correlated with reductions in secretion stimulated by ionomycin, terbutaline or TPA. Ionomycin-stimulated secretion was most sensitive to reductions in [Ca2+]i; terbutaline-stimulated secretion was more sensitive than TPA-stimulated secretion. When [Ca2+]i was less than 65 nM, all stimulated secretion was blocked. Restoration of [Ca2+]i to greater than 100 nM restored ionomycin-stimulated secretion. We conclude that ionomycin increases [Ca2+]i and stimulates surfactant secretion in cultured alveolar type II cells, and that increased [Ca2+]i appears to be necessary for ionomycin-stimulated secretion to occur. Terbutaline-stimulated surfactant secretion seems to be more easily inhibited by a reduction in [Ca2+]i than does TPA-stimulated secretion.  相似文献   

4.
Dietl P  Haller T  Frick M 《Cell calcium》2012,52(3-4):296-302
The type II cell of the pulmonary alveolus is a polarized epithelial cell that secretes surfactant into the alveolar space by regulated exocytosis of lamellar bodies (LBs). This process consists of multiple sequential steps and is correlated to elevations of the cytoplasmic Ca(2+) concentration ([Ca(2+)](c)) required for extended periods of secretory activity. Both chemical (purinergic) and mechanical (cell stretch or exposure to an air-liquid interface) stimuli give rise to complex Ca(2+) signals (such as Ca(2+) peaks, spikes and plateaus) that differ in shape, origin and spatio-temporal behavior. This review summarizes current knowledge about Ca(2+) channels, including vesicular P2X4 purinoceptors, in type II cells and associated signaling cascades within the alveolar microenvironment, and relates stimulus-dependent activation of these pathways with distinct stages of surfactant secretion, including pre- and postfusion stages of LB exocytosis.  相似文献   

5.
Voets T 《Neuron》2000,28(2):537-545
In neurosecretory cells, intracellular Ca2+ ([Ca2+]i) not only acts as the trigger for secretion but also regulates earlier steps in the secretory pathway. Here, a novel approach was developed to control [Ca2+]i over a broad concentration range, which allowed the quantification of three distinct actions of [Ca2+]i on large dense-core vesicle (LDCV) fusion in chromaffin cells from mouse adrenal slices. Basal [Ca2+]i regulated the transfer of vesicles toward a slowly releasable state, whereas further maturation to the readily releasable state was Ca2+ independent. [Ca2+]i levels above 3 microM triggered exocytosis of all readily and slowly releasable vesicles in two parallel, kinetically distinct fusion reactions. In a molecular context, these results suggest that Ca2+ acts both before and after trans-SNARE complex formation to regulate fusion competence and fusion kinetics of LDCVs.  相似文献   

6.
Lung surfactant is crucial for reducing the surface tension of alveolar space, thus preventing the alveoli from collapse. Lung surfactant is synthesized in alveolar epithelial type II cells and stored in lamellar bodies before being released via the fusion of lamellar bodies with the apical plasma membrane. SNAREs (soluble N‐ethylmaleimide‐sensitive fusion protein‐attachment protein receptors) play an essential role in membrane fusion. We have previously demonstrated the requirement of t‐SNARE (target SNARE) proteins, syntaxin 2 and SNAP‐23 (N‐ethylmaleimide‐sensitive factor‐attachment protein 23), in regulated surfactant secretion. Here, we characterized the distribution of VAMPs (vesicle‐associated membrane proteins) in rat lung and alveolar type II cells. VAMP‐2, ?3 and ?8 are shown in type II cells at both mRNA and protein levels. VAMP‐2 and ?8 were enriched in LB (lamellar body) fraction. Immunochemistry studies indicated that VAMP‐2 was co‐localized with the LB marker protein, LB‐180. Functionally, the cytoplasmic domain of VAMP‐2, but not VAMP‐8 inhibited surfactant secretion in type II cells. We suggest that VAMP‐2 is the v‐SNARE (vesicle SNARE) involved in regulated surfactant secretion.  相似文献   

