首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Humboldt Current System (HCS) has the highest production of forage fish in the world, although it is highly variable and the future of the primary component, anchovy, is uncertain in the context of global warming. Paradigms based on late 20th century observations suggest that large‐scale forcing controls decadal‐scale fluctuations of anchovy and sardine across different boundary currents of the Pacific. We develop records of anchovy and sardine fluctuations since 1860 AD using fish scales from multiple sites containing laminated sediments and compare them with Pacific basin‐scale and regional indices of ocean climate variability. Our records reveal two main anchovy and sardine phases with a timescale that is not consistent with previously proposed periodicities. Rather, the regime shifts in the HCS are related to 3D habitat changes driven by changes in upwelling intensity from both regional and large‐scale forcing. Moreover, we show that a long‐term increase in coastal upwelling translates via a bottom‐up mechanism to top predators suggesting that the warming climate, at least up to the start of the 21st century, was favorable for fishery productivity in the HCS.  相似文献   

2.
Feeding habits and gill raker morphology were examined for the three major planktivorous pelagic fishes, Japanese anchovy Engraulis japonicus , Pacific round herring Etrumeus teres and Japanese jack mackerel Trachurus japonicus , off the northern and western coasts of Kyushu, in the north‐eastern part of the East China Sea in the summer months of 2001. Using fishes in the same size range (80–140 mm, standard length), the stomach contents of the three fish species were compared. The diet of the Japanese anchovy mainly consisted of Oncaeidae copepods, while the diets of the Pacific round herring and Japanese jack mackerel were dominated by calanoid copepods at all stations. Comparisons between prey size in the stomach, zooplankton size in the water and gill raker morphology suggested that the stomach contents of the three species were characterized mainly by the difference in the feeding behaviour between Japanese anchovy (filter‐feeding) and the other two species (particulate‐feeding), rather than by the difference in the morphology of feeding apparatus only. It was concluded that behavioural adaptations in the feeding of these pelagic fishes brought about trophic partitioning to some degree in this pelagic ecosystem in summer. Although the diets of these three species overlapped to some extent, there was still little likelihood of competition between the Japanese anchovy and the other two species. The potential for competition between the Pacific round herring and the Japanese jack mackerel is discussed.  相似文献   

3.
We examined the spatial and temporal variability of juvenile Pacific herring, Clupea pallasi, growth within Prince William Sound, Alaska. Pacific herring, ranging from post-larval to mature fish, were collected from four spatially segregated bays between October 1995 and March 1998. Linear growth equations from each bay were similar. However, growth rates and wet weight-at-length, reflecting condition, of juvenile Pacific herring cohorts varied seasonally and annually. The short term spatial variability in juvenile Pacific herring growth suggested that each bay was a unique nursery area. The physical and biological conditions within each bay appeared to dictate Pacific herring growth rate.  相似文献   

4.
We used compound action potential recordings from the optic nerve of anesthetized live fish to study the spectral and polarization sensitivities of the northern anchovy and the Pacific herring. The photoreceptor structure and cone mosaic type of the (illuminated) central retina was studied by microscopy. Both species showed a single peak spectral photopic sensitivity function with λmax= 500 nm for the northern anchovy and λmax= 520 nm for the herring. However, only the northern anchovy exhibited polarization sensitivity; the response was 180° periodic with maximum sensitivity to horizontal polarization. Similar to the bay anchovy (Fineran and Nicol 1978), the central retina of the northern anchovy showed bifid cone units with cone lamellae parallel to the cones' lengths. The herring, on the other hand, had twin cones arranged in rows with the same orientation and tangentially arranged lamellae. Our results support the hypothesis that bifid cone units act as orthogonal dichroic filters rendering anchovies polarization sensitive. The lack of polarization sensitivity in the herring suggests that twin cones may not be used in polarization sensitivity or that one orientation of polarization receptors is insufficient for the animal to detect polarization direction. Accepted: 8 December 1997  相似文献   

