首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The applicability of different variants of the semiempirical CNDO method to calculate the electronic structure of different conformations of all possible ionic forms of dimethyl orthophosphate and orthophosphate is considered. The CNDO/BW (Boyd-Whitehead parameterization) approximation with selected parameters for the P-O bond is shown to provide the best qualitative and sometimes quantitative agreement with ab initio methods. The dependences of energy and P-O bond strengths in P-O-CH3 (P-O-H) groups on torsion angles at P-O bonds are obtained in this approximation for dimethyl orthophosphate and orthophosphate. The rotation of these groups is found to stremgthen one P-O bond stronger and labilize another. The energy minima of dimethyl orthophosphate and orthophosphate anions are shown to correspond to conformations where the strengths of the studied P-O bonds are almost the same, i.e., none of the bonds is weakened to a minimum. Protonation of these compounds increases the strength of P-O bonds and decreases the dependence of bond strength on torsion angles. The di-and trianions of dimethyl orthophosphate and orthophosphate are also studied. The growth of negative charge is shown to progressively weaken the P-O bond. The dependence of bond strength on torsion angle for the dianion is less pronounced than that for the monoanion. Calculation results are compared with experimental data known from literature. The significance of the data obtained for revealing essential features of the enzyme cleaving and forming the P-O bond is discussed.  相似文献   

2.
The (omega', omega) polot depicting the internucleotide P-O bond rotation angles in yeast phenylalanyl transfer RNA has established the interdependence of the phosphodiesters and the nucleotide geometries in the folding of the polynucleotide backbone. The plot distinguishes the regions characteristic of secondary helical structures and tertiary structural loops and bends. The folding of the polynucleotide chain is accomplished either solely by rotations around the P-O bonds or in concert with rotations around the nucleotide C4'-C5' bond with or without changes in the sugar ring pucker. In spite of differences in nucleotide sequence and intraloop tertiary interactions in the anticodon and pseudouridine loops, a characteristic repeating structural unit is found for the sugar-phosphate backbone of the tetranucleotide segment around the sharp turns.  相似文献   

3.
The geometrical relations between the 15 typical parameters (bond lengths and angles, torsion angles) of a five-membered ring are derived for any ring then for a regular one. It is demonstrated that for the case of the 20 symmetrical C 2 and C sconformations, only geometrical considerations are needed to obtain the pseudorotation formulae for the torsion angles. However, the puckering intensity as well as the bond angle values cannot be expressed from geometrical constraints alone but would require energetical considerations.  相似文献   

4.
Conformational energies for inulobiose [beta-D-fructofuranosyl-(2----1)-beta-D-fructofuranoside], a model for inulin, were computed with the molecular mechanics program MMP2(85). The torsion angles of the three linkage bonds were driven in 20 degree increments, and the steric energy of all other parameters was minimized. The linkage torsion angles defined by C-1'-C-2'-O-C-1 (phi) and O-C-1-C-2-O-2 (omega) have minima at +60 degrees and -60 degrees, respectively, regardless of side group orientation; accessible minima exist at other staggered conformations. The torsion angle at the central bond C-2'-O-1-C-1-C-2 (psi) was approximately 180 degrees in all the low-energy conformers. This appears to be generally true for rings linked by three bonds. The fructofuranose rings initially had low-energy 4/3T conformations (angle of pseudorotation, phi 2 = 265 degrees) that were retained except when the linkage conformations created severe inter-residue conflicts. In those cases, almost all puckerings of the furanose rings were found.  相似文献   

5.
The crystal and molecular structure of 8,2'-S-cycloadenylyl-(3'-5')-8,2'-S-cycloadenosine (AspAs) hydrochloride has been determined by X-ray method. The conformation of two independent AspAs molecules found in an asymmetric unit are almost identical to each other. The torsion angles concerning the sugar-phosphate backbone are different from those in crystalline dinucleoside monophosphates so far determined by X-rays. Both AspAs molecules are in the sharp bend conformations, i.e. each rotation around P-O bond (omega', omega) is (g-, t) rather than the preferred (g-, g-) or (g+, g+) conformation. There is no intramolecular base stacking or base-pairing but the intermolecular base stacking was found.  相似文献   