7.
8.
The interaction between beta-adrenergic signaling and the activation of protein kinase C in alveolar type II cell plays an important role in the regulation of surfactant secretion because the combined application of beta-adrenergic agonist with protein kinase C activator to the cells stimulates the secretion synergistically. However, the mechanisms underlying the interaction are not clear. In the present study, we examined the combined effect of terbutaline with phorbol 12-myristate 13-acetate (PMA) on cytoplasmic free Ca2+ concentration ([Ca2+]i) in rat alveolar type II cells. The combined application of terbutaline with PMA to the cells rapidly increased [Ca2+]i, although neither of them affected it by itself. Similar increases of [Ca2+]i were observed in other combinations, such as terbutaline with 1-oleoyl-2-acetyl-sn-glycerol, and forskolin with PMA. Either the removal of extracellular Ca2+ or the addition of Co2+ remarkably suppressed the increase of [Ca2+]i induced by the combination of terbutaline with PMA. In addition, Co2+ inhibited the phosphatidylcholine secretion induced by the combination of terbutaline and PMA. These results suggested that the [Ca2+]i increased as a result of the interaction between formation of cyclic AMP and activation of protein kinase C in alveolar type II cells, and that the increase in [Ca2+]i was mediated by the Ca2+ influx through the plasma membrane. This mechanism to modulate [Ca2+]i may play a role in the regulation of surfactant secretion by alveolar type II cells.  相似文献   

9.
The lamellar body (LB), a concentric structure loaded with surfactant proteins and phospholipids, is an organelle specific to type 2 alveolar epithelial cells (AT2). However, the origin of LBs has not been fully elucidated. We have previously reported that autophagy regulates Weibel-Palade bodies (WPBs) formation, and here we demonstrated that autophagy is involved in LB maturation, another lysosome-related organelle. We found that during development, LBs were transformed from autophagic vacuoles containing cytoplasmic contents such as glycogen. Fusion between LBs and autophagosomes was observed in wild-type neonate mice. Moreover, the markers of autophagic activity, microtubule-associated protein 1 light chain 3B (LC3B), largely co-localized on the limiting membrane of the LB. Both autophagy-related gene 7 (Atg7) global knockout and conditional Atg7 knockdown in AT2 cells in mice led to defects in LB maturation and surfactant protein B production. Additionally, changes in autophagic activity altered LB formation and surfactant protein B production. Taken together, these results suggest that autophagy plays a critical role in the regulation of LB formation during development and the maintenance of LB homeostasis during adulthood.  相似文献   

10.
The authors describe a simple, reliable, and quantitative assay to monitor exocytotic fusion of lamellar bodies (LBs) in adherent rat alveolar type II (AT II) cells. The assay is based on fluorescence measurements of LB-plasma membrane (PM) fusions modified for the use in multiwell culture plates to obtain a high-sample throughput. In particular, it is based on the presence of a highly light-absorbing dye in the cell supernatants to increase the specificity of fluorescence signals and to yield pseudo-confocal information from the cells. When the assay was tested with agonist-(ATP) and phorbolester-induced stimulation of LB-PM fusions, the authors found a good correlation with direct microscopic investigations based on single cell recordings. To further validate the assay, they used Curosurf at 10 mg/ml. However, it influenced neither the basal nor the ATP-stimulated rate of LB-PM fusions. This was corroborated by the fact that Curosurf had no effect on resting Ca (2+) levels nor the ATP induced Ca (2+) signals. The results cast new light on previous findings that surfactant phospholipids decrease the rate of secretion in AT II cells in a dose-dependent way. The authors conclude that the inhibitory effect exerted by phospholipids might be due to action on a later step in exocytosis, probably associated with exocytotic fusion pore expansion and content release out of fused vesicles.  相似文献   

11.
It is well established that the release of surfactant phospholipids into the alveolar lumen proceeds by the exocytosis of lamellar bodies (LBs), the characteristic storage organelles of surfactant in alveolar type II cells. Consequently, the fusion of LBs with the plasma membrane and the formation of exocytotic fusion pores are key steps linking cellular synthesis of surfactant with its delivery into the alveolar space. Considering the unique structural organization of LBs or LB-associated aggregates which are found in lung lavages, and the roughly 1-microm-sized dimensions of these particles, we speculated whether the fusion pore diameter of fused LBs might be a specific hindrance for surfactant secretion, delaying or even impeding full release. In this mini-review, we have compiled published data shedding light on a possibly important role of fusion pores during the secretory process in alveolar type II cells.  相似文献   