5.
Biological features of the four common fish species, giant grenadier Albatrossia pectoralis (Macrouridae), Pacific herring Clupea pallasii (Clupeidae), Pacific rainbow smelt Osmerus mordax dentex, and Pacific capelin Mallotus villosus catervarius (Osmeridae), were studied under the 20-year dataset (1995?2015). These species inhabit the northwestern Bering Sea in the summer–autumn period and form the schoolings in the Olyutorsky-Navarin region. The size–age parameters of the fish caught by different sampling gear, as well as the peculiarities of the body length and body weight dynamics, spawning periods, spawning range, and conditions, were analyzed. The largest specimens of giant grenadier, Pacific herring, and Pacific rainbow smelt were observed in the catches performed by the bottom setline and the gill nets; the smallest fish were found in the trawl catches. The body length and body weight of Pacific herring were larger in the pelagic trawls compared to the bottom trawls; an opposite pattern was observed for the Pacific capelin. The abundant year-class in the species with short life cycle (capelin and herring) is well tracked on the longterm plots of the fish body size; this is accompanied by the decrease of their biological parameters. Herring stock covers large growing grounds; smaller body size was observed for the herring grazing in the coastal waters; young specimens dominate here.  相似文献   

6.
Pelagic fishes are among the most ecologically and economically important fish species in European seas. In principle, these pelagic fishes have potential to demonstrate rapid abundance and distribution shifts in response to climatic variability due to their high adult motility, planktonic larval stages, and low dependence on benthic habitat for food or shelter during their life histories. Here, we provide evidence of substantial climate‐driven changes to the structure of pelagic fish communities in European shelf seas. We investigated the patterns of species‐level change using catch records from 57 870 fisheries‐independent survey trawls from across European continental shelf region between 1965 and 2012. We analysed changes in the distribution and rate of occurrence of the six most common species, and observed a strong subtropicalization of the North Sea and Baltic Sea assemblages. These areas have shifted away from cold‐water assemblages typically characterized by Atlantic herring and European sprat from the 1960s to 1980s, to warmer‐water assemblages including Atlantic mackerel, Atlantic horse mackerel, European pilchard and European anchovy from the 1990s onwards. We next investigated if warming sea temperatures have forced these changes using temporally comprehensive data from the North Sea region. Our models indicated the primary driver of change in these species has been sea surface temperatures in all cases. Together, these analyses highlight how individual species responses have combined to result in a dramatic subtropicalization of the pelagic fish assemblage of the European continental shelf.  相似文献   

7.
The importance of a particular habitat to nearshore fishes can be best assessed by both diurnal and nocturnal sampling. To determine diel differences in fish assemblages in nearshore eelgrass and understory kelp habitats, fishes were sampled diurnally and nocturnally at six locations in western Prince William Sound, Alaska, in summer 2007. Abundance of fish between day and night were similar, but species composition and mean size of some fish changed. Species richness and species diversity were similar in eelgrass during the day and night, whereas in kelp, species richness and species diversity were greater at night than during the day. In eelgrass, saffron cod (Eleginus gracilis) was the most abundant species during the day and night. In kelp, the most abundant species were Pacific herring (Clupea pallasii) during the day and saffron cod at night. Diel differences in fish size varied by species and habitat. Mean length of saffron cod was similar between day and night in eelgrass but was greatest during the day in kelp. Pacific herring were larger at night than during the day in kelp. Diel sampling is important to identity nearshore habitats essential to fish and help manage fish stocks at risk.  相似文献   

8.
Diatom seasonal succession and interannual variability werestudied using laminated sediments from Saanich Inlet, BritishColumbia, for the years 1900–1991. Frozen sediment coresallowed fine-scale sampling of laminae for each year. Thus,three ‘seasons’ for each year were identified basedon species composition. Thalassiosira species were indicatorsof spring deposition. Skeletonema costatum was abundant in samplesfollowing Thalassiosira, probably deposited in late spring andsummer. Rhizosolenia sp. was most abundant in fall/winter samples.Diatom stratigraphies were related to sea surface temperature,salinity, sea level and the Pacific North American Index (PNA)using canonical correspondence analysis (CCA). CCA showed thatspecies of a particular season generally had optima for temperatureand salinity characteristic of that time. Interannual changesin diatom species composition and abundance were most prevalentin the decades 1920–1940, with the exception of S.costatumwhich showed cyclic changes in abundance. Skeletonema was moreabundant during periods of cool temperatures, while littoraldiatoms were more abundant during times of heavy winter rains.Sea level was an important variable in CCA and while its relationshipto diatoms is not clear, it may be related to variations innutrient supply to diatoms in surface waters.  相似文献   