6.
Conformational energies of the 5′-adenosine monophosphate have been computed as a function of χ and ψ, of the torsion angles about the side-chain glycosyl C(1′)–N(9) and of the main-chain exocyclic C(4′)–C(5′) bonds by considering nonbonded, torsion, and electrostatic interactions. The two primary modes of sugar puckering, namely, C(2′)-endo and C(3′)-endo have been considered. The results indicate that there is a striking correlation between the conformations about the side-chain glyocsyl bond and the backbone C(4′)–C(5′) bond of the nucleotide unit. It is found that the anti and the GaucheGauche (gg), conformations about the glycosyl and the C(4′)–C(5′) bonds, respectively, are energetically the most favored conformations for 5′-adenine nucleotide irrespective of whether the puckering of the ribose is C(2′)-endo or C(3′)-endo. Calculations have also shown that the other common 5′-pyrimidine nucleotides will show similar preferences for the glycosyl and C(4′)–C(5′) bond conformations. These results are in remarkable agreement with the concept of the “rigid” nucleotide unit that has been developed from available data on mononucleotides and dinucleoside monophosphates. It is found that the conformational ‘rigidity’ in 5′-nucleotides compared with that of nucleosides is a consequence of, predominantly, the coulombic interactions between the negatively charged phosphate group and the base. The above result permits one to consider polynucleotide conformations in terms of a “rigid” C(2′)-endo or C(3′)-endo nucleotide unit with the major conformational changes being brought about by rotations about the P–O bonds linking the internucleotide phosphorus atom. IT is predicted that the anti and the gg conformations about the glycosyl and the C(4′)–C(5′) bonds would be strongly preferred in the mononucleotide components of different purine and pyrimidine coenzymes and also in the nucleotide phosphates like adenodine di- and triphosphates.  相似文献   

7.
Abstract

The Hel UV photoelectron spectrum of trimethyl phosphate (TMP) has been measured and interpreted with the aid of SCF molecular orbital calculations carried out with STO-3G, STO-3G* and 4–31G basis functions. The photoelectron spectrum of TMP is more accurately reproduced by results from 4–31G calculations than by results from STO-3G or STO-3G* calculations. However, all three basis sets yield results which predict the same assignment of the photoelectron spectrum. Results at the 4–31G level indicate that whether calculations are based on crystallographic bond angles and bond lengths or on STO-3G optimized geometries has little effect on the energetic ordering of the upper occupied orbitals. The energetic ordering of orbitals is also found to be only weakly dependent upon the torsional angle φ, describing rotation of ester groups about P-O bonds and upon the torsional angle ψ, describing rotation of methyl groups about C-O bonds. For trimethyl phosphate, with C3 symmetry, the vertical ionization potentials of the upper occupied orbitals are 10.81 eV (8e), 11.4 eV (9a), 11.93 eV (7e), 12.6–12.9 eV (8a and 6e), 14.4 eV (7a) and 15.0–16.0 eV(5e and 6a). Calculations at the 4–31G level indicate that many of the highest occupied orbitals in neutral dimethyl phosphate and methyl phosphate have energies and electron distributions similar to orbitals in TMP.

For TMP, a search for optimized values of φ and ψ has been carried out at the STO-3G* level. In agreement with previous NMR studies and with classical potential calculations, the STO- 3G* results indicate that both the gauche φ= 53.1 °) and anticlinal (φ = 141.9°) conformations are thermally accessible. Also in agreement with the classical potential calculations, the STO-3G* results predict that in the all gauche conformation energy is minimized when the methyl groups assume a staggered geometry (ψ= 60° to 80°) and that an energy maximum occurs for an eclipsed geometry (ψ = 0° to 20°). A study of the dependence of optimized values of O-P-O ester bond angles on the torsional angles, φ, was carried out at the STO-3G, STO-3G* and 4–31G levels. The results demonstrate that for C3 symmetry, the coupling of O-P-O angles to φ is influenced by repulsive steric interactions.  相似文献   

8.
A theoretical investigation of the conformation of the amino group in cytosine has been performed by the CNDO/2 and INDO methods. The results suggest that from the energetical point of view the conformation of the amino group is not stable in the course of rotation. It changes its hybridization from sp2-like in the planar case to sp3-like in the transition state. The physical basis of the barrier to rotation of this group around the C4-N7 bond are discussed. Some comments on the solvent dependence of the electronic absorption spectra of cytosine are presented.  相似文献   

