首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This is the first granulation study except Ferguson [Ferguson LN. Anaerobic codigestion of aircraft deicing fluid and microaerobic studies. M.S. Thesis. Milwaukee, WI, USA: Marquette University; 1999] to develop coupled granules by using a mixture of suspended anaerobic and aerobic cultures exposed to alternating cyclic anaerobic/microaerobic/aerobic conditions. Coupled granules with median sizes of 1.28–1.86 mm and settling velocities of 31–39 m/h were developed, which were comparable to those of both anaerobic and aerobic granules. Coupled granules displayed noteworthy specific methanogenic activity (SMA) and specific oxygen uptake rate (SOUR) as 14–42 mL CH4/g VSS h and 6–47 mg DO/g VSS h, respectively, indicating that they were composed of both anaerobic and aerobic cultures.  相似文献   

2.
3.
Venous blood lactate concentrations [1ab] were measured every 30 s in five athletes performing prolonged exercise at three constant intensities: the aerobic threshold (Thaer), the anaerobic threshold (Than) and at a work rate (IWR) intermediate between Thaer and Than. Measurements of oxygen consumption (VO2) and heart rate (HR) were made every min. Most of the subjects maintained constant intensity exercise for 45 min at Thaer and IWR, but at Than none could exercise for more than 30 min. Relationships between variations in [1ab] and concomitant changes in VO2 or HR were not statistically significant. Depending on the exercise intensity (Thaer, IWR, or Than) several different patterns of change in [1ab] have been identified. Subjects did not necessarily show the same pattern at comparable exercise intensities. Averaging [1ab] as a function of relative exercise intensity masked spatial and temporal characteristics of individual curves so that a common pattern could not be discerned at any of the three exercise levels studied. The differences among the subjects are better described on individual [1ab] curves when sampling has been made at time intervals sufficiently small to resolve individual characteristics.  相似文献   

4.
Triethanolamine (TEA) is converted into acetate and ammonia by a strictly anaerobic, gram-positive Acetobacterium strain LuTria3. Fermentation experiments with resting cell suspensions and specifically deuterated substrates indicate that in the acetate molecule the carboxylate and the methyl groups correspond to the alcoholic function and to its adjacent methylene group, respectively, of the 2-hydroxyethyl unit of TEA. A 1,2 shift of a hydrogen (deuterium) atom from -CH2-O- to =N-CH2- without exchange with the medium was observed. This fact gives evidence that a radical mechanism occurs involving the enzyme and/or coenzyme molecule as a hydrogen carrier. Such a biodegradation appears analogous to the conversion of 2-phenoxyethanol into acetate mediated by another strain of the anaerobic homoacetogenic bacterium Acetobacterium.  相似文献   

5.
Discharge of nitrate and ammonia rich wastewaters into the natural waters encourage eutrophication, and contribute to aquatic toxicity. Anaerobic ammonium oxidation process (ANAMMOX) is a novel biological nitrogen removal alternative to nitrification-denitrification, that removes ammonia using nitrite as the electron acceptor. The feasibility of enriching the ANAMMOX bacteria from the anaerobic digester sludge of a biomethanation plant treating vegetable waste and aerobic sludge from an activated sludge process treating domestic sewage is reported in this paper. ANAMMOX bacterial activity was monitored and established in terms of nitrogen transformations to ammonia, nitrite and nitrate along with formation of hydrazine and hydroxylamine.  相似文献   

6.
Contaminated sites in Lagos, Nigeria were screened for the presence of chlorobiphenyl-degrading bacteria. The technique of continual enrichment on Askarel fluid yielded bacterial isolates able to utilize dichlorobiphenyls (diCBs) as growth substrates and six were selected for further studies. Phenotypic typing and 16S rDNA analysis classified these organisms as species of Enterobacter, Ralstonia and Pseudomonas. All the strains readily utilized a broad spectrum of xenobiotics as sole sources of carbon and energy. Growth was observed on all monochlorobiphenyls (CBs), 2,2′-, 2,3-, 2,4′-, 3,3′- and 3,5-diCB as well as di- and trichlorobenzenes Growth was also sustainable on Askarel electrical transformer fluid and Aroclor 1221. Time-course studies using 100 ppm of 2-, 3- or 4-CB resulted in rapid exponential increases in cell numbers and CB transformation to respective chlorobenzoates (CBAs) within 70 h. Significant amounts of chloride were recovered in culture media of cells incubated with 2-CB and 3-CB, suggesting susceptibilities of both 2- and 3-chlorophenyl rings to attack, while the 4-CB was stoichiometrically transformed to 4-CBA. Extensive degradation of most of the congeners in Aroclor 1221 was observed when isolates were cultivated with the mixture as a sole carbon source. Aroclor 1221 was depleted by a minimum of 51% and maximum of 71%. Substantial amounts of chloride eliminated from the mixture ranged between 15 and 43%. These results suggest that some contaminated soils in the tropics may contain exotic micro-organisms whose abilities and potentials are previously unknown. An understanding of these novel strains therefore, may help answer questions about the microbial degradation of polychlorinated biphenyls (PCBs) in natural systems and enhance the potential use of bioremediation as an effective tool for cleanup of PCB-contaminated soils.  相似文献   