9.
Infectious hematopoietic necrosis (IHN) leads to periodic epidemics among certain wild and farmed fish species of the Northeast (NE) Pacific. The source of the IHN virus (IHNV) that initiates these outbreaks remains unknown; however, a leading hypothesis involves viral persistence in marine host species such as Pacific herring Clupea pallasii. Under laboratory conditions we exposed specific pathogen-free (SPF) larval and juvenile Pacific herring to 10(3) to 10(4) plaque-forming units (pfu) of IHNV ml(-1) by waterborne immersion. Cumulative mortalities among exposed groups were not significantly different from those of negative control groups. After waterborne exposure, IHNV was transiently recovered from the tissues of larvae but absent in tissues of juveniles. Additionally, no evidence of viral shedding was detected in the tank water containing exposed juveniles. After intraperitoneal (IP) injection of IHNV in juvenile herring with 10(3) pfu, IHNV was recovered from the tissues of sub-sampled individuals for only the first 5 d post-exposure. The lack of susceptibility to overt disease and transient levels of IHNV in the tissues of exposed fish indicate that Pacific herring do not likely serve a major epizootiological role in perpetuation of IHNV among free-ranging sockeye salmon Oncorhynchus nerka and farmed Atlantic salmon Salmo salar in the NE Pacific.  相似文献   

10.
While individual growth ultimately reflects the quality and quantity of food resources, intra and interspecific interactions for these resources, as well as individual size, may have dramatic impacts on growth opportunity. Out‐migrating anadromous salmonids make rapid transitions between habitat types resulting in large pulses of individuals into a given location over a short period, which may have significant impact on demand for local resources. We evaluated the spatial and temporal variation in IGF‐1 concentrations (a proxy for growth rate) and the relationship between size and concentration for juvenile Chinook salmon in Puget Sound, WA, USA, as a function of the relative size and abundance of both Chinook salmon and Pacific herring, a species which commonly co‐occurs with salmonids in nearshore marine habitats. The abundance of Chinook salmon and Pacific herring varied substantially among the sub‐basins as function of outmigration timing and spawn timing, respectively, while size varied systematically and consistently for both species. Mean IGF‐1 concentrations were different among sub‐basins, although patterns were not consistent through time. In general, size was positively correlated with IGF‐1 concentration, although the slope of the relationship was considerably higher where Pacific herring were more abundant than Chinook salmon; specifically where smaller individual herring, relative to Chinook salmon, were more abundant. Where Pacific herring were less abundant than Chinook salmon, IGF‐1 concentrations among small and large Chinook salmon were more variable and showed no consistent increase for larger individuals. The noticeable positive effect of relative Pacific herring abundance on the relationship between size and individual growth rates likely represents a shift to predation based on increased IGF‐1 concentrations for individual Chinook salmon that are large enough to incorporate fish into their diet and co‐occur with the highest abundances of Pacific herring.  相似文献   

