首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
Adrenal mitochondrial cytochrome P-450 which functions in cholesterol side chain cleavage (P-450scc) exhibited type I (lambdamax 385, lambdamin 420 nm) and inverse type I (lambdamin 385, lambdamax 420 nm) difference spectra with several steroids. The magnitude and type of response were dependent on the particular steroid and on the extent to which cholesterol was bound to the cytochrome in the intact mitochondrion. the inverse type I difference spectrum induced by 3beta-hydroxy-pregn-5-ene-20-one (pregnenolone) was dependent on the proportion of high spin cholesterol-cytochrome P-450scc complexes. With rat adrenal mitochondria cholest-5-ene-3beta, 20alpha-diol (20alpha-hydroxycholesterol) invariably induced a smaller inverse type I response and, under conditions where cytochrome P-450scc was nearly free of cholesterol, even produced a small type I response. Two distinct steroid binding sites on cytochrome P-450scc were detected by, respectively, the slow type I response to cholest-5-ene-3beta, 25-diol (25-hydroxycholesterol) and the rapid type I response to a subsequent addition of cholest-5-ene-3beta, 20alpha, 22 R-triol (20alpha, 22R-dihydroxycholesterol). The relative proportions of the spectral responses to these steroids were dependent on the previous extent of adrenal activation by adrenocorticotropic hormone (ACTH), because this stimulatory process altered the combination of mitochondrial cholesterol with cytochrome P-450scc. It is proposed that the two steroid binding sites on cytochrome P-450scc interact with steroids in the following way: site I binds cholesterol, 25-hydroxycholesterol, and 20alpha, 22R-dihydroxycholesterol with formation of a partially high spin cytochrome; site II binds both pregnenolone and 20alpha-OH cholesterol resulting in a low spin cytochrome. Interactions between sites I and II are not competitive, and occupancy of site II ensures a low spin state irrespective of the occupancy of site I. A second mode of interaction by 20alpha, 22R-dihydroxycholesterol stabilizes a high spin cytochrome and is competitive with site II binding by 20alpha-hydroxycholesterol or pregnenolone. Formation of a maximally high spin cytochrome follows occupancy by 20alpha, 22R-dihydroxycholesterol at both sites.  相似文献   

3.
4.
Adrenocortical mitochondrial cytochrome P-450 specific to the cholesterol side-chain cleavage (desmolase) reaction differs from that for the 11beta-hydroxylation reaction of deoxycorticosterone. The former cytochrome appears to be more loosely bound to the inner membrane than the latter. Upon ageing at 0 degrees C or by aerobic treatment with ferrous ions, the desmolase P-450 was more stable than the 11beta-hydroxylase P-450. By utilizing artificial hydroxylating agents such as cumene hydroperoxide, H2O2, and sodium periodate, the hydroxylation reaction of deoxycorticosterone to corticosterone in the absence of NADPH was observed to a comparable extent with the reaction in the presence of adrenodoxin reductase, adrenodoxin and NADPH. However, the hydroxylation reaction of cholesterol to pregnenolone was not supported by these artificial agents. Immunochemical cross-reactivity of bovine adrenal desmolase P-450 with rabbit liver microsomal P-450LM4 was also investigated. We found a weak but significant cross-reactivity between the adrenal mitochondrial P-450 and liver microsomal P-450LM4, indicating to some extent a homology between adrenal and liver cytochromes P-450.  相似文献   

5.
1. Cytochrome P-450-linked monooxygenase of mitochondria and microsomes of the cerebrum, cerebellum and pituitary gland of bovine brain were investigated biochemically and immunochemically. 2. The cytochromes P-450scc and P-450(11) beta, NADPH-ferredoxin reductase and adreno-ferredoxin were detected and their enzymatic activities of steroid hydroxylations were found in the bovine brain.  相似文献   

