首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GnRH acts on pituitary gonadotropes to stimulate the synthesis and release of LH and FSH. However, the signaling pathways downstream of the GnRH receptor that mediate these effects are not fully understood. In this paper, we demonstrate that GnRH activates ERK, c-Jun N-terminal kinase, and p38MAPK in the LbetaT2 gonadotrope cell line. Phosphorylation of both ERK and p38MAPK are stimulated rapidly, 30- to 50-fold in 5 min, but activation of c-Jun N-terminal kinase has slower kinetics, reaching only 10-fold after 30 min. Activation of ERK by GnRH is blocked by inhibition of MAPK kinase (MEK) and partially blocked by inhibition of PKC and calcium, but not PI3K or p38MAPK signaling. We demonstrate that phosphorylated ERK accumulates in the nucleus in a PKC-dependent manner. We also show that GnRH induces c-fos and LHbeta subunit protein expression in LbetaT2 cells via MEK. Experiments with EGTA or calcium channel antagonists indicated that calcium influx is important for the induction of both genes by GnRH. In conclusion, these results show that GnRH activates all three MAPK subfamilies in LbetaT2 cells and induces c-fos and LHbeta protein expression through calcium and MEK-dependent mechanisms. These results also demonstrate that the nuclear translocation of ERK by GnRH requires PKC signaling.  相似文献   

2.
Regulation of the mitogen-activated protein kinase (MAPK) family by gonadotropin-releasing hormone (GnRH) in the gonadotrope cell line LbetaT2 was investigated. Treatment with gonadotropin-releasing hormone agonist (GnRHa) activates extracellular signal-regulated kinase (ERK) and c-Jun NH(2)-terminal kinase (JNK). Activation of ERK by GnRHa occurred within 5 min, and declined thereafter, whereas activation of JNK by GnRHa occurred with a different time frame, i.e. it was detectable at 5 min, reached a plateau at 30 min, and declined thereafter. GnRHa-induced ERK activation was dependent on protein kinase C or extracellular and intracellular Ca(2+), whereas GnRHa-induced JNK activation was not dependent on protein kinase C or on extracellular or intracellular Ca(2+). To determine whether a mitogen-activated protein kinase family cascade regulates rat luteinizing hormone beta (LHbeta) promoter activity, we transfected the rat LHbeta (-156 to +7)-luciferase construct into LbetaT2 cells. GnRH activated the rat LHbeta promoter activity in a time-dependent manner. Neither treatment with a mitogen-activated protein kinase/ERK kinase (MEK) inhibitor, PD98059, nor cotransfection with a catalytically inactive form of a mitogen-activated protein kinase construct inhibited the induction of the rat LHbeta promoter by GnRH. Furthermore, cotransfection with a dominant negative Ets had no effect on the response of the rat LHbeta promoter to GnRH. On the other hand, cotransfection with either dominant negative JNK or dominant negative c-Jun significantly inhibited the induction of the rat LHbeta promoter by GnRH. In addition, GnRH did not induce either the rat LHbeta promoter activity in LbetaT2 cells transfected stably with dominant negative c-Jun. These results suggest that GnRHa differentially activates ERK and JNK, and a JNK cascade is necessary to elicit the rat LHbeta promoter activity in a c-Jun-dependent mechanism in LbetaT2 cells.  相似文献   

3.
The duration as well as the magnitude of mitogen-activated protein kinase activation has been proposed to regulate gene expression and other specific intracellular responses in individual cell types. Activation of ERK1/2 by the hypothalamic neuropeptide gonadotropin-releasing hormone (GnRH) is relatively sustained in alpha T3-1 pituitary gonadotropes and HEK293 cells but is transient in immortalized GT1-7 neurons. Each of these cell types expresses the epidermal growth factor receptor (EGFR) and responds to EGF stimulation with significant but transient ERK1/2 phosphorylation. However, GnRH-induced ERK1/2 phosphorylation caused by EGFR transactivation was confined to GT1-7 cells and was attenuated by EGFR kinase inhibition. Neither EGF nor GnRH receptor activation caused translocation of phospho-ERK1/2 into the nucleus in GT1-7 cells. In contrast, agonist stimulation of GnRH receptors expressed in HEK293 cells caused sustained phosphorylation and nuclear translocation of ERK1/2 by a protein kinase C-dependent but EGFR-independent pathway. GnRH-induced activation of ERK1/2 was attenuated by the selective Src kinase inhibitor PP2 and the negative regulatory C-terminal Src kinase in GT1-7 cells but not in HEK293 cells. In GT1-7 cells, GnRH stimulated phosphorylation and nuclear translocation of the ERK1/2-dependent protein, p90RSK-1 (RSK-1). These results indicate that the duration of ERK1/2 activation depends on the signaling pathways utilized by GnRH in specific target cells. Whereas activation of the Gq/protein kinase C pathway in HEK293 cells causes sustained phosphorylation and translocation of ERK1/2 to the nucleus, transactivation of the EGFR by GnRH in GT1-7 cells elicits transient ERK1/2 signals without nuclear accumulation. These findings suggest that transactivation of the tightly regulated EGFR can account for the transient ERK1/2 responses that are elicited by stimulation of certain G protein-coupled receptors.  相似文献   

