首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

MicroRNAs have emerged as important regulatory genes in a variety of cellular processes and, in recent years, hundreds of such genes have been discovered in animals. In contrast, functional annotations are available only for a very small fraction of these miRNAs, and even in these cases only partially.

Results

We developed a general Bayesian method for the inference of miRNA target sites, in which, for each miRNA, we explicitly model the evolution of orthologous target sites in a set of related species. Using this method we predict target sites for all known miRNAs in flies, worms, fish, and mammals. By comparing our predictions in fly with a reference set of experimentally tested miRNA-mRNA interactions we show that our general method performs at least as well as the most accurate methods available to date, including ones specifically tailored for target prediction in fly. An important novel feature of our model is that it explicitly infers the phylogenetic distribution of functional target sites, independently for each miRNA. This allows us to infer species-specific and clade-specific miRNA targeting. We also show that, in long human 3' UTRs, miRNA target sites occur preferentially near the start and near the end of the 3' UTR. To characterize miRNA function beyond the predicted lists of targets we further present a method to infer significant associations between the sets of targets predicted for individual miRNAs and specific biochemical pathways, in particular those of the KEGG pathway database. We show that this approach retrieves several known functional miRNA-mRNA associations, and predicts novel functions for known miRNAs in cell growth and in development.

Conclusion

We have presented a Bayesian target prediction algorithm without any tunable parameters, that can be applied to sequences from any clade of species. The algorithm automatically infers the phylogenetic distribution of functional sites for each miRNA, and assigns a posterior probability to each putative target site. The results presented here indicate that our general method achieves very good performance in predicting miRNA target sites, providing at the same time insights into the evolution of target sites for individual miRNAs. Moreover, by combining our predictions with pathway analysis, we propose functions of specific miRNAs in nervous system development, inter-cellular communication and cell growth. The complete target site predictions as well as the miRNA/pathway associations are accessible on the ElMMo web server.  相似文献   

2.
A crucial stage in systematic conservation planning is the definition of explicit conservation targets to be achieved by a network of protected areas. A wide variety of targets have been employed, including overall percentage area, uniform representation of biodiversity features, and variable targets according to conservation interest. Despite the diversity of options, most studies adopt a particular set of targets without further explanation, and few have investigated the effect of target selection on their results. Here, using a data set on the distribution of plants and terrestrial vertebrates in southern France, we investigate how variation in targets can affect both stages of a gap analysis: the assessment of the completeness of an existing reserve network, and the prioritization of areas for its expansion. Target selection had a major impact on the gap analysis results, with uniform targets (50% of each species’ range) emphasizing the representation of common species, and contrasting targets (weighted according to species’ conservation interest) concentrating attention on high conservation interest species and the areas where they occur. Systematic conservation planning exercises should thus pay close attention to the definition and justification of the representation targets employed.  相似文献   

3.
4.
5.
6.
7.
The thioredoxin family of oxidoreductases plays an important role in redox signaling and control of protein function. Not only are thioredoxins linked to a variety of disorders, but their stable structure has also seen application in protein engineering. Both sequence-based and structure-based tools exist for thioredoxin identification, but remote homolog detection remains a challenge. We developed a thioredoxin predictor using the approach of integrating sequence with structural information. We combined a sequence-based Hidden Markov Model (HMM) with a molecular dynamics enhanced structure-based recognition method (dynamic FEATURE, DF). This hybrid method (HMMDF) has high precision and recall (0.90 and 0.95, respectively) compared with HMM (0.92 and 0.87, respectively) and DF (0.82 and 0.97, respectively). Dynamic FEATURE is sensitive but struggles to resolve closely related protein families, while HMM identifies these evolutionary differences by compromising sensitivity. Our method applied to structural genomics targets makes?a strong prediction of a novel thioredoxin.  相似文献   

8.
Experimental validation of miRNA targets   总被引:2,自引:0,他引:2  
MicroRNAs are natural, single-stranded, small RNA molecules that regulate gene expression by binding to target mRNAs and suppress its translation or initiate its degradation. In contrast to the identification and validation of many miRNA genes is the lack of experimental evidence identifying their corresponding mRNA targets. The most fundamental challenge in miRNA biology is to define the rules of miRNA target recognition. This is critical since the biological role of individual miRNAs will be dictated by the mRNAs that they regulate. Therefore, only as target mRNAs are validated will it be possible to establish commonalities that will enable more precise predictions of miRNA/mRNA interactions. Currently there is no clear agreement as to what experimental procedures should be followed to demonstrate that a given mRNA is a target of a specific miRNA. Therefore, this review outlines several methods by which to validate miRNA targets. Additionally, we propose that multiple criteria should be met before miRNA target validation should be considered "confirmed."  相似文献   