9.
The preferred conformations of deoxyribo and ribonucleoside 3'-methylphosphonates are analysed by minimizing the conformational energy as a function of all the major parameters including the sugar ring for both the S- and R-isomers. The results show that neither the substitution nor the nature of the diastereomer affects significantly the preferred conformations compared to the naturally occurring nucleoside 3'-phosphates. The preferred range of C3'-O3' bond torsions or the phase angles of pseudorotation (P) of the sugar are unaffected. The chiral substitution on the phosphate always adopts a conformation distal to the secondary C3' carbon atom in the minimum energy conformational state. Further, it introduces certain restrictions on the preferred range of P-O3' torsions depending on the methylphosphonate configuration. Methylphosphonate, especially the S-isomer, renders the normal gauche- range of P-O3' bond torsions responsible for the stacked helical duplexes to be energetically unfavourable besides introducing a high energy barrier between trans and gauche conformations. Therefore it is suggested that duplexes with S-methylphosphonate may favour extended phosphodiester conformations. These factors explain the observed lower melting temperature as well as the downfield shifts in the 31P signals in duplexes containing the S-isomer.  相似文献   

10.
Calculations of the dependence of the conformational energy and the rotational strength of the amide n–π* electronic transition (in a series of α-helical polyhel-α- amino acids with different side chains) on conformation have been carried out. The conformational energies were computed by procedures developed in this laboratory; the computation of rotational strengths was carried out by the method of Schellman and Oriel, with a slight modification. Polyamino acids with both nonpolar and polar side chains were considered; in the latter case, it was assumed that the only influence of the polar side chain was on the backbone conformation and on the electrostatic field which perturbs the amide chromophore of the backbone. Only conformations in the range of backbone dihedral angles of the right- and left-handed a-helices were considered, and the assumption of regularity (i.e., uniformity of dihedral angles in every residue) was made. The rotational strength per residue was found to vary markedly with chain length (in oligomers of up to 40 residues long); both the conformational energy per residue and the rotational strength per residue were found to vary significantly with the backbone conformation, which in turn depends on the nature of the side chain. The geometry of the hydrogen bond in the α-helical backbone is the most important factor which influences the dependence of the rotational strength on conformation. The implications of these results, for the interpretation of experimental circular dichroism and optical rotatory dispersion data, are discussed.  相似文献   

11.
We report here the results on N-acetyl-L-proline-N'-methylamide (Ac-Pro-NHMe) calculated at the HF/6-31+G(d) level with the conductor-like polarizable continuum model (CPCM) of self-consistent reaction field methods to investigate the changes of backbone and prolyl ring along the cis-trans isomerization of the prolyl peptide bond. From the potential energy surface, the barrier to ring flip from the down-puckered conformation to the up-puckered one is estimated to be 2.5 and 3.2 kcal/mol for trans and cis conformers of Ac-Pro-NHMe, respectively. In particular, the ring flip seems to be inaccessible in the intermediate regions between trans and cis conformations, because of higher barriers (approximately 13-19 kcal/mol) to rotation of the prolyl peptide bond. The torsion angles for backbone and prolyl ring vary largely around the transition states at omega' approximately 120 degrees and -70 degrees for the prolyl peptide bond. Three kinds of puckering amplitudes show the same trend of puckering along the cis-trans isomerization although their absolute values are different. In particular, trans and cis conformations have the almost same degree of puckering. The cis populations and barriers to rotation of the prolyl peptide bond for Ac-Pro-NHMe are increased with the increase of solvent polarity, which is mainly ascribed to the decreases of relative free energies for cis conformations and the increase of relative free energies for transition states.  相似文献   

12.
Molecular mechanics studies are performed on single stranded as well as base paired forms of dinucleoside methylphosphonates comprising different base sequences for both the S- and R-isomers of methylphosphonate (MP). S-MP produces noticeable distortions in the geometry, locally at the phosphate center, and this enables the stereochemical feasibility of compact g- g- phosphodiester. Besides, it tends to perturb the conformations around the P-O3' and glycosyl bonds, causing minor variations in stacking interactions. In single stranded dinucleosides, the gain in adjacent base stacking interaction energies seems to be sufficient to overcome the barrier to P-O3' bond rotation arising due to S-MP...sugar interaction, and this results in transition to a compact phosphodiester (BI-type) from an initial extended phosphodiester (BII-type) conformation. Such a thing seems rather difficult in base pair constrained duplexes. Dinucleosides with R-MP behave analogous to normal phosphate duplexes as the methyl group is away from the sugar. It is found that dinucleoside methylphosphonates are energetically less favoured than the corresponding dinucleoside phosphates mainly due to the depletion of contributions from electrostatic attractive interactions involving the base and sugar with the methylphosphonate consequent to the nonionic nature of the latter. Neither S-MP nor R-MP seem to significantly alter the stereochemistry of duplex structure.  相似文献   