4.
The mechanism of agonist-induced activation of Pyk2 and its relationship with ERK1/2 phosphorylation was analyzed in HEK293 cells stably expressing the gonadotropin releasing hormone (GnRH) receptor. GnRH stimulation caused rapid and sustained phosphorylation of ERK1/2 and Pyk2 that was accompanied by their nuclear translocation. Pyk2 was also localized on cell membranes and at focal adhesions. Dominant negative Pyk2 (PKM) had no effect on GnRH-induced ERK1/2 phosphorylation and c-fos expression. These actions of GnRH on ERK1/2 and Pyk2 were mimicked by activation of protein kinase C (PKC) and were abolished by its inhibition. GnRH caused translocation of PKC and δ, but not of , ι and λ, to the cell membrane, as well as phosphorylation of Raf at Ser338, a major site in the activation of MEK/ERK1/2. Stimulation of HEK293 cells by EGF caused marked ERK1/2 phosphorylation that was attenuated by the selective EGFR receptor (EGF-R) kinase inhibitor, AG1478. However, GnRH-induced ERK1/2 activation was independent of EGF-R activation. These results indicate that activation of PKC is responsible for GnRH-induced phosphorylation of both ERK1/2 and Pyk2, and that Pyk2 activation does not contribute to GnRH signaling. Moreover, GnRH-induced phosphorylation of ERK1/2 and expression of c-fos in HEK293 cells is independent of Src and EGF-R transactivation, and is mediated through the PKC/Raf/MEK cascade.  相似文献   

5.
Activation of classical G protein-coupled receptors (GPCRs) like the mammalian gonadotropin-releasing hormone receptor (GnRHR) typically stimulates heterotrimeric G protein molecules that subsequently activate downstream effectors. Receptor activation of heterotrimeric G protein pathways primarily controls intermediary cell metabolism by elevation or diminution of soluble cytoplasmic second messenger molecules. We have demonstrated here that stimulation of the GnRHR also results in a dramatic change in both cell adhesion and superstructural morphology. Gonadotropin-releasing hormone (GnRH) receptor activation rapidly increases the capacity of HEK293 cells expressing the GnRHR to remain matrix-adherent in the face of fluid insults. Coinciding with this profound elevation in matrix adherence, we demonstrated a GnRH-induced alteration in both cell morphology and the de novo generation of polymerized actin structures. GnRH induction of cytoskeletal remodeling was correlated with significant increases in the tyrosine phosphorylation status of a series of cytoskeletal associated proteins, e.g. focal adhesion kinase (FAK), c-Src, and microtubule-associated protein kinase (MAPK or ERK1/2). The activation of the distal downstream effector ERK1/2 was demonstrated to be sensitive to the disrupters of cytoskeletal rearrangement, cytochalasin D and latrunculin B. In addition to the sensitivity of ERKs to cytoskeletal integrity, GnRH-induced FAK and c-Src kinase activation were sensitive to these agents and the fibronectin-integrin antagonistic RGDS peptide. Activation of ERK was dependent on its protein-protein assembly with FAK and c-Src at focal adhesion complexes. Induction of the cell remodeling event leading to this signaling complex assembly occurred primarily via GnRHR activation of the monomeric G protein Rac but not RhoA. These findings demonstrated a clear divergence of GnRHR signaling via the Rac monomeric G protein focal adhesion signaling complex assembly and cytoskeletal remodeling independent of the classical heterotrimeric G protein-controlled phospholipase C-beta pathway.  相似文献   