12.
The cytosolic free calcium concentration ([Ca2+]i) and exocytosis of chromaffin granules were measured simultaneously from single, intact bovine adrenal chromaffin cells using a novel technique involving fluorescent imaging of cocultured cells. Chromaffin cell [Ca2+]i was monitored with fura-2. To simultaneously follow catecholamine secretion, the cells were cocultured with fura-2-loaded NIH-3T3t cells, a cell line chosen because of their irresponsiveness to chromaffin cell secretagogues but their large Ca2+ response to ATP, which is coreleased with catecholamine from the chromaffin cells. In response to the depolarizing stimulus nicotine (a potent secretagogue), chromaffin cell [Ca2+]i increased rapidly. At the peak of the response, [Ca2+]i was evenly distributed throughout the cell. This elevation in [Ca2+]i was followed by a secretory response which originated from the entire surface of the cell. In response to the inositol 1,4,5-trisphosphate (InsP3)-mobilizing agonist angiotensin II (a weak secretagogue), three different responses were observed. Approximately 30% of chromaffin cells showed no rise in [Ca2+]i and did not secrete. About 45% of the cells responded with a large (greater than 200 nM), transient elevation in [Ca2+]i and no detectable secretory response. The rise in [Ca2+]i was nonuniform, such that peak [Ca2+]i was often recorded only in one pole of the cell. And finally, approximately 25% of cells responded with a similar Ca2+-transient to that described above, but also gave a secretory response. In these cases secretion was polarized, being confined to the pole of the cell in which the rise in [Ca2+]i was greatest.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
In alveolar type II (AT II) cells, pulmonary surfactant (PS) is synthetized, stored and exocytosed from lamellar bodies (LBs), specialized large secretory organelles. By applying polarization microscopy (PM), we confirm a specific optical anisotropy of LBs, which indicates a liquid-crystalline mesophase of the stored surfactant phospholipids (PL) and an unusual case of a radiation-symmetric, spherocrystalline organelle. Evidence is shown that the degree of anisotropy is dependent on the amount of lipid layers and their degree of hydration, but unaffected by acutely modulating vital cell parameters like intravesicular pH or cellular energy supply. In contrast, physiological factors that perturb this structure include osmotic cell volume changes and LB exocytosis. In addition, we found two pharmaceuticals, Amiodarone and Ambroxol, both of which severely affect the liquid-crystalline order. Our study shows that PM is an easy, very sensitive, but foremost non-invasive and label-free method able to collect important structural information of PS assembly in live AT II cells which otherwise would be accessible by destructive or labor intense techniques only. This may open new approaches to dynamically investigate LB biosynthesis - the incorporation, folding and packing of lipid membranes - or the initiation of pathological states that manifest in altered LB structures. Due to the observed drug effects, we further suggest that PM provides an appropriate way to study unspecific drug interactions with alveolar cells and even drug-membrane interactions in general.  相似文献   

14.
Internal Ca2+ mobilization and secretion in bovine adrenal chromaffin cells   总被引:5,自引:0,他引:5  
T R Cheek  O Thastrup 《Cell calcium》1989,10(4):213-221
Since secretion from intact bovine adrenal chromaffin cells in response to depolarization by nicotine is triggered by a rise in the concentration of intracellular Ca2+ ([Ca2+]i) to about 200-300 nM above basal, it has been assumed that the failure of the inositol 1,4,5-trisphosphate (InsP3)-mobilizing muscarinic agonists to induce secretion reflects the fact that the 50 nM rise in [Ca2+]i they elicit is insufficient to trigger the exocytotic machinery. A recent report, however, has demonstrated that some of the nicotine-induced rise in [Ca2+]i could originate from the InsP3-releasable Ca2+ store. The role of this Ca2+ store in secretion from bovine adrenal chromaffin cells is therefore unclear. In order to investigate in more detail the role of the InsP3-sensitive Ca2+ store in secretion from these cells, we have used a combination of an InsP3-mobilizing muscarinic agonist and the sesquiterpene lactone thapsigargin (TG), which releases internal Ca2+ without concomitant breakdown of inositol lipids or protein kinase C activation, to examine the events which follow depletion of the releasable Ca2+ store in these cells. Monitoring [Ca2+]i using Fura-2 demonstrated that TG released Ca2+ from the InsP3-sensitive store and, additionally, that the Ca2+ response to TG was composed of two distinct, temporally separated, components: a) a slow (1 min) increase in [Ca2+]i to approximately 50 nM above basal that was independent of extracellular Ca2+ and b) the maintenance of this level at a new steady-state that was dependent on the continual entry of extracellular Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Angiotensin II (Ang II) increases intracellular calcium concentration ([Ca2+]i) in both normal and cancerous human breast cells in primary culture. Maximal [Ca2+]i increase is obtained using 100nM Ang II in both cell types; in cancerous breast cells, [Ca2+]i increase (delta[Ca2+]i) is 135+/-10nM, while in normal breast cells it reaches 65+/-5 nM (P<0.0001). In both cell types, Ang II evokes a Ca2+ transient peak mediated by thapsigargin (TG) sensitive stores; neither Ca2+ entry through L-type membrane channels or capacitative Ca2+ entry are involved. Type I Ang II receptor subtype (AT1) mediates Ang II-dependent [Ca2+]i increase, since losartan, an AT1 inhibitor, blunted [Ca2+]i increase induced by Ang II in a dose-dependent manner, while CGP 4221A, an AT2 inhibitor, does not. Phospholipase C (PLC) is involved in this signaling mechanism, as U73122, a PLC inhibitor, decreases Ang II-dependent [Ca2+]i transient peak in a dose-dependent mode.Thus, the present study provides new information about Ca2+ signaling pathways mediated through AT1 in breast cells in which no data were yet available.  相似文献   