13.
Y Guan  G J Thomas  Jr 《Biophysical journal》1996,71(5):2802-2814
A generalized valence force field is derived for the diethyl phosphate anion [(CH3CH2O)2PO2-] and its deuterium [(CH3CD2O)2PO2-, (CD3CH2O)2PO2- and (CD3CD2O)2PO2-] and carbon-13 [(CH3 13CH2O)2PO2-] derivatives in the stable trans-gauche-gauche-trans conformation. Normal coordinate analysis of the trans-gauche-gauche-trans conformer, which serves as a structural analog of the nucleic acid phosphodiester group, is based on comprehensive infrared and Raman spectroscopic data and vibrational assignments obtained for the diethyl phosphate anion. The generalized valence force field is in good agreement with the scaled ab initio force field of diethyl phosphate and represents significant improvement over earlier modeling of the phosphodiester moiety with dimethyl phosphate. The conformational dependence of skeletal C-C-O-P(O2-)-O-C-C stretching vibrations is also explored. Starting with the trans-gauche-gauche-trans conformation, the frequency dependence of skeletal stretching modes has been obtained by stepwise rotation of the torsion angles of the P-O and C-O bonds corresponding to nucleic acid torsions alpha (P-O5'), beta (O5'-C5'), epsilon (C3'-O3'), and zeta (O3'-P). Both symmetric and antisymmetric phosphoester stretching modes are highly sensitive to P-O and C-O torsions, whereas symmetric and antisymmetric phosphodioxy (PO2-) stretching modes are less sensitive. The present results provide an improved structural basis for understanding previously developed empirical correlations between vibrational marker bands and nucleic acid backbone conformation.  相似文献   

14.
The HeI UV photoelectron spectrum of trimethyl phosphate (TMP) has been measured and interpreted with the aid of SCF molecular orbital calculations carried out with STO-3G, STO-3G* and 4-31G basis functions. The photoelectron spectrum of TMP is more accurately reproduced by results from 4-31G calculations than by results from STO-3G or STO-3G* calculations. However, all three basis sets yield results which predict the same assignment of the photoelectron spectrum. Results at the 4-31G level indicate that whether calculations are based on crystallographic bond angles and bond lengths or on STO-3G optimized geometries has little effect on the energetic ordering of the upper occupied orbitals. The energetic ordering of orbitals is also found to be only weakly dependent upon the torsional angle phi, describing rotation of ester groups about P-O bonds and upon the torsional angle psi, describing rotation of methyl groups about C-O bonds. For trimethyl phosphate, with C3 symmetry, the vertical ionization potentials of the upper occupied orbitals are 10.81 eV (8e), 11.4 eV (9a), 11.93 eV (7e), 12.6-12.9 eV (8a and 6e), 14.4 eV (7a) and 15.0-16.0 eV (5e and 6a). Calculations at the 4-31G level indicate that many of the highest occupied orbitals in neutral dimethyl phosphate and methyl phosphate have energies and electron distributions similar to orbitals in TMP. For TMP, a search for optimized values of phi and psi has been carried out at the STO-3G*level. In agreement with previous NMR studies and with classical potential calculations, the STO-3G* results indicate that both the gauche (phi = 53.1 degrees) and anticlinal (phi = 141.9 degrees) conformations are thermally accessible. Also in agreement with the classical potential calculations, the STO-3G* results predict that in the all gauche conformation energy is minimized when the methyl groups assume a staggered geometry (psi = 60 degrees to 80 degrees) and that an energy maximum occurs for an eclipsed geometry (phi = 0 degrees to 20 degrees). A study of the dependence of optimized values of O-P-O ester bond angles on the torsional angles, phi, was carried out at the STO-3G, STO-3G* and 4-31G levels. The results demonstrate that for C3 symmetry, the coupling of O-P-O angles to phi is influence by repulsive steric interactions.  相似文献   

15.
The nucleoside constituents of nucleic acids prefer the anti conformation (1). When the sugar pucker is taken into account the nucleosides prefer the C2'endo-anti conformation. Of the nearly 300 nucleosides known, about 250 are in the anti conformation and 50 are in the syn-conformation, i.e., anti to syn conformation is 5:1. The nucleotide building blocks of nucleic acids show the same trend as nucleosides. Both the deoxy-guanosine and riboguanosine residues in nucleosides and nucleotides prefer the syn-C2'endo conformation with an intra-molecular hydrogen bond (for nucleosides) between the O5'-H and the N3 of the base and, a few syn-C3'endo conformations are also observed. Evidence is presented for the occurrence of the C3'endo-syn conformation for guanines in mis-paired double helical right-handed structures with the distorted sugar phosphate C4'-C5' and P-O5' bonds respectively, from g+ (gg) and g- to trans. Evidence is also provided for guanosine nucleotides in left-handed double-helical (Z-DNA) oligo and polynucleotides which has the same syn-C3'endo conformation and the distorted backbone sugar-phosphate bonds (C4'-C5' and P-O5') as in the earlier right-handed case.  相似文献   