7.
Abstract A facultative anaerobe, strain Ep01 produced a mixture of pyruvate, formate, acetate and ethanol from glucose anaerobically, and acetate and pyruvate aerobically. Cell extract of anaerobic-grown cells contained active pyruvate formatelyase, aldehyde dehydrogenase and alcohol dehydrogenase, while cell extract of aerobic grown cells contained an active pyruvate dehydrogenase system, NaDH oxidase and NADH peroxidase. Levels of acetate kinase and phosphate acetyltransferase activities were not significantly different in cells grown under either condition. Based on the metabolic products and the emzyme activities, we propose the presence of two metabolic pathways in strain Ep01, namely, a pathway to form formate, acetate and ethanol under anaerobic conditions, and a pathway to form under aerobic conditions. This explains why strain Ep01 can grow well both under strictly anaerobic conditions and well-aerated conditions.  相似文献   

8.
Summary An obligately anaerobic bacterium known as strain DCB-1 was grown under a variety of conditions to determine the requirements for dehalogenation as well as factors which stimulated or inhibited the process. Dechlorination was obligately anaerobic since introduction of O2 immediately inhibited the reaction. Sulfuroxy anions, which also serve as electron acceptors for DCB-1, inhibited dechlorination but NO3 and fumarate did not. The optimum growth medium for dechlorination was 0.2% Na pyruvate and 20% rumen fluid in basal salts. Media with either pyruvate or rumen fluid alone did not support dechlorination. DCB-1 also consumed H2 but typical substrate concentrations of H2 (80 kPa) delayed dechlorination. Once the H2 concentration was reduced to <20 M (2.67 kPa), dechlorination resumed. Dehalogenation by DCB-1 was restricted to the meta substituted benzoates as halogens in other positions and chloroaromatic compounds with other functional groups were not dechlorinated.  相似文献   

9.
Aerobic and anaerobic thresholds determined by different methods in repeated exercise tests were correlated with cardiorespiratory variables and variables of muscle metabolic profile in 33 men aged 20-50 years. Aerobic threshold was determined from blood lactate, ventilation, and respiratory gas exchange by two methods (AerT1 and AerT2) and anaerobic threshold from venous lactate (AnTLa), from ventilation and gas exchange (AnTr) and by using the criterion of 4 mmol.1(-1) of venous lactate (AnT4mmol). In addition to ordinary correlative analyses, applications of LISREL models were used. The 8 explanatory variables chosen for the regression analyses were height, relative heart volume, relative diffusing capacity of the lung, muscle fiber composition, citrate synthase (CS) and succinate dehydrogenase activities, the lactate dehydrogenase--CS ratio, and age. They explained 58% of the variation in AerT1, 73.5% that of AerT2, 71% that of AnTr, 74.5% that of AnTLa, and 67.5% that of AnT4mmol.AerT and AnT alone explained 77% of the variation in each other. Both AerT and AnT were determined mainly by a muscle metabolic profile, with the CS activity of vastus lateralis as the strongest determinant. The factor 'submaximal endurance' which was measured with AerT and AnT seemed to be slightly more closely connected to 'muscle metabolic profile' than was 'maximal aerobic power' (= VO2max), but both also correlated strongly with each other (r = 0.92).  相似文献   

