首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conventional kinesin, kinesin-I, is a heterotetramer of two kinesin heavy chain (KHC) subunits (KIF5A, KIF5B, or KIF5C) and two kinesin light chain (KLC) subunits. While KHC contains the motor activity, the role of KLC remains unknown. It has been suggested that KLC is involved in either modulation of KHC activity or in cargo binding. Previously, we characterized KLC genes in mouse (Rahman, A., D.S. Friedman, and L.S. Goldstein. 1998. J. Biol. Chem. 273:15395-15403). Of the two characterized gene products, KLC1 was predominant in neuronal tissues, whereas KLC2 showed a more ubiquitous pattern of expression. To define the in vivo role of KLC, we generated KLC1 gene-targeted mice. Removal of functional KLC1 resulted in significantly smaller mutant mice that also exhibited pronounced motor disabilities. Biochemical analyses demonstrated that KLC1 mutant mice have a pool of KIF5A not associated with any known KLC subunit. Immunofluorescence studies of sensory and motor neuron cell bodies in KLC1 mutants revealed that KIF5A colocalized aberrantly with the peripheral cis-Golgi marker giantin in mutant cells. Striking changes and aberrant colocalization were also observed in the intracellular distribution of KIF5B and beta'-COP, a component of COP1 coatomer. Taken together, these data best support models that suggest that KLC1 is essential for proper KHC activation or targeting.  相似文献   

2.
Kinesin-1 is a molecular motor responsible for cargo transport along microtubules and plays critical roles in polarized cells, such as neurons. Kinesin-1 can function as a dimer of two kinesin heavy chains (KHC), which harbor the motor domain, or as a tetramer in combination with two accessory light chains (KLC). To ensure proper cargo distribution, kinesin-1 activity is precisely regulated. Both KLC and KHC subunits bind cargoes or regulatory proteins to engage the motor for movement along microtubules. We previously showed that the scaffolding protein JIP3 interacts directly with KHC in addition to its interaction with KLC and positively regulates dimeric KHC motility. Here we determined the stoichiometry of JIP3-KHC complexes and observed approximately four JIP3 molecules binding per KHC dimer. We then determined whether JIP3 activates tetrameric kinesin-1 motility. Using an in vitro motility assay, we show that JIP3 binding to KLC engages kinesin-1 with microtubules and that JIP3 binding to KHC promotes kinesin-1 motility along microtubules. We tested the in vivo relevance of these findings using axon elongation as a model for kinesin-1-dependent cellular function. We demonstrate that JIP3 binding to KHC, but not KLC, is essential for axon elongation in hippocampal neurons as well as axon regeneration in sensory neurons. These findings reveal that JIP3 regulation of kinesin-1 motility is critical for axon elongation and regeneration.  相似文献   

3.
Sun F  Zhu C  Dixit R  Cavalli V 《The EMBO journal》2011,30(16):3416-3429
Neuronal development, function and repair critically depend on axonal transport of vesicles and protein complexes, which is mediated in part by the molecular motor kinesin-1. Adaptor proteins recruit kinesin-1 to vesicles via direct association with kinesin heavy chain (KHC), the force-generating component, or via the accessory light chain (KLC). Binding of adaptors to the motor is believed to engage the motor for microtubule-based transport. We report that the adaptor protein Sunday Driver (syd, also known as JIP3 or JSAP1) interacts directly with KHC, in addition to and independently of its known interaction with KLC. Using an in vitro motility assay, we show that syd activates KHC for transport and enhances its motility, increasing both KHC velocity and run length. syd binding to KHC is functional in neurons, as syd mutants that bind KHC but not KLC are transported to axons and dendrites similarly to wild-type syd. This transport does not rely on syd oligomerization with itself or other JIP family members. These results establish syd as a positive regulator of kinesin activity and motility.  相似文献   

4.
Mitochondria are distributed within cells to match local energy demands. We report that the microtubule-dependent transport of mitochondria depends on the ability of milton to act as an adaptor protein that can recruit the heavy chain of conventional kinesin-1 (kinesin heavy chain [KHC]) to mitochondria. Biochemical and genetic evidence demonstrate that kinesin recruitment and mitochondrial transport are independent of kinesin light chain (KLC); KLC antagonizes milton's association with KHC and is absent from milton-KHC complexes, and mitochondria are present in klc (-/-) photoreceptor axons. The recruitment of KHC to mitochondria is, in part, determined by the NH(2) terminus-splicing variant of milton. A direct interaction occurs between milton and miro, which is a mitochondrial Rho-like GTPase, and this interaction can influence the recruitment of milton to mitochondria. Thus, milton and miro are likely to form an essential protein complex that links KHC to mitochondria for light chain-independent, anterograde transport of mitochondria.  相似文献   