6.
Steroid-induced difference spectra have been used to examine the combination of cholesterol with adrenal mitochondrial cytochrome P-450 which participates in cholesterol side chain cleavage (P-450scc) and the depletion of cholesterol from the cytochrome which results from turnover of the enzyme system. Type I difference spectra-induced by cholest-5-ene-3beta, 25-diol (25-hydroxycholesterol) and cholest-5-ene-3beta, 20 alpha, 22R-triol (20alpha, 22R dihydroxycholesterol) have been used to quantitate binding of cholesterol to two sites (I and II) on cytochrome P-450scc. The action of adrenocorticotropic hormone (ACTH) in vivo and the action of calcium or phosphate ions on isolated mitochondria stimulate the combination of cholesterol with site I but not site II. Cholesterol derived from lecithin-cholesterol micelles, however, binds to both sites. Malate-induced cholesterol depletion occurred at a comparable rate to the transfer of cholesterol from lecithin-cholesterol micelles. However, a residual proportion of cholesterol-cytochrome P-450scc complexes remained, even after 10 min of exposure to malate, and was of similar magnitude in mitochondria from both cycloheximide-treated and stressed rats. It is suggested that this reflects a less reactive form of cholesterol-cytochrome complex. Steroid-induced difference spectra indicate that sites I and II on cytochrome P-450scc are similarly depleted after metabolism of mitochondrial cholesterol in vitro and after inhibition of the action of ACTH in vivo. Anaerobiosis of adrenal cells after excision of the accumulation of cholesterol at cytochrome P-450cc. When anaerobiosis was prevented, cytochrome P-450scc in the freshly isolated mitochondria was apparently essentially free of complexed cholesterol, irrespective of the extent of ACTH action. For 30 min after suspension of the mitochondria in 0.25 M sucrose at 4 degrees, cholesterol combines with cytochrome P-450scc. The extent of this process was not affected by the presence of cycloheximide during ether stress treatment of the rats. It is concluded that there are at least two pools of mitochondrial cholesterol with access to cytochrome P-450scc but that ACTH stimulates only the pool which most readily interacts with the cytochrome.  相似文献   

7.
Octyl methyl-, butyl methyl- and pentamethylene sulfide react with about 50% of oxidized cytochrome P-450 in liver microsomes from phenobarbital-pretreated rats by formation of optical difference spectra with maxima at 435 and 552 nm and concomitant shifts in the electron paramagnetic resonance spectrum. Reduction by NADPH or sodium dithionite yielded a Soret absorption band at 449 nm and alpha and beta bands at 573 and 545 nm, respectively. The ligand metyrapone and the substrate n-octane competitively inhibited the formation of these difference spectra and pentamethylene sulfide was a strong competitive inhibitor of the 0-deakylation of 7-ethoxycoumarin. These results indicate a direct ligand binding of the sulfides to cytochrome P-450 with concomitant blocking of the hydrophobic substrate binding site. Some sulfides did not interact as ligands but as substrates, in variation, however, with the source of microsomes.  相似文献   

8.
9.
Trypanosoma cruzi epimastigote and trypomastigote forms contain microsomal peptides in the 40-60,000 mol. wt region, some of which are heme-staining-positive and are induced by phenobarbital, as indicated by SDS-gel electrophoresis and by double-labeling experiments. Epimastigotes show induced peptides of mol. wt 56,000, 52,000, 49,000, 44,000, 42,000 and 40,500 whereas only one peptide (52,500 mol. wt) is increased in trypomastigotes. Fractionation of microsomes derived from epimastigotes by octylamine Sepharose-4B column chromatography reveals the presence of two heme peptides with mol. wt of 55,800 and 56,600. The pooled fraction has a typical cytochrome P-450 CO-difference spectrum and appears to correspond to a high spin form. The demonstration of the existence of this family of hemoproteins in T. cruzi further supports the idea that resistance to chemotherapeutic agents is due to active metabolism. The active metabolism, however, may not be similar in the various developmental forms of this organism since differences exist in the patterns of induction of heme-positive microsomal peptides.  相似文献   

10.
Three fractions of cytochrome P-450scc (denoted as fractions a, b, and c) were purified by a new procedure from bovine adrenocortical mitochondria. The amino-acid content analyses of these three fractions showed no difference. NH2-terminal amino-acid sequences of cytochrome P-450scc fractions, a and b agreed completely with the sequence deduced by nucleotide sequence of cDNA of cytochrome P-450scc mRNA (Morohashi, K., Fujii-Kuriyama, Y., Okada, Y., Sogawa, K., Hirose, T., Inayama, S. and Omura, T. (1984) Proc. Natl. Acad. Sci. USA 81, 4647-4651), whereas the sequence of fraction c showed a missing of isoleucine at the NH2-terminal. COOH-terminal ámino-acid sequences of fractions a, b and c were -Gln-Ala-COOH, identical with the deduced sequence from the cDNA. Measurements of the enzymatic activities of cholesterol side-chain cleavage reaction revealed no distinct difference among these three fractions. Although each of these fractions appeared as a single protein staining band upon SDS-polyacrylamide gel electrophoresis, these fractions showed heterogeneities upon two-dimensional electrophoresis and chromatofocusing. Fraction a contained the major form of cytochrome P-450scc, and its isoelectric point was estimated to be pH 7.8 by isoelectric focusing under both native and denatured conditions, and this value was confirmed by chromatofocusing. Neither of the carbohydrate-specific stainings (such as periodic acid-Schiff staining and lectin-peroxidase stainings using concanavalin A, wheat-germ agglutinin, and soybean agglutinin) of purified cytochrome P-450scc fractions after the electrophoretic resolution on SDS-polyacrylamide gel could show cytochrome P-450scc fractions as glycoproteins, suggesting that the heterogeneities were not due to the glycosylation state.  相似文献   