11.
In areas of the North Pacific that are largely free of overfishing, climate regime shifts – abrupt changes in modes of low‐frequency climate variability – are seen as the dominant drivers of decadal‐scale ecological variability. We assessed the ability of leading modes of climate variability [Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation (NPGO), Arctic Oscillation (AO), Pacific‐North American Pattern (PNA), North Pacific Index (NPI), El Niño‐Southern Oscillation (ENSO)] to explain decadal‐scale (1965–2008) patterns of climatic and biological variability across two North Pacific ecosystems (Gulf of Alaska and Bering Sea). Our response variables were the first principle component (PC1) of four regional climate parameters [sea surface temperature (SST), sea level pressure (SLP), freshwater input, ice cover], and PCs 1–2 of 36 biological time series [production or abundance for populations of salmon (Oncorhynchus spp.), groundfish, herring (Clupea pallasii), shrimp, and jellyfish]. We found that the climate modes alone could not explain ecological variability in the study region. Both linear models (for climate PC1) and generalized additive models (for biology PC1–2) invoking only the climate modes produced residuals with significant temporal trends, indicating that the models failed to capture coherent patterns of ecological variability. However, when the residual climate trend and a time series of commercial fishery catches were used as additional candidate variables, resulting models of biology PC1–2 satisfied assumptions of independent residuals and out‐performed models constructed from the climate modes alone in terms of predictive power. As measured by effect size and Akaike weights, the residual climate trend was the most important variable for explaining biology PC1 variability, and commercial catch the most important variable for biology PC2. Patterns of climate sensitivity and exploitation history for taxa strongly associated with biology PC1–2 suggest plausible mechanistic explanations for these modeling results. Our findings suggest that, even in the absence of overfishing and in areas strongly influenced by internal climate variability, climate regime shift effects can only be understood in the context of other ecosystem perturbations.  相似文献   

12.
The feeding ecology of four pelagic fish species was studied in relation to their prey availability in the Gulf of Riga (Baltic Sea) during the summer 1999-2006. The zooplankton community was dominated by the cladoceran Bosmina longispina, rotifers Keratella cochlearis and K. quadrata and the copepod Eurytemora affinis, with the highest interannual variability in abundance recorded for B. longispina. The last influenced the diet of adult sprat Sprattus sprattus, juvenile smelt Osmerus eperlanus and three-spined stickleback Gasterosteus aculeatus as these were strongly selecting for B. longispina. The fish feeding activity did not match the abundance dynamics of their preferred prey, suggesting that fishes may switch to consume other prey in case the preferred diet was limited. A considerable dietary overlap indicated high potential competition between pelagic fish species. While herring Clupea harengus membras and G. aculeatus were relying on very different food, the diets of young O. eperlanus and G. aculeatus were very similar. Interannual variability in zooplankton composition and abundance significantly affected the diet composition of fishes, but those changes were insufficient to exert a consistent influence upon fish feeding activity and total amounts of zooplankton consumed.  相似文献   

13.
There are two factors affecting long-term fluctuation of planktotrophic pelagic fish: environmental fluctuation and interspecific competition. Long-term catch data of planktotrophic pelagic fishes in Japan suggest that the chub mackerel (species B) was replaced by the sardine (A), A was replaced by the anchovy, Pacific saury and horse mackerel (Group C), and species in group C were replaced by species B. If species A defeats B, B defeats C, and C defeats A in interspecific competitive ability, then the abundance of these three groups fluctuate forever and dominate in the same order. We call this cyclic advantage hypothesis for species replacement. In this model, environmental fluctuation affects the species replacement as a trigger. Environmental fluctuation does not determine the next dominant species but greatly affects when the next replacement occurs.  相似文献   

14.
Thousands of dead Pacific herring Clupea pallasi, Pacific hake Merluccius productus and walleye pollock Theragra chalcogramma were reported in Lisianski Inlet near Pelican, Alaska, USA, on August 1, 1998. The Pacific hake and pollock continued to die through the end of September. Virological examinations of dead fish identified the North American strain of viral hemorrhagic septicemia virus (VHSV) from all 3 species of fish as well as associated high virus titers and possible histopathological lesions. No other primary fish pathogens were detected and there were no apparent environmental causes for fish mortality. This is the first report of VHSV in 2 new Alaskan fish host species and of a natural epizootic associated with VHSV in which progressive mass mortality was observed simultaneously in herring and 2 other species of free-ranging marine fish.  相似文献   