5.
Kinesin motor proteins drive the transport of cellular cargoes along microtubule tracks. How motor protein activity is controlled in cells is unresolved, but it is likely coupled to changes in protein conformation and cargo association. By applying the quantitative method fluorescence resonance energy transfer (FRET) stoichiometry to fluorescent protein (FP)-labeled kinesin heavy chain (KHC) and kinesin light chain (KLC) subunits in live cells, we studied the overall structural organization and conformation of Kinesin-1 in the active and inactive states. Inactive Kinesin-1 molecules are folded and autoinhibited such that the KHC tail blocks the initial interaction of the KHC motor with the microtubule. In addition, in the inactive state, the KHC motor domains are pushed apart by the KLC subunit. Thus, FRET stoichiometry reveals conformational changes of a protein complex in live cells. For Kinesin-1, activation requires a global conformational change that separates the KHC motor and tail domains and a local conformational change that moves the KHC motor domains closer together.  相似文献   

6.
Kinesins are tetrameric motor molecules, consisting of two kinesin heavy chains (KHCs) and two kinesin light chains (KLCs) that are involved in transport of cargo along microtubules. The function of the light chain may be in cargo binding and regulation of kinesin activity. In the mouse, two KLC genes, KLC1 and KLC2, had been identified. KLC1 plays a role in neuronal transport, and KLC2 appears to be more widely expressed. We report the cloning from a testicular cDNA expression library of a mammalian light chain, KLC3. The KLC3 gene is located in close proximity to the ERCC2 gene. KLC3 can be classified as a genuine light chain: it interacts in vitro with the KHC, the interaction is mediated by a conserved heptad repeat sequence, and it associates in vitro with microtubules. In mouse and rat testis, KLC3 protein expression is restricted to round and elongating spermatids, and KLC3 is present in sperm tails. In contrast, KLC1 and KLC2 can only be detected before meiosis in testis. Interestingly, the expression profiles of the three known KHCs and KLC3 differ significantly: Kif5a and Kif5b are not expressed after meiosis, and Kif5c is expressed at an extremely low level in spermatids but is not detectable in sperm tails. Our characterization of the KLC3 gene suggests that it carries out a unique and specialized role in spermatids.  相似文献   

7.
Kinesin-1 is a heterotetramer composed of kinesin heavy chain (KHC) and kinesin light chain (KLC). The Caenorhabditis elegans genome has a single KHC, encoded by the unc-116 gene, and two KLCs, encoded by the klc-1 and klc-2 genes. We show here that UNC-116/KHC and KLC-2 form a complex orthologous to conventional kinesin-1. KLC-2 also binds UNC-16, the C. elegans JIP3/JSAP1 JNK-signaling scaffold protein, and the UNC-14 RUN domain protein. The localization of UNC-16 and UNC-14 depends on kinesin-1 (UNC-116 and KLC-2). Furthermore, mutations in unc-16, klc-2, unc-116, and unc-14 all alter the localization of cargos containing synaptic vesicle markers. Double mutant analysis is consistent with these four genes functioning in the same pathway. Our data support a model whereby UNC-16 and UNC-14 function together as kinesin-1 cargos and regulators for the transport or localization of synaptic vesicle components.  相似文献   

8.
The protein 14-3-3 is a key regulator in a cell signaling pathway mediated by protein phosphorylation. To identify the cellular targets of this protein systematically, we have employed a proteomic approach: protein components pulled down from PC12 cells stably expressing a myc-tagged 14-3-3eta isoform were analyzed by means of SDS-PAGE and mass spectrometry. This procedure allowed us to identify more than 30 proteins that include various known and unknown targets of the 14-3-3 protein. Among them are several proteins in the membrane traffic pathway, such as the heavy and light chains (KHC/KIF5B and KLC2) of conventional kinesin, a heterotetrameric mechanochemical motor involved in the ATP-dependent movement of vesicles and organelles along microtubules. Subsequent analysis showed that 14-3-3 directly binds to kinesin heterodimers through interaction with KLC2 and that this interaction is dependent on the phosphorylation of KLC2. Studies on the interaction between 14-3-3 and KLC2 variants expressed in cultured cells coupled with mass spectrometric analysis proved that Ser575 is the site of phosphorylation in KLC2 that is responsible for the in vivo interaction with the 14-3-3 protein. These data add KLC2 to the growing list of 14-3-3 targets, and suggest a role of 14-3-3 in the phosphorylation-regulated cellular transport of vesicles and organelles.  相似文献   