10.
11.
12.
AIMS: Isolation of the genes relative to PCB biodegradation and identification of the bph gene function in Rhodococcus sp. R04. METHODS AND RESULTS: A 8.7-kb fragment carrying the biphenyl catabolic genes bphABCD was isolated from the gene library in Rhodococcus sp. R04. Based on the deduced amino acid sequence homology, seven bph genes, bphA1A2A3A4, bphB, bphC and bphD, were thought to be responsible for the initial four steps of biphenyl degradation. In Escherichia coli, BphA exhibited poor activity for biphenyl transformation, and BphB, BphC and BphD were found to be catalytically active towards 2,3-dihydro-2,3-dihydroxybiphenyl, 2,3-dihydroxybiphenyl and 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate, respectively (activities of 50, 8.1 and 2.4 micromol l(-1) min(-1) mg(-1)). SDS-PAGE analysis indicated that the sizes of bphA1A2A3A4, bphB, bphC and bphD gene products were 49, 19, 14, 47, 32, 30 and 31 kDa, respectively. After disruption of bph genes, the bphA1 mutants lost the ability to grow on biphenyl, the bphB and bphD mutants were able to transform a little of biphenyl, but hardly grew on biphenyl. CONCLUSION: The cloned bph genes indeed play an important role in the biphenyl catabolism in this strain. SIGNIFICANCE AND IMPACT OF THE STUDY: This bph gene organization in Rhodococcus sp. R04 differs from that of other biphenyl degraders reported previously, indicating it is a novel type of bph gene cluster. Analysis of the phylogenetic tree suggested that BphA1 and BphA2 in Rhodococcus sp. R04 had a different evolutionary relationship with those in the other PCB degraders.  相似文献   

13.
The maximal aerobic power (VO2max) and maximal anaerobic capacity (AODmax) of 16 female rowers were compared to their peak aerobic power (VO2peak) and peak anaerobic capacity (AODpeak, respectively) during a simulated 2-km race on a rowing ergometer. Each subject completed three tests, which included a 2-min maximal effort bout to determine the AODmax, a series of four, 4-min submaximal stages with subsequent progression to VO2max and a simulated 2-km race. Aerobic power was determined using an open-circuit system, and the accumulated oxygen deficit method was used to calculate anaerobic capacities from recorded mechanical power on a rowing ergometer. The average VO2peak (3.58 l min(-1)), which usually occurred during the last minute of the race simulation, was not significantly different (P > 0.05) from the VO2max (3.55 l min(-1)). In addition, the rowers' AODmax (3.40 l) was not significantly different (P > 0.05) from their AODpeak (3.50 1). The average time taken for the rowers to complete the 2-km race simulation was 7.5 min, and the anaerobic system (AODpeak) accounted for 12% of the rowers' total energy production during the race.  相似文献   

14.
Yu YL  Fang H  Wang X  Wu XM  Shan M  Yu JQ 《Biodegradation》2006,17(5):487-494
A fungal strain capable of utilizing chlorpyrifos as sole carbon and energy sources was isolated from soil by enrichment cultivation approach. The half-lives of degradation (DT50) for chlorpyrifos at concentrations of 1, 10, and 100 mg l−1 by the fungal strain DSP in mineral salt medium were measured to be 2.03, 2.93, and 3.49 days, respectively. Two cell-free extracts [E (1:10) and E (1:20)] from the fungal strain DSP in bran–glucose medium were prepared and used to enhance chlorpyrifos degradation on vegetables. Compared with the controls, the DT50 of chlorpyrifos were reduced by 70.3%, 65.6%, 80.6%, 80.6%, and 86.1%, and by 53.8%, 43.2%, 66.0%, 54.3%, and 67.7% on E (1:20) and E (1:10) treated pakchoi, water spinach, Malabar spinach, haricot beans, and pepper, respectively. The 7-day residual values (R 7) of chlorpyrifos on E (1:10) treated vegetables were all lower than the corresponding maximum residue levels of European Union (EU MRLs), except that the R 7 value on haricot beans was slightly higher than the corresponding EU MRLs. The results indicate that cell-free extracts could rapidly degrade chlorpyrifos residues on vegetables.  相似文献   

15.
Chlorophenol degradation was studied by combined anaerobic–aerobic treatments as a single or multi-substrate system. 2,4-Dichlorophenol (2,4-DCP) was degraded to the extent of 52 and 78% in up-flow anaerobic sludge blanket (UASB) and aerobic suspended growth (ASG) reactors respectively, at organic loading rates of 0.18kg/m3/day and hydraulic retention time of 26.4h in the presence of glucose. The UASB represents the dominating facultative anaerobic microbial population. When the effluent from the anaerobic reactor (UASB) was subjected to aerobic treatment on the ASG reactor, 2,4-DCP and COD removals of 86 and 95% respectively were achieved. Aerobic degradation of chlorophenol by acclimated mixed bacterial isolates was found to be sequential: 2-Chlorophenol (2-CP) and 4-CP were degraded first, followed by 2,4-DCP and 2,4,6-Trichlorophenol (2,4,6-TCP) while the contrary was obtained in anaerobic degradation. In anaerobic degradation by acclimated mixed bacterial cells, 2,4-DCP and 2,4,6-TCP were degraded first followed by mono-chlorophenols. The anaerobic/aerobic bioreactors were most efficient when operated in sequence (series) rather than in parallel.  相似文献   