16.
Pulmonary surfactant is a lipoprotein complex that functions to reduce surface tension at the air liquid interface in the alveolus of the mature lung. In late gestation glycogen-laden type II cells shift their metabolic program toward the synthesis of surfactant, of which phosphatidylcholine (PC) is by far the most abundant lipid. To investigate the cellular site of surfactant PC synthesis in these cells we determined the subcellular localization of two key enzymes for PC biosynthesis, fatty acid synthase (FAS) and CTP:phosphocholine cytidylyltransferase-alpha (CCT-alpha), and compared their localization with that of surfactant storage organelles, the lamellar bodies (LBs), and surfactant proteins (SPs) in fetal mouse lung. Ultrastructural analysis showed that immature and mature LBs were present within the glycogen pools of fetal type II cells. Multivesicular bodies were noted only in the cytoplasm. Immunogold electron microscopy (EM) revealed that the glycogen pools were the prominent cellular sites for FAS and CCT-alpha. Energy-filtering EM demonstrated that CCT-alpha bound to phosphorus-rich (phospholipid) structures in the glycogen. SP-B and SP-C, but not SP-A, localized predominantly to the glycogen stores. Collectively, these data suggest that the glycogen stores in fetal type II cells are a cellular site for surfactant PC synthesis and LB formation/maturation consistent with the idea that the glycogen is a unique substrate for surfactant lipids.  相似文献   

17.
Cytosolic free calcium ([Ca2+]i) and fusion of secondary granules with the phagosomal membrane (phagosome-lysosome fusion, P-L fusion) were assessed in single adherent human neutrophils during phagocytosis of C3bi-opsonized yeast particles. Neutrophils were loaded with the fluorescent dye fura2/AM and [Ca2+]i was assessed by dual excitation microfluorimetry. Discharge of lactoferrin, a secondary granule marker into the phagosome was verified by immunostaining using standard epifluorescence, confocal laser scanning and electron microscopy. In Ca2(+)-containing medium, upon contact with a yeast particle, a rapid rise in [Ca2+]i was observed, followed by one or more Ca2+ peaks (maximal value 1,586 nM and median duration 145 s): P-L fusion was detected in 80% of the cells after 5-10 min. In Ca2(+)-free medium the amplitude, frequency and duration of the [Ca2+]i transients were decreased (maximal value 368 nM, mostly one single Ca2+ peak and median duration 75 s): P-L fusion was decreased to 52%. Increasing the cytosolic Ca2+ buffering capacity by loading the cells with MAPT/AM led to a dose-dependent inhibition both of [Ca2+]i elevations and P-L fusion. Under conditions where basal [Ca2+]i was reduced to less than 20 nM and intracellular Ca2+ stores were depleted, P-L fusion was drastically inhibited while the cells ingested yeast particles normally. P-L fusion could be restored in Ca2(+)-buffered cells containing ingested particles by elevating [Ca2+]i with the Ca2(+)-ionophore ionomycin. The present findings directly indicate that although the ingestion step of phagocytosis is a Ca2(+)-independent event, [Ca2+]i transients triggered upon contact with opsonized particles are necessary to control the subsequent fusion of secondary granules with the phagosomal membrane.  相似文献   

