首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proteolytic activity of trypsin releases the dye Remazol Brilliant Blue from its high molecular weight substrate, the skin powder (Hide Powder Azure, Sigma), with an increase in absorbance at 595 nm. Active alpha(2)- macroglobulin (80 mug/ml) totally inhibits the proteolytic activity of trypsin (14 mug/ml) by trapping this protease. But after a 20 min incubation of alpha(2)-macroglobulin at 37 degrees C with 2 x 10(6) human polymorphonuclear leukocytes activated by N-formyl-L-methionyl-L-leucyl-L-phenylalanine (10(-7) M) and cytochalasin B (10(-8) M), 100% of trypsin activity was recovered, indicating a total inactivation of alpha(2)-macroglobuHn. Incubation with granulocyte myeloperoxidase also inactivates alpha(2)-macroglobulin. Hypochlorous acid, a by-product of myeloperoxidase activity, at a concentration of 10(-7) M also inactivates alpha(2)-macroglobulin, which indicates that an important cause of alpha(2)-macroglobulin inactivation by activated polymorphonuclear leukocytes could be the activity of myeloperoxidase.  相似文献   

2.
Cytochrome P-450-dependent steroid hormone metabolism was studied in isolated human liver microsomal fractions. 6 beta hydroxylation was shown to be the major route of NADPH-dependent oxidative metabolism (greater than or equal to 75% of total hydroxylated metabolites) with each of three steroid substrates, testosterone, androstenedione, and progesterone. With testosterone, 2 beta and 15 beta hydroxylation also occurred, proceeding at approximately 10% and 3-4% the rate of microsomal 6 beta hydroxylation, respectively, in each of the liver samples examined. Rates for the three steroid 6 beta-hydroxylase activities were highly correlated with each other (r = 0.95-0.97 for 25 individual microsomal preparations), suggesting that a single human liver P-450 enzyme is the principal microsomal 6 beta-hydroxylase catalyst with all three steroid substrates. Steroid 6 beta-hydroxylase rates correlated well with the specific content of human P-450NF (r = 0.69-0.83) and with its associated nifedipine oxidase activity (r = 0.80), but not with the rates for debrisoquine 4-hydroxylase, phenacetin O-deethylase, or S-mephenytoin 4-hydroxylase activities or the specific contents of their respective associated P-450 forms in these same liver microsomes (r less than 0.2). These correlative observations were supported by the selective inhibition of human liver microsomal 6 beta hydroxylation by antibody raised to either human P-450NF or a rat homolog, P-450 PB-2a. Anti-P-450NF also inhibited human microsomal testosterone 2 beta and 15 beta hydroxylation in parallel to the 6 beta-hydroxylation reaction. This antibody also inhibited rat P-450 2a-dependent steroid hormone 6 beta hydroxylation in uninduced adult male rat liver microsomes but not the steroid 2 alpha, 16 alpha, or 7 alpha hydroxylation reactions catalyzed by other rat P-450 forms. Finally, steroid 6 beta hydroxylation catalyzed by either human or rat liver microsomes was selectively inhibited by NADPH-dependent complexation of the macrolide antibiotic triacetyloleandomycin, a reaction that is characteristic of members of the P-450NF gene subfamily (P-450 IIIA subfamily). These observations establish that P-450NF or a closely related enzyme is the major catalyst of steroid hormone 6 beta hydroxylation in human liver microsomes, and furthermore suggest that steroid 6 beta hydroxylation may provide a useful, noninvasive monitor for the monooxygenase activity of this hepatic P-450 form.  相似文献   

3.
Transcuprein is a high-affinity copper carrier in the plasma that is involved in the initial distribution of copper entering the blood from the digestive tract. To identify and obtain cDNA for this protein, it was purified from rat plasma by size exclusion and copper-chelate affinity chromatography, and amino acid sequences were obtained. These revealed a 190-kDa glycosylated protein identified as the macroglobulin alpha(1)-inhibitor III, the main macroglobulin of rodent blood plasma. Albumin (65 kDa) copurified in variable amounts and was concluded to be a contaminant (although it can transiently bind the macroglobulin). The main macroglobulin in human blood plasma (alpha(2)-macroglobulin), which is homologous to alpha(1)-inhibitor III, also bound copper tightly. Expression of alpha(1)I3 (transcuprein) mRNA by the liver was examined in rats with and without copper deficiency, using quantitative polymerase chain reaction methodology and Northern blot analysis. Protein expression was examined by Western blotting. Deficient rats with 40% less ceruloplasmin oxidase activity and liver copper concentrations expressed about twice as much alpha(1)I3 mRNA, but circulating levels of transcuprein did not differ. Iron deficiency, which increased liver copper concentrations by threefold, reduced transcuprein mRNA expression and circulating levels of transcuprein relative to what occurred in rats with normal or excess iron. We conclude that transcupreins are specific macroglobulins that not only carry zinc but also carry transport copper in the blood, and that their expression can be modulated by copper and iron availability.  相似文献   