9.
Elevated low-density lipoproteins (LDL) are associated with cutaneous microvascular dysfunction partially mediated by increased arginase activity, which is decreased following a systemic atorvastatin therapy. We hypothesized that increased ascorbate-sensitive oxidant stress, partially mediated through uncoupled nitric oxide synthase (NOS) induced by upregulated arginase, contributes to cutaneous microvascular dysfunction in hypercholesterolemic (HC) humans. Four microdialysis fibers were placed in the skin of nine HC (LDL = 177 ± 6 mg/dl) men and women before and after 3 mo of a systemic atorvastatin intervention and at baseline in nine normocholesterolemic (NC) (LDL = 95 ± 4 mg/dl) subjects. Sites served as control, NOS inhibited, L-ascorbate, and arginase-inhibited+L-ascorbate. Skin blood flow was measured while local skin heating (42°C) induced NO-dependent vasodilation. After the established plateau in all sites, 20 mM ?ngname? was infused to quantify NO-dependent vasodilation. Data were normalized to maximum cutaneous vascular conductance (CVC) (sodium nitroprusside + 43°C). The plateau in vasodilation during local heating (HC: 78 ± 4 vs. NC: 96 ± 2% CVC(max), P < 0.01) and NO-dependent vasodilation (HC: 40 ± 4 vs. NC: 54 ± 4% CVC(max), P < 0.01) was reduced in the HC group. Acute L-ascorbate alone (91 ± 5% CVC(max), P < 0.001) or combined with arginase inhibition (96 ± 3% CVC(max), P < 0.001) augmented the plateau in vasodilation in the HC group but not the NC group (ascorbate: 96 ± 2; combo: 93 ± 4% CVC(max), both P > 0.05). After the atorvastatin intervention NO-dependent vasodilation was augmented in the HC group (HC postatorvastatin: 64 ± 4% CVC(max), P < 0.01), and there was no further effect of ascorbate alone (58 ± 4% CVC(max,) P > 0.05) or combined with arginase inhibition (67 ± 4% CVC(max,) P > 0.05). Increased ascorbate-sensitive oxidants contribute to hypercholesteromic associated cutaneous microvascular dysfunction which is partially reversed with atorvastatin therapy.  相似文献   

10.
In order to further understand the production and intracellular trafficking of pharmaceutical proteins in plants, the light and heavy chains (LC and HC) of the human immunodeficiency virus neutralizing monoclonal antibody 2G12 were fused to fluorescent proteins [Venus and monomeric red fluorescent protein (mRFP)] to enable the visualization of their passage through the plant cell. Co-expression of LC and HC with various markers of the endomembrane system demonstrated that LC fusions were found in mobile punctate structures, which are likely to be pre-vacuolar compartments (PVCs) as a proportion of the LC fusions were found to be located in the vacuole. In addition, apoplast labelling was also observed with a 2G12LC-RFP fusion. The HC fusion expressed alone was found only in the endoplasmic reticulum (ER). When the LC and HC fusions were expressed together, they were found to co-locate to larger punctate structures, which were morphologically distinct from any observed on expression of LC or HC alone. These structures appeared to be in close association with the ER and their labelling partially overlapped with PVC marker fluorescence, but no increase in apoplast labelling was observed. Co-immunoprecipitation data demonstrated that the presence of the fluorescent proteins did not affect the assembly of the antibody, and also showed the association of BiP with the antibody chains. The antigen-binding activity of the Venus-fused 2G12 antibody was confirmed by enzyme-linked immunosorbent assay.  相似文献   

11.
The airway system of the lung from the mouth to the pulmonary membrane is modelled by matching a cylindrical model of a pathway through the respiratory region of the lung onto a one-dimensional trumpet model for the conducting airways. The concentration of O2 in gas expired from this model airway system is investigated following an inspiration of air at two different flow rates (10 litres/min and 85 litres/min). In each case, expiration occurs at the same constant flow rate as that during the previous inspiration. The inspirations, which are studied in an earlier paper, are each of 2 sec duration and begin at a lung volume of 2300 ml and a lung oxygen tension of 98 mm Hg. The equations are solved numerically and plots of expired O2 concentration against time and against expired volume are shown. It is found that at 85 litres/min, gas mixing in the lung is complete after about 0.7 sec of expiration whereas at 10 litres/min, about 2.6 sec of expiration is required for complete equilibration. It is suggested that the experimental alveolar plateau slope is not in general caused by a slow approach to equilibrium of gas concentrations; except at very low flow rates in the early part of the concentration/time plateau.  相似文献   