11.
Cytochrome P-450 related to side-chain cleavage of cholesterol (P-450SCC) was isolated from bovine corpus luteum mitochondria in the form of its stable cholesterol complex. The isolation procedure included ammonium sulfate fractionation and chromatography on omega-aminohexyl-Sepharose (AH-Sepharose). Corpus luteum P-450SCC was resolved into one minor (AH-I) and two major (AH-II and AH-III) fractions by the chromatography. Results of re-chromatography suggested the possibility that AH-III Fraction was originally complexed with lipidic material. The two major fractions purified by the re-chromatography (AH-IIR and AH-IIIR Fractions) showed essentially a single band on sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and their absorption spectra were indistinguishable from each other. Both fractions were further resolved into two major and some minor bands of P-450SCC by isoelectric focusing on polyacrylamide gel in the presence of a non-ionic detergent, as detected by protein staining, heme staining and immunoblot analysis with anti-bovine P-450SCC monoclonal antibody. Both AH-IIR and AH-IIIR Fractions were further resolved by high-performance liquid chromatography (HPLC) on SP-TSK gel column into two fractions, SP-I and SP-II. These fractions had the same N-terminal amino acid sequence, showed similar catalytic activity and resolved into one major and a few minor bands on isoelectric focusing on polyacrylamide gel. Much more heterogeneity was observed in purified P-450SCC preparations from bovine adrenal cortex mitochondria. These results indicated the presence of multiple molecular forms of corpus luteum P-450SCC as well as adrenal cortex P-450SCC. Computer simulation studies were carried out in order to analyze the mechanism of formation of multiple bands on isoelectric focusing. The multiple bands of corpus luteum P-450SCC could be explained by postulating the presence of two isozymes (or molecular forms) having a pair of sites each with or without a charged group.  相似文献   

12.
Isolated bovine adrenal cortex mitochondria imported in vitro synthesized pre-P-450(SCC) and processed it to the mature form. Partial radio-sequencing of the processed P-450(SCC) gave a result identical with that for authentic P-450(SCC). Rat liver mitochondria also imported pre-P-450(SCC) and processed it to the mature form, whereas bovine heart mitochondria were unable to import and process pre-P-450(SCC) although both mitochondrial preparations imported and processed pre-adrenodoxin. The pre-P-450(SCC) processing activity of bovine adrenal cortex mitochondria was associated with the matrix side surface of the inner membrane. The processing protease could be solubilized by sodium cholate and partially purified by ammonium sulfate fractionation. The partially purified processing protease cleaved pre-P-450(SCC) at the correct position. It was also active in processing pre-P-450(11 beta) but inactive toward pre-adrenodoxin. Bovine heart mitochondria lacked the processing activity to pre-P-450(SCC). The localization of pre-P-450(SCC) and mature P-450(SCC) in bovine adrenal cortex mitochondria was examined. Mature P-450(SCC) processed by the mitochondria was found associated with the matrix-side surface of the inner membrane, which is the correct location of P-450(SCC) in the cell. In the presence of o-phenanthroline, pre-P-450(SCC) was imported into the organelles without being processed and remained soluble in the matrix. The incorporation of newly processed mature P-450(SCC) into the inner membrane was also observed when pre-P-450(SCC) was incubated with inner membrane vesicles. Mature P-450(SCC) generated in vitro from pre-P-450(SCC) by the partially purified processing protease was incorporated not only into the inner membrane vesicles but also into bovine adrenal cortex microsomes. These findings suggested that the processing of pre-P-450(SCC) occurred prior to the incorporation of mature-P-450(SCC) into the inner membrane.  相似文献   