4.
1. Rat hepatocytes were cultured for 2 days in Williams E medium containing 1 microM insulin and dexamethasone. 2. Production of five plasma proteins was determined by electroimmunoassay in the media, and amino acid uptake was measured by [alpha-14C]aminoisobutyric acid accumulation in hepatocytes. 3. Supernatants from rat peritoneal macrophages and IL-6/IFN-beta 2/BSF-2 obtained from four different laboratories similarly stimulated synthesis of fibrinogen, alpha 1-cysteine proteinase inhibitor and alpha 2-macroglobulin, as well as [14C]-accumulation in cultured hepatocytes. 4. It is concluded that IL-6 is the principal hepatocyte stimulating factor responsible for typical features of the acute phase response of liver cells.  相似文献   

5.
Proteins of the macroglobulin family are an ancient and evolutionarily conservative link of the immune system, which is actively involved in both inhibition of tumor growth cells and proliferation of tumor cells. Two basically different binding sites and a great conformational plasticity of all representatives of the macroglobulin family, as well as the presence of two to four representatives of the family in the blood of most species allow them to transport diverse substances and exert various regulatory influences on both the tumor and the entire organism. For example, the capacity of macroglobulins for binding hydrolases makes it possible to inhibit enzyme mediated tumor invasion. At the same time, an excess of macroglobulin/hydrolase complexes can activate apoptosis. The tumor is able of using macroglobulins, especially pregnancy-associated proteins, for its own protection. Specifically, pregnancy-associated alpha2-glycoprotein, which is actively produced by human tumor cells, blocks the histocompatibility complex antigens. On the contrary, the capacity of binding zinc stimulates the thymulin-dependent activation of natural killer cells. Nevertheless, the actively growing tumor expresses many receptors to macroglobulins, which are the main carriers of some cytokines and growth factors essential for proliferation.  相似文献   

6.
Plasma membranes were purified from rat liver, muscle and sarcoma tissues and from human liver and hepatoma tissues. The plasma membranes all contained DFP-sensitive, neutral proteolytic activity. Plasma membranes from all normal tissues contained a single DFP-binding protein of apparent molecular weight 68,000. Only the plasma membranes from tumour tissue contained a plasminogen activator; the DFP-binding proteins from these membranes were more diverse than those from the normal samples. The rat liver plasma membrane proteinase was purified. It was a labile enzyme sensitive to inhibition by DFP and by calcium ions, and with a broad substrate specificity. A similar protein was the sole DFP-binding protein in rat liver microsomes. This and the properties of the enzyme suggested a possible role in the processing and secretion of newly-synthesized protein.  相似文献   