6.
The hypothalamic neuropeptide hormone GnRH is the central regulator of reproductive function. GnRH stimulates the synthesis and release of the gonadotropins LH and FSH by the gonadotropes of the anterior pituitary through activation of the G-protein-coupled GnRH receptor. In this study, we investigated the role of translational control of hormone synthesis by the GnRH receptor in the novel gonadotrope cell line LbetaT2. Using immunohistochemical and RIA studies with this model, we show that acute GnRH-induced synthesis and secretion of LH are dependent upon new protein synthesis but not new mRNA synthesis. We examined the response to GnRH and found that activation of cap-dependent translation occurs within 4 h. LHbeta promoter activity was also examined, and we found no increases in LHbeta promoter activity after 6 h of GnRH stimulation. Additionally, we show that increased phosphorylation of translation initiation proteins, 4E-binding protein 1, eukaryotic initiation factor 4E, and eukaryotic initiation factor 4G, occur in a dose- and time-dependent manner in response to GnRH stimulation. Quantitative luminescent image analysis of Western blots shows that 10 nm GnRH is sufficient to cause a maximal increase in factor phosphorylation, and maximal responses occur within 30 min of stimulation. Further, we demonstrate that the MAPK kinase inhibitor, PD 98059, abolishes the GnRH-mediated stimulation of a cap-dependent translation reporter. More specifically, we demonstrate that PD 98059 abolishes the GnRH-mediated stimulation of a downstream target of the ERK pathway, MAPK-interacting kinase. Based on these findings, we conclude that acute GnRH stimulation of LbetaT2 cells increases translation initiation through ERK signaling. This may contribute to the acute increases in LHbeta subunit production.  相似文献   

7.
8.
9.
Gonadotropin releasing hormone (GnRH) contributes to the maintenance of gonadotrope function by increasing extracellular signal-regulated kinase (ERK) activity subsequent to binding to its cognate G-protein-coupled receptor. As the GnRH receptor exclusively interacts with G(q/11) proteins and as receptor expression is regulated in a beta-arrestin-independent fashion, it represents a good model to systematically dissect underlying signaling pathways. In alphaT3-1 gonadotropes endogenously expressing the GnRH receptor, GnRH challenge resulted in a rapid increase in ERK activity which was attenuated by the epidermal growth factor receptor (EGFR)-specific tyrosine kinase inhibitor AG1478. In COS-7 cells transiently expressing the human GnRH receptor, agonist-induced ERK activation was independent of free Gbetagamma subunits but could be mimicked by short-term phorbol ester treatment. Most notably, G(q/11)-induced ERK activation was sensitive to N17-Ras and to expression of the C-terminal Src kinase but also to other dominant negative mutants of signaling components localized upstream of Ras, like Shc and the EGFR. GnRH as well as phorbol esters led to Ras activation in COS-7 and alphaT3-1 cells, which was dependent on Src and EGFR tyrosine kinases, indicating that both tyrosine kinases act downstream of protein kinase C (PKC) and upstream of Ras. However, Src did not contribute to Shc tyrosine phosphorylation. GnRH or phorbol ester challenge resulted in PKC-dependent EGFR autophosphorylation. Furthermore, a 5-min phorbol ester treatment was sufficient to trigger tyrosine phosphorylation of the platelet-derived growth factor-beta receptor in L cells. Thus, in several cell systems PKC is able to stimulate Ras via activation of receptor tyrosine kinases.  相似文献   

10.
Activin signaling pathways in ovine pituitary and LbetaT2 gonadotrope cells   总被引:3,自引:0,他引:3  
In the pituitary, activin stimulates the synthesis and release of FSH. However, the activin receptor signaling pathways that mediate these effects are poorly known. We investigated these mechanisms in primary ovine pituitary cells (POP) and in the murine LbetaT2 gonadotrope cell line. POP cells and LbetaT2 cells express the different activin receptors (types IA, IB, IIA, and IIB) and the Smad proteins (Smad-2, -3, -4, and -7). In both POP and LbetaT2 cells, activin activated several signaling pathways: Smad-2, extracellular regulated kinase-1/2 (ERK1/2), p38, and phosphatidylinositol 3'-kinase (PI3K)/Akt. Phosphorylation of ERK1/2 and p38 were stimulated (3- to 6-fold) rapidly in 5 min, whereas activation of both Smad-2 and Akt (3- to 5-fold) occurred later, in 60 min. Activin also increased the association of activin receptor IIB with PI3K. Using specific inhibitors, we demonstrated that the activation of Smad-2 was partially blocked by the inhibition of PI3K but not by the inhibition of ERK1/2 or p38, suggesting a cross-talk between the Smad and PI3K/Akt pathways. In both POP and LbetaT2 cells, FSH expression and secretion in response to activin were not altered by the inhibition of PI3K/Akt, ERK1/2, or p38 pathways, whereas they were reduced by about 2-fold by expression of a dominant negative of Smad-2 or the natural inhibitory Smad-7 in LbetaT2 cells. These results indicate that activin activates several signaling pathways with different time courses in both POP and LbetaT2 cells, but only the Smad-2 pathway appears to be directly implicated in FSH expression and release in LbetaT2 cells.  相似文献   