12.
Genetic characterization of protein-producing clones represents additional value to cell line development. In the present study, ten Per.C6 clones producing a Rebmab100 monoclonal antibody were selected using two cloning methods: six clones originated from limiting dilution cloning and four by the automated colony picker ClonePix FL. A stability program was performed for 50 generations, including 4 batches distributed along the timeframe to determine specific productivity (Qp) maintenance. Four stable clones (two from limiting dilution and two from ClonePix FL) were further evaluated. The relative mRNA expression levels of both heavy chain (HC) and light chain (LC) genes were verified at generations 0, 30–35, and 50–55 of the stability program. At generations 0 and 30–35, LC gene expression level was higher than HC gene, whereas at generation 50–55, the opposite prevailed. A high correlation was observed between Qp and HC or LC mRNA expression level for all clones at each generation analyzed along the continuous culture. The mRNA stability study was performed at steady-state culture. The LC gene displayed a higher half-life and lower decay constant than HC gene, accounting for the higher observed expression level of LC mRNA in comparison to HC mRNA. Clone R6 was highlighted due its high Qp, mRNA expression levels, and mRNA stability. Besides the benefits of applying genetic characterization for the selection of stable and high-producing clones, the present study shows for the first time the correlation between Qp and HC or LC expression levels and also mRNA stability in clones derived from human cell line Per.C6(®).  相似文献   

13.
目的:研究纳米炭黑颗粒复合寒冷暴露对小鼠肺部组织结构及其氧化应激反应的影响。方法:将72只健康雄性C57BL/6小鼠随机分为6组:对照(Ctrl)组、单纯冷暴露(C)组、低剂量染毒(L)组、低剂量染毒复合冷暴露(LC)组、高剂量染毒(H)组、高剂量染毒复合冷暴露(HC)组。采用吸入式气管滴注染毒方式,一次性滴注纳米炭墨颗粒染毒液40 μl,浓度分别为0.45 mg/ml (L)和4.05 mg/ml (H)。冷暴露方式为4℃暴露,4 h/d,连续20 d。暴露结束24 h后称重、取样,进行相关指标测定。采用试剂盒法测定小鼠肺组织匀浆中超氧化物歧化酶(SOD)活力、谷胱甘肽过氧化物酶(GSH-Px)活力和丙二醛(MDA)含量;肺组织块HE染色,观察肺组织病理组织结构改变。结果:所有冷暴露处理组小鼠的体重均显著低于所有非冷暴露组(P<0.05),对照组及单纯染毒组小鼠体重均在实验开始14 d后明显升高(P<0.05),单纯冷暴露组与纳米炭黑颗粒染毒复合冷暴露组小鼠体重均在14 d后趋于稳定。HE检测结果表明,单纯纳米炭黑颗粒染毒组及染毒复合冷暴露组小鼠肺泡腔内均有黑色颗粒沉积,高剂量染毒复合冷暴露组可见肺泡结构破环,排列凌乱,有大量炎细胞浸润。与对照组相比,其余各组SOD活力均显著降低(P<0.05);高剂量染毒组及高剂量染毒复合冷暴露组GSH-Px活力明显低于对照组(P<0.01);与对照组相比,高剂量染毒组、低剂量染毒与高剂量染毒复合冷暴露组MDA含量显著升高(P<0.01)。两因素方差分析提示,随着染毒剂量的增加,SOD活力及GSH-Px活力显著降低(P<0.05);随着温度的降低,肺组织MDA含量显著升高(P<0.05),4℃间歇性冷暴露与纳米颗粒物暴露对肺组织SOD、GSH-Px活力及MDA含量的影响均无交互作用。结论:纳米炭黑颗粒复合寒冷暴露可导致小鼠肺部炎症反应加重,氧化应激水平升高。  相似文献   