16.
This work reports on the anaerobic treatment of gasoline-contaminated groundwater in a pilot-scale horizontal-flow anaerobic immobilized biomass reactor inoculated with a methanogenic consortium. BTEX removal rates varied from 59 to 80%, with a COD removal efficiency of 95% during the 70 days of in situ trial. BTEX removal was presumably carried out by microbial syntrophic interactions, and at the observed concentrations, the interactions among the aromatic compounds may have enhanced overall biodegradation rates by allowing microbial growth instead of co-inhibiting biodegradation. There is enough evidence to support the conclusion that the pilot-scale reactor responded similarly to the lab-scale experiments previously reported for this design.  相似文献   

17.
A new strictly anaerobic, gram-negative, nonsporeforming bacterium, Strain PerGlx1, was enriched and isolated from marine sediment samples with glyoxylate as sole carbon and energy source. The guanineplus-cytosine content of the DNA was 44.1±0.2 mol %. Glyoxylate was utilized as the only substrate and was stoichiometrically degraded to carbon dioxide, hydrogen, and glycolate. An acetyl-CoA and ADP-dependent glyoxylate converting enzyme activity, malic enzyme, and pyruvate synthase were found at activities sufficient for growth (0.25 U x mg protein-1). These findings allow to design a new degradation pathway for glyoxylate: glyoxylate is condensed with acetyl-CoA to form malyl-CoA; the free energy of the thioester linkage in malyl-CoA is conserved by substrate level phosphorylation. Part of the electrons released during glyoxylate oxidation to CO2 reduce a small fraction of glyoxylate to glycolate.  相似文献   

18.
19.
The growth of a denitrifying Pseudomonas strain on benzoic acid and 2-aminobenzoic acid (anthranilic acid) has been studied. The organism grew aerobically on benzoate, 2-aminobenzoate, and gentisate, but not on catechol or protocatechuic acid. These and other findings suggest that aerobic degradation of benzoic acid was via gentisic acid. Under completely anaerobic conditions in the presence of nitrate, benzoate and 2-aminobenzoate (5 mM each) were oxidized to CO2 with the concurrent reduction of NO 3 - to NO 2 - . Only after complete NO 3 - consumption was NO 2 - reduced to N2. Cells contained a NADP-specific 2-oxoglutaate dehydrogenase, in contrast to a NAD-specific pyruvate dehydrogenase. During anaerobic metabolism of [carboxyl-14C]benzoic acid, 16% of the label of metabolized benzoic acid was incorporated into cell material; this excludes intermediary decarboxylation during anaerobic metabolism. Extracts catalysed the activation of benzoic acid and a variety of its derivatives to the respective aryl-coenzyme A thioesters, ATP being cleaved to AMP and PPi; two synthetase activites were present. Extracts from 2-aminobenzoate-grown cells catalyzed a NADH-dependent reduction of 2-aminobenzoyl-CoA (100 nmol·min-1·mg-1 cell protein) to an unidentified CoA thioester, with a stoichiometric release of NH3 and a stoichiometry of 3 mol NADH oxidized per mol 2-aminobenzyol-CoA reduced when tested under aerobic conditions. The 2-aminobenzoyl-CoA reductase activity was lacking in anaerobic benzoate-grown cells and in aerobic cells. This is taken as evidence that 2-aminobenzoyl-CoA reductase is a key enzyme in a novel reductive pathway of anaerobic 2-aminobenzoic acid metabolism.Dedicated to Prof. Charles W. Evans  相似文献   

20.
Lai HT  Wang TS  Chou CC 《Bioresource technology》2011,102(8):5017-5023
In this study, the effects of natural, visible and ultraviolet lights, microbial activities and aerobic and anaerobic conditions on degradation of four different sulfonamide antibiotics (SAs) were studied. Water and sediment collected from a marine shrimp pond were examined and a factorial design was employed to evaluate the effects of selected parameters. The results showed that all the SAs in water and sediment had significant declines attributed to natural light and microbial activities. The half-lives (t1/2s) of SAs in non-sterile water and sediment samples under natural light were 2.0-15.0 and 0.7-7.3 days, respectively, and slowed to 2.9-62.9 and 6.9-85.6 days after sterilized. Moreover, the declines of SAs were significantly faster under ultraviolet than visible light with 36.5-70.9% shorter t1/2s. Anaerobic condition was also effective on declines of SAs in sediment. Both sulfate-reducing and methanogenic microbes were directly involved in the decline of SDM, and indirectly contributed to SMX declines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号