7.
Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is a selenoprotein which inhibits peroxidation ofmicrosomes. The human enzyme, which may play an important role in protecting the cell from oxidative damage, has not been purified or characterized. PHGPx was isolated from human liver using ammonium sulphate fractionation, affinity chromatography on bromosulphophthalein-glutathione-agarose, gel filtration on Sephadex G-50, anion exchange chromatography on Mono Q resin and high resolution gel filtration on Superdex 75. The protein was purified about 112,000-fold, and 12 μg, was obtained from 140 g of human liver with a 9% yield. PHGPx was active on hydrogen peroxide, cumene hydroperoxide, linoleic acid hydroperoxide and phosphatidylcholine hydroperoxide. The molecular weight, as estimated from non-denaturing gel filtration, was 16,100. The turnover number (37°C, pH 7.6) on (β-(13-hydroperoxy-cis-9, trans-11-octadecadienoyl)-γ-palmitoyl)-l-α-phosphatidylcholine was 91 mol mo−1 s−1. As reported for pig PHGPx, activity of the enzyme from human liver on cumene hydroperoxide and on linoleic acid hydroperoxide was inhibited by deoxycholate. In the presence of glutathione, the enzyme was a potent inhibitor of ascorbate/Fe induced lipid peroxidation in microsomes derived from human B lymphoblastic AHH-1 TK ± CHol cells but not from human liver microsomes. Human cell line microsomes contained no detectable PHGPx activity. However, microsomes prepared from human liver contained 0.009 U/mg of endogenous PHGPx activity, which is 4–5 times the activity required for maximum inhibition of lipid peroxidation when pure PHGPx was added back to human lymphoblastic cell microsomes. PHGPx from human liver exhibits similar properties to previously described enzymes with PHGPx activity isolated from pig and rat tissues, but does not inhibit peroxidation of human liver microsomes owing to a high level of PHGPx activity already present in these microsomes.  相似文献   

8.
Previous investigations have demonstrated the presence of phospholipids as a component of chromatin; however the mechanism of their synthesis, namely if they are synthesized in the nuclei or in the cytoplasm (microsomal fraction), from where they may eventually be transported to the nucleus, has not yet been clarified. The phosphatidylcholine, for example, can be formed, albeit in a limited amount, by an interconversion reaction between bases. The aim of the present research was to ascertain the presence of the enzyme complex responsible for this reaction in hepatocyte nuclei and in isolated nuclear membrane. The incorporation of [14C]-choline in phosphatidylcholine was assayed in microsomes, hepatocyte nuclei, liver nuclei and nuclear membranes of rat liver. The reaction was Ca2+-dependent and the specific activity was higher in microsomes but was present, albeit at a low level, also in nuclei and in nuclear membranes. Possible contaminations were excluded by specific microsomal markers and by the reaction time course. In fact, the nuclear reaction reached the maximum level slowly with respect to microsomes. Since the phosphatidylcholine extracted from the nuclei show an enrichment in unsaturated fatty acids of monoenoic fraction, such as oleic acid, the difference in reaction kinetics has been tentatively explained as due to the phosphatidylcholine fatty acid content. The presence of this base exchange enzyme complex may allow a fast change in chromatin phospholipid composition.  相似文献   

9.
Identification of lanosterol 14 alpha-methyl demethylase in human tissues   总被引:1,自引:0,他引:1  
Lanosterol 14 alpha-methyl demethylase was investigated in human tissues using a radio-HPLC assay to detect the 4,4-dimethyl-5 alpha-cholesta-8, 14-dien-3 beta-ol (diene) metabolite. The sequence of events leading to the demethylated product in human liver microsomes involves the conversion of the diol to the aldehyde followed by diene formation. Enzyme activity displayed a greater than 10 fold variation among the 9 liver samples studied. Kinetic parameters were determined and shown to differ between two separate liver samples. Addition of inhibitors of yeast lanosterol 14 alpha demethylase, ketoconazole and miconazole, resulted in extensive inhibition of formation of the demethylated metabolite. The enzyme, detected in microsomes isolated from human kidney and lymphocytes, also catalyzed the conversion of dihydrolanosterol to oxylanosterol intermediates and the diene. The presence of this enzyme in microsomes from various human tissues suggests that it may play a role in cellular regulation of cholesterol synthesis.  相似文献   