15.
Mangroves in the tropical eastern Pacific (TEP) constitute a dominant coastal ecosystem that harbours diverse and economically important fish assemblages. We describe here regional scale patterns in the composition of this poorly documented mangrove ichthyofauna. A review of available studies (including own data) from five countries covering the entire region was performed. Species abundance distribution curves were constructed and compared among studies. Relative abundance data of fish species and families were analysed with classification and ordination techniques. Common species and families responsible for differences among localities were identified. Overall, 315 fish species associated to mangroves of the TEP were identified. Fifteen fish families accounted for 80 % or more of the relative abundance of all studies. Despite the use of different sampling techniques, common features arose for most of the mangrove fish assemblages. Clupeidae were numerically dominant throughout the region, while Gerreidae were particularly dominant in the northern mangroves. The catch mass contributions of families from studies where these data were available indicated a dominance of Ariidae, Centropomidae, Lutjanidae and Tetraodontidae. A relatively uniform composition at the family (and sometimes species) level supports recent claims to merge the Panamic with the Mexican province in the TEP according to the distribution of the shore fish fauna. Similarities found with other estuarine-mangrove ichthyofaunas in the Neotropics may be related to the connectedness of these regions in past geological times. Quantitative assessments of mangrove fish communities in four areas of the TEP would improve further zoogeographic analyses and facilitate the development of conservation strategies.  相似文献   

16.
The mass occurrence of the large hyperiid Themisto libellula was recorded in both the western and the eastern Bering Sea within 2007–2011. Those were the years of a relatively long 6-year period of cold, which was caused mainly by the inflow of cold waters from the north; this is confirmed by the distribution of bottom and surface temperatures and also by the ice-cover values. This hyperiid became dominant in the diet of salmon, walleye pollock, herring, and several other nekton fish species. T. libellula periodically spreads southward with cold northern waters, finding favorable conditions in “new” areas. Being a rapidly growing species with a short life cycle, within 1 or 2 years it reaches a high abundance, which then gradually declines and remains at a mean or low level, as usually occurs with species that were introduced into a new habitat. After the environmental conditions deteriorate, as a “warm” period arrives with changes in the general circulation and a growing inflow of warmed Pacific waters, the southern boundary of the species range moves back far northward and it completely disappears in the areas where it prevailed in the plankton and was a main forage item in the diet of many fish species. Taking into account the durations of warm and cold periods from 1980 until 2010, an event like this in the Bering Sea can be expected within 1 or 2 years. In the eastern Bering Sea, the abundance and dominance of a number of zooplankton species may vary simultaneously. This effect is more pronounced in T. libellula and for this reason the species is considered as a biological indicator of the described climatic changes in the Bering Sea.  相似文献   

17.
Large, migratory predators are often cited as sentinel species for ecosystem processes and climate‐related changes, but their utility as indicators is dependent upon an understanding of their response to environmental variability. Documentation of the links between climate variability, ecosystem change and predator dynamics is absent for most top predators. Identifying species that may be useful indicators and elucidating these mechanistic links provides insight into current ecological dynamics and may inform predictions of future ecosystem responses to climatic change. We examine humpback whale response to environmental variability through stable isotope analysis of diet over a dynamic 20‐year period (1993–2012) in the California Current System (CCS). Humpback whale diets captured two major shifts in oceanographic and ecological conditions in the CCS. Isotopic signatures reflect a diet dominated by krill during periods characterized by positive phases of the North Pacific Gyre Oscillation (NPGO), cool sea surface temperature (SST), strong upwelling and high krill biomass. In contrast, humpback whale diets are dominated by schooling fish when the NPGO is negative, SST is warmer, seasonal upwelling is delayed and anchovy and sardine populations display increased biomass and range expansion. These findings demonstrate that humpback whales trophically respond to ecosystem shifts, and as a result, their foraging behavior is a synoptic indicator of oceanographic and ecological conditions across the CCS. Multi‐decadal examination of these sentinel species thus provides insight into biological consequences of interannual climate fluctuations, fundamental to advancing ecosystem predictions related to global climate change.  相似文献   