11.
12.
13.
14.
Fibronectin receptor integrin-mediated cell adhesion triggers intracellular signaling events such as the activation of the Ras/mitogen-activated protein (MAP) kinase cascade. In this study, we show that the nonreceptor protein-tyrosine kinases (PTKs) c-Src and focal adhesion kinase (FAK) can be independently activated after fibronectin (FN) stimulation and that their combined activity promotes signaling to extracellular signal-regulated kinase 2 (ERK2)/MAP kinase through multiple pathways upstream of Ras. FN stimulation of NIH 3T3 fibroblasts promotes c-Src and FAK association in the Triton-insoluble cell fraction, and the time course of FN-stimulated ERK2 activation paralleled that of Grb2 binding to FAK at Tyr-925 and Grb2 binding to Shc. Cytochalasin D treatment of fibroblasts inhibited FN-induced FAK in vitro kinase activity and signaling to ERK2, but it only partially inhibited c-Src activation. Treatment of fibroblasts with protein kinase C inhibitors or with the PTK inhibitor herbimycin A or PP1 resulted in reduced Src PTK activity, no Grb2 binding to FAK, and lowered levels of ERK2 activation. FN-stimulated FAK PTK activity was not significantly affected by herbimycin A treatment and, under these conditions, FAK autophosphorylation promoted Shc binding to FAK. In vitro, FAK directly phosphorylated Shc Tyr-317 to promote Grb2 binding, and in vivo Grb2 binding to Shc was observed in herbimycin A-treated fibroblasts after FN stimulation. Interestingly, c-Src in vitro phosphorylation of Shc promoted Grb2 binding to both wild-type and Phe-317 Shc. In vivo, Phe-317 Shc was tyrosine phosphorylated after FN stimulation of human 293T cells and its expression did not inhibit signaling to ERK2. Surprisingly, expression of Phe-925 FAK with Phe-317 Shc also did not block signaling to ERK2, whereas FN-stimulated signaling to ERK2 was inhibited by coexpression of an SH3 domain-inactivated mutant of Grb2. Our studies show that FN receptor integrin signaling upstream of Ras and ERK2 does not follow a linear pathway but that, instead, multiple Grb2-mediated interactions with Shc, FAK, and perhaps other yet-to-be-determined phosphorylated targets represent parallel signaling pathways that cooperate to promote maximal ERK2 activation.  相似文献   

15.
In the pituitary gonadotropes, both protein kinase C (PKC) and MAPK/ERK signaling cascades are activated by GnRH. Phosphoprotein-enriched in astrocytes 15 (PEA-15) is a cytosolic ERK scaffolding protein, which is expressed in LβT2 gonadotrope cells. Pharmacological inhibition of PKC and small interfering RNA-mediated silencing of Gαq/11 revealed that GnRH induces accumulation of phosphorylated PEA-15 in a PKC-dependent manner. To investigate the potential role of PEA-15 in GnRH signaling, we examined the regulation of ERK subcellular localization and the activation of ribosomal S6 kinase, a substrate of ERK. Results obtained by cellular fractionation/Western blot analysis and immunohistochemistry revealed that GnRH-induced accumulation of phosphorylated ERK in the nucleus was attenuated when PEA-15 expression was reduced. Conversely, in the absence of GnRH stimulation, PEA-15 anchors ERK in the cytosol. Our data suggest that GnRH-induced nuclear translocation of ERK requires its release from PEA-15, which occurs upon PEA-15 phosphorylation by PKC. Additional gene-silencing experiments in GnRH-stimulated cells demonstrated that ribosomal S6 kinase activation was dependent on both PEA-15 and PKC. Furthermore, small interfering RNA-mediated knockdown of PEA-15 caused a reduction in GnRH-stimulated expression of early response genes Egr2 and c-Jun, as well as gonadotropin FSHβ-subunit gene expression. PEA-15 knockdown increased LHβ and common α-glycoprotein subunit mRNAs, suggesting a possible role in differential regulation of gonadotropin subunit gene expression. We propose that PEA-15 represents a novel point of convergence of the PKC and MAPK/ERK pathways under GnRH stimulation. PKC, ERK, and PEA-15 form an AND logic gate that shapes the response of the gonadotrope cell to GnRH.  相似文献   