10.
We have examined differences in post-translational regulation between rat liver ethanol-inducible cytochrome P450 2E1 (CYP2E1) and phenobarbital-inducible CYP2B1 using hepatocyte cultures and subcellular fractions, prepared from starved and acetone-treated rats. The intracellular degradation of CYP2E1 was rapid (approximate t1/2 = 9 h) and increased by glucagon treatment of the cells in an isozyme-specific manner, whereas CYP2B1 degradation in the same cells, was slower (t1/2 = 21 h). The glucagon effect on CYP2E1 degradation was abolished by either cycloheximide treatment of cells, indicating the involvement of protein components with rapid turnover, or by lowering of the culture temperature to 23 degrees C. The rapid phase of CYP2E1 degradation was not influenced by inhibitors of the autophagosomal/lysosomal pathway. In vitro experiments with isolated liver microsomes revealed the presence of a Mg(2+)-ATP-activated proteolytic system active on CYP2E1, previously modified by phosphorylation on Ser-129 or denatured by reactive metabolites formed from carbon tetrachloride. Imidazole, a CYP2E1 substrate, specifically inhibited the rapid intracellular degradation of CYP2E1 and also prevented phosphorylation and subsequent proteolysis in isolated microsomes. In contrast, no proteolysis of CYP2B1 occurred under the conditions used. The microsomal Mg(2+)-ATP-dependent CYP2E1 proteolysis could not be solubilized with high salt and 0.05% sodium cholate, indicating the action of membrane-integrated protease(s). Subfractionation of microsomes revealed that the Mg(2+)-ATP-dependent proteolytic system active on CYP2E1 was present in both rough and smooth endoplasmic reticulum. It is suggested that hepatic cytochromes P450 are degraded both in a bulk process, according to the autophagosomal/lysosomal pathway and more rapidly, in a hormone- and substrate-regulated fashion, by a specific proteolytic system in the endoplasmic reticulum, active on physiologically or exogenously modified molecules.  相似文献   

11.
M Sommarin  B Jergil 《FEBS letters》1983,156(2):231-234
A Ca2+- and phospholipid-dependent protein kinase (CaPK) has been identified in rat liver microsomes. CaPK isolated from liver cytosol bound to smooth microsomes in the presence of 100 microM CaCl2. A saturation in binding was observed when a 5-fold excess of enzyme over that present in microsomes had become bound. The microsomal CaPK and 50% of the enzyme bound in vitro was not removed by EGTA treatment. This suggests that Ca2+ is required for the binding of CaPK to microsomes, but not for the retention of the enzyme on the membrane.  相似文献   

12.
From rat skeletal muscle tissue we have isolated and purified a proteolytic activity of molecular mass 750 kDa. The enzyme, designated 'proteinase I', which has been found to be located in capillaries of skeletal muscle tissue, catalyzes the hydrolysis of Z-Phe-Arg-MCA and [14C]methylcasein and this process is activated about 2-fold by ATP. As judged by SDS-polyacrylamide gel electrophoresis the subunit pattern of 'proteinase I' is similar to alpha-macroglobulin. Immunoelectrophoretic analyses of 'proteinase I' with antisera to rat alpha 1-macroglobulin, alpha 2-macroglobulin, and rat liver cathepsins reveal that this high-molecular-mass proteinase is a complex of alpha 1-macroglobulin and the cysteine proteinases cathepsin B, H and L. A similar 'proteinase' has been isolated from rat serum. Two ATP-activated high molecular-mass proteinases that have been previously identified in liver and heart muscle by other investigators equally show a positive immunological reaction with the antiserum raised against 'proteinase I'. From these data, together with results presented in an accompanying paper (Kuehn, L., Dahlmann, B., Gauthier, F. and Neubauer, H.-P. (1989) Biochim. Biophys. Acta 991, 263), we conclude that the ATP-stimulated high-molecular-mass proteolytic activity is partly due to the presence of a complex of alpha-macroglobulin and cysteine proteinases.  相似文献   