18.
《The Journal of cell biology》1984,99(3):1167-1172
We have developed an accurate and practical method for measuring intracellular Ca2+ concentration [( Ca2+]i) in single cells in monolayer culture using the fluorescent Ca2+-binding dye quin2. Quin2 was loaded into cells as a membrane-permeant ester which is hydrolyzed in the cytoplasm to the impermeant free acid, which is the indicator form (Tsien, R.Y., T. Pozzan, and T.J. Rink, 1982, J. Cell Biol., 94:325-334). The method involves the measurement of fluorescence at 340- nm excitation (I340), where dye fluorescence is dependent on Ca2+, and at 360-nm excitation (I360), where dye fluorescence is independent of Ca2+. The ratio of these two values (I340/I360) is thus related to the concentration of Ca2+ but independent of dye concentration and can be used as a measure of [Ca2+]. To test the ratio method in the microscope, we measured [Ca2+]i in GH3 cells in monolayer culture. We found a resting [Ca2+]i of 44 +/- 28 nM (mean +/- SD, n = 34), as compared with a suspension value (Gershengorn, M., and C. Thaw, 1983, Endocrinology, 113:1522-1524) of 118 +/- 18 nM. We also measured [Ca2+]i during stimulation of the cells with thyrotropin-releasing hormone (TRH) and found a 2.4-fold increase above resting levels within 20 s, a trough at 73% of resting at 90-100 s, and a peak slightly above resting at 3 min. Depolarization of the plasma membrane with KCl produced a sustained increase in [Ca2+]i. All of these data are in good agreement with the results of Gershengorn and Thaw on suspension cultures. When measuring both resting [Ca2+]i and the effects of TRH and KCl on small groups of cells, we found some variation among experiments. Using an image intensifier-video camera, we videotaped cells during TRH stimulation. Digital image analysis of these pictures demonstrated that there was a large variation in responsiveness from cell to cell. The microscope ratio method offers the possibility of resolving regions of differing [Ca2+] within the cytoplasm.  相似文献   

19.
Changes of intracellular free Mg2+ concentration ([Mg2+]i) in human amnion cells induced by superoxide anion were determined using a highly Mg(2+)-sensitive fluorescent dye Mg(2+)-fura2 or Mg(2+)-indol. Superoxide anion, produced by addition of xanthine oxidase to hypoxanthine, induced decrease of [Mg2+]i. The decrease was significantly inhibited by an anion channel blocker, 4,4'diisothiocyano-2,2' disulfonic acid stilbene (DIDS). Superoxide dismutase (SOD), injected into cells by cell fusion, also inhibited the change of [Mg2+]i, but catalase did not. Superoxide anion induced prompt increase of intracellular pH (pHi) as well as decrease of [Mg2+]i and subsequently activated the increase of intracellular free Ca2+ ([Ca2+]i) and the release of arachidonate. In contrast to superoxide anion, NH4Cl which induces increase of pHi in amnion cells increased [Mg2+]i. The elevation of basal level of [Mg2+]i by Mg(2+)-ionophore inhibited the change of [Ca2+]i and the release of arachidonate induced by superoxide anion. These results suggest that superoxide anion, transported through anion channels into cells, decreases [Mg2+]i directly, not due to a pH-effect and that the decrease of [Mg2+]i may regulate biological functions of the cells via increase of [Ca2+]i.  相似文献   

20.
The stimulation of cultured bovine chromaffin cells with histamine induced a continuous catecholamine secretion (EC50 = 3 x 10(-7) M) via the H1 receptor, in addition to an initial catecholamine burst due to a nonspecific stimulatory effect at higher doses (greater than or equal to 10(-4) M). The continuous secretion showed little desensitization and lasted for more than 1 h. In fura-2-loaded cells, the stimulation with histamine evoked a transient rise of intracellular free Ca2+ concentration ([Ca2+]i) which lasted only for a few minutes and was followed by a sustained [Ca2+]i rise which continued for more than 20 min. The addition of an activator for the L-type voltage-sensitive Ca2+ channel, i.e., Bay K 8644 (1 microM), facilitated the sustained [Ca2+]i rise, as well as the secretion, whereas the addition of relatively high concentrations of Ca(2+)-channel blockers (10 microM) suppressed the sustained [Ca2+]i rise and part of the secretion. Removal of extracellular Ca2+ completely abolished continuous secretion and sustained [Ca2+]i rise. When the external Ca2+ level was elevated, both sustained [Ca2+]i rise and continuous secretion were enhanced in a similar Ca(2+)-dependent manner, showing saturation with around 1-3 mM Ca2+. This Ca2+ dependence was clearly different from that observed with high K+ and nicotine, which is mediated by the L-type Ca2+ channel, in which the responses showed little or no saturation when the Ca2+ level was increased. The results indicate that stimulation with histamine induces a continuous secretion via the H1 receptor, in addition to a transient and nonspecific secretion at higher doses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号