14.
The coupled conservation of mass equations for oxygen, carbon dioxide and nitrogen are written down for a lung model consisting of two homogeneous alveolar compartments (with different ventilation-perfusion ratios) and a shunt compartment. As inspired oxygen concentration and oxygen consumption are varied, the flux of oxygen, carbon dioxide and nitrogen across the alveolar membrane in each compartment varies. The result of this is that the expired ventilation-perfusion ratio for each compartment becomes a function of inspired oxygen concentration and oxygen consumption as well as parameters such as inspired ventilation and alveolar perfusion. Another result is that the "inspired ventilation-perfusion ratio and the "expired ventilation-perfusion ratio differ significantly, under some conditions, for poorly ventilated lung compartments. As a consequence, we need to distinguish between the "inspired ventilation-perfusion distribution, which is independent of inspired oxygen concentration and oxygen consumption, and the "expired ventilation-perfusion distribution, which we now show to be strongly dependent on inspired oxygen concentration and less dependent oxygen consumption. Since the multiple inert gas elimination technique (MIGET) estimates the "expired ventilation-perfusion distribution, it follows that the distribution recovered by MIGET may be strongly dependent on inspired oxygen concentration.  相似文献   

15.
In the neonatal period, the incomplete aeration of the lung parenchyma and the presence of some pulmonary fluid could determine inequalities in the mechanical behavior of lung regions, favoring unevenness of ventilation distribution. We studied the pressure-volume (PV) curve of excised lungs of kittens in the 1st wk of life 1) by changing the volume a known amount and measuring the corresponding changes in transpulmonary pressure (PL) and 2) by ventilating them at a fixed PL at a rate of 20 cycles/min. An expiratory load equal to the value of PL at the resting volume of the respiratory system was added to avoid the collapse of the lung. A lobar bronchus was then tied, and the measurements were repeated. The difference in PV curves before and after ligature therefore represented the PV curve of the lobe. This was done for all the lobes (upper and middle right, lower right, lower left, upper left) in a random order. A total of 20 lungs and 61 lobes have been studied. Individual lobes were not different in terms of dry-to-wet weight ratio, compliance per unit weight, or per maximal volume and shape of the PV curve, indicating a similar mechanical behavior. Dynamic lung compliance averaged 76% +/- 15 SD of the static value, suggesting some degree of asynchronous behavior of lung regions or viscoelastic properties of the tissue.  相似文献   

16.
The mechanical properties of the lungs were measured in 10 men before and after a simulated air dive to 285 ft of seawater (87 m). The objective was to determine whether a dive likely to produce pulmonary bubble emboli would alter lung mechanics. Lung function was measured predive and at 1, 2, 3, 6, 7, and 23 h postdive. Measurements of lung function were also made at identical times on a control day when no dive was made. Each set of measurements included precordial Doppler signals, pulmonary resistance, quasistatic lung compliance, forced vital capacity (FVC), forced expired volume after 1.0 s (FEV 1.0), the ratio of FEV 1.0 to FVC (FEV 1.0/FVC%), and maximal airflow after 50 and 75% of the vital capacity had been expired (Vmax50 and Vmax75, respectively). Base-line measurements of pulmonary resistance and quasistatic compliance were normal in all subjects. FVC and FEV 1.0 were greater than predicted for most subjects and were increased proportionately so that the FEV 1.0/FVC% was normal. Following the dive, bubble signals were heard in four subjects, and two subjects had mild symptoms of decompression sickness. No subject demonstrated any alteration in lung function that could be attributed to the dive. We concluded that stressful decompressions capable of producing "silent" pulmonary bubble emboli do not alter lung mechanics.  相似文献   

17.
Ecotones are zones of transition between two adjacent ecological systems and are characterized by a high rate of change compared to these adjacent areas. They are dynamic entities with both a spatial and temporal property, reflected in an ecotone width and location, which vary across time during succession or environmental change on both a local or global scale. Various techniques have been proposed to characterize ecotones, one of them being a sigmoid wave curve fit on the transects across the ecotone. In this paper, we test the robustness of a sigmoid wave model approach on simulated ecotone data with a varying degree of steepness, patchiness and transect length. An analysis of variance (ANOVA) provided us details on the sensitivity of the estimated ecotone width for the steepness, the transect length as well as for the patchiness of the ecotone. The statistics also allowed us to investigate the interaction between the different parameters on the resulting ecotone width. We conclude that the sigmoid wave curve-fitting algorithm provides a robust way to describe ecotones with various degrees of steepness and patchiness. Depending on the transect window size used, a sigmoid wave curve-fitting algorithm will pick up variations in ecotone steepness or in ecotone steepness and patchiness.  相似文献   