13.
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the enzyme catalyzing the rate-limiting step in cholesterol biosynthesis, exists in one active (dephosphorylated) and one inactive (phosphorylated) form in liver microsomes obtained from several animal species. The present study was undertaken in order to determine a) whether the human enzyme also exists in active and inactive readily interconvertible forms; b) whether the large inter-individual variation in HMG-CoA reductase activity observed in normal man can be explained by variations in the activation state of the enzyme; and c) to characterize the reactivity of antibodies raised against rat liver HMG-CoA reductase with the intact human microsomal enzyme. HMG-CoA reductase activity, assayed in microsomes prepared in the presence of 50 mM NaF, was only 17 +/- 3% of the activity observed in microsomes prepared from the same liver in the absence of fluoride. Preincubation of microsomes prepared in NaF with alkaline phosphatase resulted in a tenfold increase of enzyme activity, while the activity of microsomes prepared without fluoride was increased also (by about 45%) with this treatment. On the other hand, the activated enzyme could be inactivated by incubation of microsomes with Mg-ATP. In eleven normal weight, normolipidemic gallstone patients, the HMG-CoA reductase activity determined in microsomes prepared without NaF ("standard procedure") reflected well both the "expressed" activity (in microsomes prepared with NaF) and the "total" (fully activated) enzyme activity; correlation coefficients were +0.80 and +0.84, respectively. Preincubation of human liver microsomes with rabbit antiserum against partially purified HMG-CoA reductase from rat liver resulted in a 72 +/- 6% inhibition of enzyme activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Cholesterol 7 alpha-hydroxylase (cholesterol, NADPH: oxygen oxidoreductase, 7 alpha-hydroxylating, EC 1.14.13.17) was purified from liver microsomes of cholestryramine-fed male rats by using high-performance ion-exchange chromatography. The purified enzyme showed a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Mr = 52,000), and its dithionite-reduced CO complex exhibited an absorption maximum at 450 nm. The specific content of the enzyme was 9 nmol of cytochrome P-450/mg of protein. Upon reconstitution with NADPH-cytochrome P-450 reductase, the enzyme showed a high activity of cholesterol 7 alpha-hydroxylation with the turnover number of 50 min-1 at 37 degrees C. The reaction was inhibited neither by aminoglutethimide nor by metyrapone, but inhibited markedly by iodoacetamide and disulfiram. The reaction was also inhibited significantly by CO. The enzyme catalyzed hydroxylation of cholesterol with strict regio- and stereoselectivity and was inert toward other sterols which are intermediates in the conversion of cholesterol to bile acids, i.e. 7 alpha-hydroxy-4-cholesten-3-one (12 alpha-hydroxylation), 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol (25-hydroxylation), and taurodeoxycholate (7 alpha-hydroxylation). Unlike other cytochromes P-450 isolated from rat liver microsomes, the enzyme showed no activity toward testosterone and xenobiotics such as 7-ethoxycoumarin and benzo[a] pyrene. The NH2-terminal amino acid sequence of the enzyme was Met-Phe-Glu-Val(Ile)-Ser-Leu-, which was distinct from those of any other cytochromes P-450 of rat liver microsomes hitherto reported. These results indicate that the enzyme is a novel species of cytochrome P-450 so far not isolated from liver microsomes.  相似文献   

15.
We have shown previously that hepatocyte proliferation in the late gestation fetal rat is mediated by growth factor-independent mechanisms that are distinct from the signaling pathways that promote proliferation of adult rat hepatocytes. In the present studies, we identified six candidate growth-regulating genes that are overexpressed in fetal rat liver (embryonic day 19, 2 days pre-term) relative to adult rat liver using suppressive subtractive hybridization. These included the following: Grb10, a growth factor receptor binding protein; eps15, a growth factor receptor substrate; nuc2+, a retinoblastoma protein binding protein; cdc25B, a cell cycle tyrosine phosphatase; the peroxisome proliferator-activated receptor PPAR alpha; and a deoxyuridine triphosphatase that functions as a PPAR alpha binding partner. In every case, the ontogeny of the expression of these genes declined postnatally in a manner consistent with the transition from a fetal to an adult hepatocyte phenotype. None were found to be cell cycle-dependent, in that they did not show expression that followed perinatal changes in hepatocyte cell cycle activity. Based on our identification of these genes and previous work characterizing their role in growth regulation, we conclude that they may contribute to the mitogenic signaling phenotype of fetal rat hepatocytes.  相似文献   

16.
In human liver microsomal preparations the neurotoxic chemical N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and several of its analogs competitively inhibited bufuralol 1'-hydroxylase activity of cytochrome P450bufI. This enzyme is the target of the common genetic polymorphism of drug oxidation known as debrisoquine polymorphism. Bufuralol 1'-hydroxylase activity was detectable in rat brain tissue. The activity was inhibited by antisera raised against a rat liver cytochrome P450 called P450db1. Immunoblotting experiments revealed the presence of a protein in rat and human brain microsomes with the same electrophoretic properties as the liver enzyme. These data suggest that P450bufI may be involved in the metabolism and neurotoxicity of MPTP.  相似文献   

17.
Highly purified human alpha 2 M inhibits hepatocyte proliferation. 1 mg of alpha 2 M corresponds to 1 baby rat unit (BRU). alpha 2 M is bound to a low molecular weight glycopeptide, which is released during trypsinization of alpha 2 M. 3 micrograms of trypsin-treated alpha 2 M release 1 BRU. alpha 2 M and the glycopeptide have been shown to be identical, respectively, to high and low molecular weight components present in normal human plasma. Both components inhibit the G1-S transition of the hepatocyte cycle. alpha 2 M acts as an antagonist to the inhibitory effect of the glycopeptide when the molar ratio of trypsin to alpha 2 M is greater than 2.  相似文献   