16.
The spatial structure of the methylamide of N-acetyl-L-lysine has been analysed taking into account non-bonded and electrostatic interactions, torsional energy, bond angles distortion and hydrogen bonding. Conformational capacities of the backbone and mutual dependence of spatial structures of the backbone and the side chain was described by conformational maps obtained by energy minimisation, the dihedral angles and the bond angles of the side chain being varied for every phi, psi point. Every possible combination for phi, psi, x1-x5-angles was used corresponding to the stable form of the backbone and to torsion potential minima of the initial approximations in the calculation of preferred conformations of the molecule. Comparisons are made between stable forms of the methylamide of N-acetyl-L-lysine and Lys residues in proteins with known structure.  相似文献   

17.
A relationship has been established to express the local helicity of a polynucleotide backbone directly in terms of the virtual bonds spanning the conformationally equivalent heminucleotide repeats, with a view to provide a better understanding of the cumulative effects of all the chemical bond rotational variations on local helicity. Using this, an analysis made with a few oligodeoxynucleotide crystal structures clearly brings forth that it is the concerted movements manifested in the near neighbour correlations between the pair of chemical bonds C4'-C5' and P-O5' and C4'-C3' and P-O3' of the 5' and 3' heminucleotides respectively that are primarily responsible for the observed non-uniform helical twists both in A and B type helical backbones. That these need not be restricted to oligodeoxynucleotides but may be a feature of oligoribonucleotides backbone also is shown from an analysis of helical segments of yeast tRNA(Phe). A proposal of a unified or a grand two dimensional conformational plot which would help visualise succinctly the overall effect of the variations in all the repeating six chemical bonds of a polynucleotide backbone is made. Apart from considerable simplification, the plot affords identification on it regions characteristic of helical, and loop and bend conformations of nucleic acid backbone chain.  相似文献   

18.
Conformational analysis of muscimol, a GABA agonist   总被引:3,自引:0,他引:3  
The potential energy barriers for rotation around the C5C6 bond in muscimol and two related isoxazoles have been calculated using the MINDO/3 molecular orbital method. The preferred conformations have N7C6C5C4 torsion angles near ± 100 °, in agreement with crystallographic data. The activities of muscimol and related isoxazoles as bicuculline-sensitive inhibitors of neuronal firing, however, are best accounted for in terms of “active conformations” with N7C6C5C4 torsion angles in the range +(32–46) °. These findings predict a limited range of possible “active conformations” for the flexible neurotransmitter GABA at postsynaptic receptors common to GABA, (+)-bicuculline salts and muscimol.  相似文献   

19.
A systematic phosphorus-31 nuclear magnetic resonance study of some nucleic acid constituents (6-N-(dimethyl)adenylyl-(3',5')-uridine and some nucleotide methyl esters) is presented. The temperature dependent phosphorus-31 chemical shifts were analyzed by standard thermodynamic procedures. It is shown that gt conformations about the P-O ester bonds have a lower free energy content relative to gg conformers.  相似文献   

20.
Abstract

Analysis of the conformational space populated by the torsion angles and the correlation between the conformational energy and the sequence of DNA are important for fully understanding DNA structure and function. Presence of seven variable torsion angles about single covalent bonds in DNA main chain puts a big challenge for such analysis. We have carried out restrained energy minimization studies for four representative dinucleosides, namely d(ApA):d(TpT), d(CpG):d(CpG), d(GpC):d(GpC) and d(CpA):d(TpG) to determine the energy hyperspace of DNA in context to the values of the torsion angles and the structural properties of the DNA conformations populating the favorable regions of this energy hyperspace. The torsion angles were manipulated by constraining their values at the reference points and then performing energy minimization. The energy minima obtained on the potential energy contour plots mostly correspond to the conformations populated in crystal structures of DNA. Some novel favorable conformations that are not present in crystal structure data are also found. The plots also suggest few low energy routes for conformational transitions or the associated energy barrier heights. Analyses of base pairing and stacking possibility reveal structural changes accompanying these transitions as well as the flexibility of different base steps towards variations in different torsion angles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号