16.
17.
The initiation and maintenance of reproductive function in mammals is critically dependent on the pulsatile secretion of gonadotropin-releasing hormone (GnRH). This peptide drives the pulsatile release of FSH and LH from the pituitary pars distalis via signaling pathways that are activated by the type I GnRH receptor (GnRH-R). Recently, a microarray analysis study reported that a number of genes, including mPer1, are induced by GnRH in immortalized gonadotrope cells. In view of these data, we have begun to analyze in detail the signaling pathways mediating the action of GnRH on mPer1 expression in these cells. Using quantitative real-time polymprose cho read (PCR), we could confirm that exposure of immortalized gonadotropes (LbetaT2 cells) to the GnRH analog, buserelin, markedly induces mPer1 (but not mPer2) expression. Consistent with GnRH receptor signaling via the protein kinase (PK)-C pathway, exposure of the cells to phorbol 12,13-dibutyrate rapidly elevates both mPer1 and LHbeta subunit mRNA levels, while pharmacological inhibition of PKC prevents the mPer1 and LHbeta response to buserelin. As GnRH is known to regulate gonadotropin synthesis via activation of p42/44 mitogen-activated protein kinase (MAPK) signaling pathways, we then examined the involvement of this pathway in regulating mPer1 expression in gonadotropes. Our data reveal that GnRH-induced mPer1 expression is blocked following acute exposure to a MAPK kinase inhibitor. Although the involvement of this signaling mechanism in the regulation of mPer1 is known in neurons, e.g., in the suprachiasmatic nuclei, the induction of mPer1 in gonadotropes represents a novel mechanism of GnRH signaling, whose functional significance is still under investigation.  相似文献   

18.
19.
The neuropeptide GnRH is a central regulator of mammalian reproductive function produced by a dispersed population of hypothalamic neurosecretory neurons. The principal action of GnRH is to regulate release of the gonadotropins, LH and FSH, by the gonadotrope cells of the anterior pituitary. Using a cultured cell model of mouse pituitary gonadotrope cells, alphaT3-1 cells, we present evidence that GnRH stimulation of alphaT3-1 cells results in an increase in cap-dependent mRNA translation. GnRH receptor activation results in increased protein synthesis through a regulator of mRNA translation initiation, eukaryotic translation initiation factor 4E-binding protein, known as 4EBP or PHAS (protein, heat, and acid stable). Although the GnRH receptor is a member of the rhodopsin-like family of G protein-linked receptors, we show that activation of translation proceeds through a signaling pathway previously described for receptor tyrosine kinases. Stimulation of translation by GnRH is protein kinase C and Ras dependent and sensitive to rapamycin. Furthermore, GnRH may also regulate the cell cycle in alphaT3-1 cells. The activation of a signaling pathway that regulates both protein synthesis and cell cycle suggests that GnRH may have a significant role in the maintenance of the pituitary gonadotrope population in addition to directing the release of gonadotropins.  相似文献   

20.
Apelin signaling to the family of mitogen-activated protein kinases (MAPKs), such as extracellular-regulated kinases 1/2 (ERK1/2) and p38 MAPK, through the coupling of apelin receptor (APJ) to G-protein, mediates important pathophysiological responses. Although apelin fragments have been reported to induce ERK1/2 activation through Gi-protein, the intracellular pathways by which APJ activates these MAPKs are only partially understood. Here, using stably transfected human embryonic kidney 293 (HEK293) cells overexpressing human APJ (HEK293-apelinR), we showed that apelin-13 signaling leads to ERK1/2 and p38 MAPK pathways through APJ activation. It was found in HEK293-apelinR cells that ERK1/2 activation was initiated by apelin-13 at 5 min, with the peak of activation occurring at 15 min, and a return to the basal level within 60 min. The activation of ERK1/2 appeared to be dose-dependent with a significant activation being observed at 10 nM apelin-13 and maximal activation at 100 nM. However, phosphorylated-p38 MAPK was not detected in HEK293-apelinR cells treated with apelin-13. We also shown that the apelin-13-induced ERK1/2 activation requires a coupling with pertussis toxin-sensitive G-protein, and that overexpression of dominant-negative Gi2 completely inhibits the apelin-13-induced ERK1/2 activation. In addition, treatment with apelin-13 resulted in a concentration-dependent reduction of forskolin-stimulated cAMP production. It is therefore suggested that apelin-13 activates ERK1/2 but not p38 MAPK, which involves the coupling of APJ to the Gi2 cascade. In conclusion, the ERK1/ 2, but not p38 MAPKpathway is activated by apelin-13 through coupling of human APJ to Gi2-protein, which contributes to cellular responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号