18.
The activity of microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase (EC 1.1.1.34), obtained from cultured human IM-9 lymphoid cells or freshly isolated human peripheral blood leukocytes, is modulated by a phosphorylation/dephosphorylation mechanism. Addition of MgATP + ADP to IM-9 cell microsomal reductase leads to a time-dependent loss of enzyme activity. Inactivated reductase is reactivated by rat liver reductase phosphatase. Kinase-dependent IM-9 cell microsomal reductase, prepared by heating IM-9 microsomes for 15 min at 50°C, is inactivated in the presence of MgATP and ADP only after addition of cytosolic reductase kinase from either IM-9 cells, freshly isolated leukocytes or rat liver. Inactivation is time-dependent and dependent on the cytosolic protein concentration. Inactivated reductase is reactivated by rat liver reductase phosphatase. For cultured IM-9 cells and freshly isolated leukocytes incubated with culture medium for 2 h, the ratios of active (unphosphorylated) to total (phosphorylated + unphosphorylated) reductase activity are 0.22 and 0.43, respectively. Thus, in addition to its regulation by changes in the amount of total enzyme protein, human leukocyte reductase activity is also modulated by a phosphorylation/dephosphorylation mechanism.  相似文献   

19.
The activity of microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase (EC 1.1.1.34), obtained from cultured human IM-9 lymphoid cells or freshly isolated human peripheral blood leukocytes, is modulated by a phosphorylation/dephosphorylation mechanism. Addition of MgATP + ADP to IM-9 cell microsomal reductase leads to a time-dependent loss of enzyme activity. Inactivated reductase is reactivated by rat liver reductase phosphatase. Kinase-dependent IM-9 cell microsomal reductase, prepared by heating IM-9 microsomes for 15 min at 50 degrees C, is inactivated in the presence of MgATP and ADP only after addition of cytosolic reductase kinase from either IM-9 cells, freshly isolated leukocytes or rat liver. Inactivation is time-dependent and dependent on the cytosolic protein concentration. Inactivated reductase is reactivated by rat liver reductase phosphatase. For cultured IM-9 cells and freshly isolated leukocytes incubated with culture medium for 2 h, the ratios of active (unphosphorylated) to total (phosphorylated + unphosphorylated) reductase activity are 0.22 and 0.43, respectively. Thus, in addition to its regulation by changes in the amount of total enzyme protein, human leukocyte reductase activity is also modulated by a phosphorylation/dephosphorylation mechanism.  相似文献   

20.
1. Limited proteolytic digestion of rat liver microsomes (microsomal fractions) with trypsin (5 micrograms/ml), proteinase K (1.0 microgram/ml) and Pronase (20 micrograms/ml final concns.) resulted in abolition of GTP-dependent vesicle fusion. 2. Vesicle fusion could be partially restored to microsomes which had undergone limited tryptic digestion, by the addition of untreated microsomal vesicles. 3. GTP-dependent Ca2+ efflux from rat liver microsomes was also observed to be inhibited by limited proteolysis with trypsin and proteinase K. 4. Limited proteolysis of rat liver microsomes had no effect on subsequent GTP-dependent phosphorylation of polypeptides of Mr 17,000 and 38,000, and thus it is unlikely that the phosphorylation of these proteins is involved in GTP-dependent Ca2+ efflux and GTP-dependent vesicle fusion. 5. GTP binding by Gn proteins [proteins which bind GTP after transfer to nitrocellulose, as defined by Bhullar & Haslam (1986) Biochem. J. 245, 617-620] was inhibited by pre-treatment of microsomes with trypsin, proteinase K and Pronase at concentrations similar to those which abolished GTP-dependent Ca2+ efflux and vesicle fusion. 6. We suggest that one or more of the Gn proteins may be involved in the molecular mechanisms of GTP-dependent vesicle fusion and Ca2+ efflux in rat liver microsomes and that limited proteolytic digestion may be a useful tool in further investigation of these processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号