13.
The relationship between cytochrome P-450 concentration, cholesterol side-chain cleavage and 3 beta-hydroxysteroid dehydrogenase/isomerase activity, in different density mitochondrial preparations from human term placenta has been studied. The heavy mitochondrial fraction shows a higher cytochrome P-450 concentration and cholesterol side-chain cleavage activity as compared to the light mitochondrial fraction, it has however lower cytochrome P-450AROM level and 3 beta-hydroxysteroid dehydrogenase/isomerase activity.  相似文献   

14.
One soluble cytochrome P.450 from bovine adrenocortical mitochondria has been purified to near homogeneity. The purified enzyme catalyses side-chain cleavage of cholesterol and to a much lesser extent 11β-hydroxylation (<13% side-chain cleavage) but shows no 18-hydroxylase activity. The molecular weight of this P.450 is approximately 800,000.  相似文献   

15.
16.
Cytochrome P-450 from bovine adrenocortical mitochondria exists in three forms of molecular weight: 850,000 (protein 16), of one-half (protein 8), and of one-quarter of this value (protein 4). The forms of the enzyme are named according to the number of subunits and all appear to be active in converting cholesterol to 3beta-hydroxy-5-pregnen-20-one (side chain cleavage) (Shikita, M., and Hall, P.F. (1973) J. Biol. Chem. 248, 5606). To determine whether all three forms are active at their characteristic molecular weights, the three cytochromes were each layered onto separate sucrose density gradients and centrifuged at 49,000 rpm for 60 min; the gradients contained all the factors necessary for side chain cleavage including one of the following substrates: cholesterol, 20S-hydroxycholesterol, and 20S,22R-dihydroxycholesterol. Regardless of the form of P-450 layered onto the gradient and regardless of the substrate, enzyme activity (side chain cleavage) was observed only in fractions corresponding to a sedimentation coefficient of 20 to 22 S which is that for protein 16. No activity was observed at S values corresponding to either protein 8 or protein 4. These findings indicate that the active form of cytochrome P-450 from adrenocortical mitochondria is that containing 16 subunits, i.e. the form in which the cytochrome is normally isolated from adrenal mitochondria. Forms consisting of eight and four subunits which can be prepared from protein 16 become active only by forming protein 16, at least in an aqueous medium in vitro.  相似文献   

17.
18.
S Narasimhulu 《Biochemistry》1988,27(4):1147-1153
Quenching of the tryptophanyl fluorescence of cytochrome P-450C-21 by acrylamide and its relationship to substrate binding are investigated by using steady-state and time-resolved data. The average collisional quenching constant was 0.4 M whereas the quenching constant for the total fluorescence was 10.8 +/- 0.9 M. This indicates that the quenching is essentially static. The quencher inhibited the binding of the substrate apparently competitively. The inhibition constant was 0.092 M, giving rise to an association constant of 10.9 M which is remarkably similar to the static quenching constant. It is suggested that tryptophan(s) may represent a key to the substrate-binding site in P-450C-21.  相似文献   

19.
Cytochrome P-450scc (P-450scc), a cholesterol side-chain cleavage enzyme from bovine adrenocortical mitochondria, has been crystallized for the first time. Upon removal of glycerol from the solution of the native enzyme complexed with pyridoxal 5'-phosphate (PLP) by microdialysis against distilled water, reddish and planar crystals appeared. The crystals of native P-450scc were also obtained by the same procedure. We identified the crystals as the P-450scc-PLP complex or native P-450scc by absorption spectroscopy and SDS-polyacrylamide gel electrophoresis, and characterized them under a polarization microscope.  相似文献   

20.
Highly specific antibodies against hemeprotein were obtained by immunizing rabbits with a highly purified cholesterol-hydroxylating cytochrome P-450scc from adrenocortical mitochondria. The antibodies do not specifically interact with other components of the adrenocortical electron transport chain, e. g., adrenodoxin reductase and adrenodoxin. Using double immunodiffusion technique (Ouchterlony method), it was shown that the antibodies did not precipitate the microsomal cytochromes P-450 LM2 and LM4, cytochrome b5 and 11 beta-hydroxylating cytochrome P-450 from adrenocortical mitochondria. Antibodies against cytochrome P-450scc inhibited the cholesterol side chain cleavage activity of cytochrome P-450scc in a reconstituted system. Limited proteolysis with trypsin and immunoelectrophoresis in the presence of specific antibodies revealed that antigenic determinants are present of the heme-containing catalytic domain of cytochrome P-450scc (F1) as well as on the domain responsible for the interaction with the phospholipid membrane (F2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号