18.
During breathing the relatively high chest wall-to-lung compliance ratio of the newborn favors distortion of the respiratory system. In this study we have examined the effect of lung deformation, generated by a hydrostatic pleural surface pressure gradient, on the static (Cstat) and dynamic (Cdyn) compliance of the isolated newborn piglet lung. Seven lungs from piglets 2-7 days old have been studied in a saline-filled plethysmograph. Static pressure-volume (PV) curves were obtained by changing the volume a known amount and measuring the corresponding changes in transpulmonary pressure. Dynamic PV curves were obtained by ventilating the lung at a fixed pressure and at 20 cycles/min. These experiments were repeated in an air plethysmograph on the undeformed lung. Lung volume history was standardized prior to each maneuver by three inflations to 20-25 cmH2O. Lung collapse was avoided by applying an end-expiratory load equal to the transpulmonary pressure at functional residual capacity. Cstat was not significantly different between the deformed and undeformed lung (P greater than 0.05). Cdyn was less than Cstat in both cases (P less than 0.025) and was reduced further by deformation (P less than 0.05). We conclude that 1) peripheral airway obstruction or the viscoelastic properties of the piglet lung, or both, decrease Cdyn, and 2) deformation increases the external (PV) respiratory work by further decreasing Cdyn.  相似文献   

19.
Our recent study [Danielyan et al., 2005. Eur. J. Cell Biol. 84, 567-579] showed an additive protective effect of endothelin (ET) receptor A (ETA-R) blockade and erythropoietin (EPO) on the survival and rejuvenation of rat astroglial cells exposed to hypoxia. Whether the effects observed with rodent astroglial cells can be reproduced in human astrocytes and whether these effects of ETA-R blockade and EPO on astrocytes are associated with neuronal survival remained open. Therefore, in the present study, the effects of the ETA-R antagonist BQ-123 and EPO on the maintenance of the neuronal population and survival of the human fetal astroglial cell line (SV-FHAS) under normoxic and hypoxic conditions (NC and HC, respectively) were investigated. Rat brain primary cultures exposed to BQ-123 and/or EPO revealed an increase in the number of beta-III tubulin-positive neurons under NC. The hypoxia-caused loss of neurons was abolished by administration of BQ-123 or EPO. Simultaneous application of EPO and BQ-123 led to an additive protective effect on the generation of neurons under NC only. By contrast, BQ-788, the selective ETB-R antagonist, diminished the neuronal population both in NC and HC. Both under NC and HC the number of non-differentiated nestin+/GFAP- neural cells increased upon application of EPO or BQ-123. SV-FHAS responded to BQ-123 or EPO by a decrease in LDH activity in the culture medium under NC (35%) and HC (26% LDH decrease). Concomitant effects of EPO and BQ-123 were illustrated in an additional increase in the survival of human astrocytes (33% under NC and 17% under HC). These data hint at a neuroprotective therapeutic potency of ETA-R blockade, which either alone or in combination with EPO may improve the survival of astroglial and neuronal cells upon hypoxic injury.  相似文献   

20.
The effects of sodium bicarbonate and a bicarbonate-carbonate mixture on expired CO2 and the volume of distribution of bicarbonate were studied in eight anesthetized, paralyzed, and ventilated dogs made acidotic with HCl (5 mmol/kg) infused over 90 min. Both sodium bicarbonate and Carbicarb resulted in systemic alkalinization and comparable increases in the serum bicarbonate at 50 min (7.07 +/- 0.91 vs. 7.99 +/- 0.77, respectively; P = NS). Sodium bicarbonate infusion resulted in an increase in CO2 excretion that accounted for a fractional CO2 excretion of 0.20 +/- 0.09, whereas infusion of a bicarbonate-carbonate mixture resulted in a fractional CO2 excretion of -0.06 +/- 0.09 (P less than 0.01). The uncorrected volume of distribution of bicarbonate after sodium bicarbonate infusion was higher than that seen with the bicarbonate-carbonate mixture (0.60 +/- 0.07 vs. 0.34 +/- 0.03 l/kg; P less than 0.01). However, when the volume of bicarbonate distribution was corrected for expired CO2, there was no difference between treatment with sodium bicarbonate and the bicarbonate-carbonate mixture (0.44 +/- 0.07 vs. 0.38 +/- 0.04 l/kg; P = NS). These data demonstrate that, in this animal model of acidosis, sodium bicarbonate treatment of systemic acidosis is accompanied by a generation of a considerable amount of CO2, whereas treatment with a bicarbonate-carbonate mixture is not. This suggests that in states of impaired ventilation, a bicarbonate-carbonate mixture may offer more efficient systemic alkalinization and may be associated with less CO2 generation than sodium bicarbonate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号