18.
The anchovy/sardine complex is an important fishery resource in some of the largest upwelling systems in the world. Synchronous, but out of phase, fluctuations of the two species in distant parts of the oceans have prompted a number of studies dedicated to determining the phenomena, atmospheric and oceanic, responsible for the observed synchronicity and the biological mechanisms behind the population changes of the two species. Anchovy and sardine are of high commercial value for the fishing sector in Greece; this study investigates the impact of large-scale climatic indices on the anchovy/sardine complex in the Greek seas using fishery catches as a proxy for fish productivity. Time series of catches for both species were analysed for relationships with teleconnection indices and local environmental variability. The connection between the teleconnection indices and local weather/oceanic variation was also examined in an effort to describe physical mechanisms that link large-scale atmospheric patterns with anchovy and sardine. The West African Summer Monsoon, East Atlantic Jet and Pacific–North American (PNA) pattern exhibit coherent relationships with the catches of the two species. The first two aforementioned patterns are prominent atmospheric modes of variability during the summer months when sardine is spawning and anchovy juveniles are growing. PNA is related with El Niño Southern Oscillation events. Sea Surface Temperature (SST) appears as a significant link between atmospheric and biological variability either because higher temperatures seem to be favouring sardine growth or because lower temperatures, characteristic of productivity-enhancing oceanic features, exert a positive influence on both species. However at a local scale, other parameters such as wind and mesoscale circulation describe air–sea variability affecting the anchovy/sardine complex. These relationships are non-linear and in agreement with results of previous studies stressing the importance of optimal environmental windows. The results also show differences in the response of the two species to environmental forcing and possible interactions between the two species. The nature of these phenomena, e.g., if the species interactions are direct through competition or indirect through the food web, remains to be examined.  相似文献   

19.
根据2004—2005年大亚湾海域底拖网鱼类调查数据,并结合1980—2007年的历史资料,分析了该海域鱼类的种类组成、区系特征、多样性、优势种和数量变化趋势.结果表明: 2004—2005年,大亚湾海域共记录鱼类107种,分属13目50科,以中下层鱼类的种类最多,为48种,其次是中上层和底层种类,分别为37种和21种.大亚湾鱼类区系具热带和亚热带特性,以暖水性种类占绝对优势,为97种,暖温性种类为10种.多样性指数以夏季最高(3.82),其次是冬季(3.37)和秋季(3.00),春季最低(2.40).Pielou均匀度指数的季节变化情况与多样性指数相似.1980—2007年大亚湾海域鱼类群落特征发生了明显的变化:鱼类种类数减少,优势种更替明显.鱼类种类数由1980年的157种减少至1990年的110种,2004—2005年继续减少至107种;鱼类优势种由1980年以带鱼和银鲳等优质鱼为主,更替为以小型和低值的小沙丁鱼、小公鱼和二长棘鲷幼鱼为主.用包含年际变化趋势和季节性周期变化的回归模型模拟1980—2007大亚湾鱼类资源密度的变化,鱼类资源密度在1980—1999年和1990—2007年两个时期均呈下降趋势,但1990—2007年间下降幅度比1980—1999年间大;1980—1999年鱼类资源密度的季节波动幅度较平缓(振幅为0.099),而1990—2007年的季节波动较大(振幅为0.420),说明1990—2007年阶段大亚湾鱼类数量的季节变化更为显著.  相似文献   

20.
Herring (Clupea harengus) and sprat (Sprattus sprattus) are the key prey resources of common terns (Sterna hirundo) breeding in the Wadden Sea. Breeding success of the terns has been below average since 2002, coinciding with exceptionally low herring recruitment and sprat abundance. Time series of herring and sprat abundance in the North Sea and in the Wadden Sea were analyzed to explain long-term breeding success and chick development at two common tern breeding colonies. North Sea herring recruitment and sprat abundance in the Wadden Sea explained the largest part of common tern breeding success, both as single variables and in a multiple regression approach. Breeding success showed stronger correlations with herring recruitment indices derived from the North Sea region compared to the Wadden Sea. Also, herring and sprat abundance data explained more variability in breeding success than of more directly responding measures such as growth rate and maximum weight of chicks. Despite spatial and temporal incoherences between fish surveys and the common tern breeding season, breeding success of common terns reflected the abundance of their key prey fish beyond their foraging range and breeding season. We argue that the ecological connectivity between large- and small-scale herring abundance and the responsiveness of common tern breeding success is strong enough to establish a fish–seabird indicator system to be potentially valuable in monitoring and conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号