9.
Humans derive most of their well-being from plants, a self renewing natural resource. Yet human activities aimed at increasing well-being are threatening self renewal of some of these species. Some are directly threatened by over exploitation. Most become threatened as an unforeseen consequence of other activities principally agriculture, commerce, industrialisation and the manufacture and use of artificial fertilisers. The evidence suggests that the evolutionary need for reproductive success in humans has led our use of natural sources to be unsustainable throughout our species history. The need to acquire resource to achieve mate selection remains the same today as for our earliest relatives. Only the extent and rate of acquisition has changed in recent times and with it the environment and the diversity of plants that survive. Throughout our history, human ingenuity has often been required to rebalance the demand for plant derived benefits for well-being with their supply. Both technical and social ingenuity have been used to achieve the necessary outcome. The targets set within the Global Strategy for Plant Conservation reflect the need for both social and technical ingenuity if the loss of plant diversity is to be halted, with 10 of the 16 targets focussing on social change and only 4 requiring technical innovation. Yet, inspection of the literature shows little use is made of the evolutionary analysis of human behaviour (evolutionary psychology, human behavioural ecology and dual inheritance theory) in the design of projects seeking plant conservation. This paper attempts to begin to close this gap.  相似文献   

10.
Multiple mechanisms of senescence induction exist including telomere attrition, oxidative stress, oncogene expression and DNA damage signalling. The regulation of the cellular changes required to respond to these stimuli and create the complex senescent cell phenotype has many different mechanisms. MiRNAs present one mechanism by which genes with diverse functions on multiple pathways can be simultaneously regulated. In this study we investigated 12 miRNAs previously identified as senescence regulators. Using pathway analysis of their target genes we tested the relevance of miRNA regulation in the induction of senescence. Our analysis highlighted the potential of these senescence-associated miRNAs (SA-miRNAs) to regulate the cell cycle, cytoskeletal remodelling and proliferation signalling logically required to create a senescent cell. The reanalysis of publicly available gene expression data from studies exploring different senescence stimuli also revealed their potential to regulate core senescence processes, regardless of stimuli. We also identified stimulus specific apoptosis survival pathways theoretically regulated by the SA-miRNAs. Furthermore the observation that miR-499 and miR-34c had the potential to regulate all 4 of the senescence induction types we studied highlights their future potential as novel drug targets for senescence induction.  相似文献   

11.
The N‐end rule relates the in vivo half‐life of a protein to the identity of its N‐terminal amino acid residue. While some N‐terminal residues result in metabolically stable proteins, other, so‐called destabilizing residues, lead to rapid protein turnover. The N‐end rule pathway, which mediates the recognition and degradation of proteins with N‐terminal destabilizing residues, is present in all organisms examined, including prokaryotes. This protein degradation pathway has a hierarchical organization in which some N‐terminal residues, called primary destabilizing residues, are directly recognized by specific ubiquitin ligases. Other destabilizing residues, termed secondary and tertiary destabilizing residues, require modifications before the corresponding proteins can be targeted for degradation by ubiquitin ligases. In eukaryotes, the N‐end rule pathway is a part of the ubiquitin/proteasome system and is known to play essential roles in a broad range of biological processes in fungi, animals and plants. While the structure of the N‐end rule pathway has been extensively studied in yeast and mammals, knowledge of its organization in plants is limited. Using both tobacco and Arabidopsis, we identified the complete sets destabilizing and stabilizing N‐terminal residues. We also characterized the hierarchical organization of the plant N‐end rule by identifying and determining the specificity of two distinct N‐terminal amidohydrolases (Nt‐amidases) of Arabidopsis that are essential for the destabilizing activity of the tertiary destabilizing residues Asn and Gln. Our results indicate that both the N‐end rule itself and mechanistic aspects of the N‐end rule pathway in angiosperms are very similar to those of mammals.  相似文献   

12.
13.
14.
This paper proposes a novel method using protein residue conservation and evolution information, i.e., spatial sequence profile, sequence information entropy and evolution rate, to infer protein binding sites. Some predictors based on support vector machines (SVMs) algorithm are constructed to predict the role of surface residues in protein-protein interface. By combining protein residue characters, the prediction performance can be improved obviously. We then made use of the predicted labels of neighbor residues to improve the performance of the predictors. The efficiency and the effectiveness of our proposed approach are verified by its better prediction performance based on a non-redundant data set of heterodimers.  相似文献   

15.
16.
17.
18.
19.
Genetic conservation: our evolutionary responsibility   总被引:5,自引:0,他引:5       下载免费PDF全文
Frankel OH 《Genetics》1974,78(1):53-65
The conservation of the crop varieties of traditional agriculture in the centers of genetic diversity is essential to provide genetic resources for plant improvement. These resources are acutely threatened by rapid agricultural development which is essential for the welfare of millions. Methodologies for genetic conservation have been worked out which are both effective and economical. Urgent action is needed to collect and preserve irreplaceable genetic resources.

Wild species, increasingly endangered by loss of habitats, will depend on organized protection for their survival. On a long term basis this is feasible only within natural communities in a state of continuing evolution, hence there is an urgent need for exploration and clarification of the genetic principles of conservation. Gene pools of wild species are increasingly needed for various uses, from old and new industries to recreation. But the possibility of a virtual end to the evolution of species of no direct use to man raises questions of responsibility and ethics.

  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号