首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pathogenicity of aseptic Bursaphelenchus xylophilus   总被引:2,自引:0,他引:2  
Zhu LH  Ye J  Negi S  Xu XL  Wang ZL  Ji JY 《PloS one》2012,7(5):e38095
Pine wilt is a disease of pine (Pinus spp.) caused by the pine wood nematode (PWN), Bursaphelenchus xylophilus. However, the pathogenic mechanism of pine wilt disease (PWD) remains unclear. Although the PWN was thought to be the only pathogenic agent associated with this disease, a potential role for bacterial symbionts in the disease process was recently proposed. Studies have indicated that aseptic PWNs do not cause PWD in aseptic pine trees, while PWNs associated with bacteria cause wilting symptoms. To investigate the pathogenicity of the PWN and its associated bacteria, 3-month-old microcuttings derived from certain clones of Pinus densiflora Siebold & Zucc. produced in vitro were inoculated under aseptic conditions with aseptic PWNs, non-aseptic PWNs and bacteria isolated from the nematodes. Six-month-old aseptic P. densiflora microcuttings and 7-month-old P. massoniana seedlings were also inoculated under aseptic conditions with aseptic PWNs and non-aseptic PWNs. The results showed that the aseptic microcuttings and seedlings inoculated with aseptic PWNs or non-aseptic PWNs wilted, while those inoculated with bacterial isolates did not wilt. Nematodes were recovered from wilted microcuttings and seedlings inoculated with aseptic PWNs and non-aseptic PWNs, and the asepsis of nematodes recovered from aseptic PWN-inoculated microcuttings and seedlings was reconfirmed by culturing them in NB liquid medium at 30°C for more than 7 days. Taken together, the results indicate that the asepsis of PWN did not cause the loss of pathogenicity.  相似文献   

2.
Fifty strains of bacteria were isolated from six isolates of the nematode Bursaphelenchus mucronatus (Bm) from China and Russia and identified using the BioMerieux Vitek 32 system. In bioassay, 3 bacterial strains showed the high levels of phytotoxin production while 19, 16, and 12 strains showed moderately, low and no phytotoxin production, respectively. Inoculation of 2-month-old Pinus thunbergii seedling with each of the six Bm isolates showed that the mean number of days from inoculation to death of 80% of the seedlings was significantly related to the ratio of the total number of bacterial strains for a nematode isolate to the number of pathogenic bacterial strains of the nematode isolate. The results of inoculation of 3-year-old P. thunbergii seedlings showed that inoculation with either axenic Bm (ABm) or axenic B. xylophilus (ABx) and the pathogenic bacterial strain together were essential for inducing pine wilt. These findings demonstrate that wilt symptoms caused by Bm conform to our earlier hypothesis (Zhao et al., 2003) that pine wilt disease, induced by certain Bx or Bm isolates, is caused by a complex of both the nematodes and their associated pathogenic bacteria. The results also account for the variation in pathogenicity of Bm populations from different parts of the world.  相似文献   

3.
For a long time it was thought that Bursaphelenchus xylophilus was the only agent of the pine wilt disease. Recently, it was discovered that there are bacteria associated with the nematodes that contribute to the pathogenesis of this disease, mainly through the release of toxins that promote the death of the pines. Among the species most commonly found, are bacteria belonging to the Bacillus, Pantoea, Pseudomonas and Xanthomonas genera.The main objective of this work was to study the effect of inoculation of maritime pine (Pinus pinaster) with four different nematode isolates, in the bacterial population of nematodes and trees, at different stages of disease progression. The monitoring of progression of disease symptoms was also recorded. Also, the identification of bacteria isolated from the xylem of trees and the surface of nematodes was performed by classical identification methods, by the API20E identification system and by sequencing of bacterial DNA.The results showed that for the symptoms progression, the most striking difference was observed for the pines inoculated with the avirulent isolate, C14-5, which led to a slower and less severe aggravation of symptoms than in pines inoculated with the virulent isolates. In general, it was found that bacterial population, inside the tree, increased with disease progression. A superior bacterial quantity was isolated from pines inoculated with the nematode isolates HF and 20, and, comparatively, few bacteria were isolated from pines inoculated with the avirulent isolate. The identification system API20E was insufficient in the identification of bacterial species; Enterobacter cloacae species was identified in 79% of the isolated bacterial colonies and seven of these colonies could not be identified by this method. Molecular identification methods, through bacterial DNA sequencing, allowed a more reliable identification: eleven different bacterial species within the Bacillus, Citrobacter, Enterobacter, Escherichia, Klebsiella, Paenibacillus, Pantoea and Terribacillus genera were identified. General bacterial diversity increased with the progression of the disease. Bacillus spp. were predominant at the earlier stage of disease progression and Klebsiella oxytoca at the later stages. Furthermore, bacterial species isolated from the surface of nematodes were similar to those isolated from the xylem of pines.In the present work new bacterial species were identified which have never been reported before in this type of study and may be associated with their geographical origin (Portugal). P. pinaster, the pine species used in this study, was different from those commonly grown in Japan and China. Furthermore, it was the first time that bacteria were isolated and identified from an avirulent pine wood nematode isolate.  相似文献   

4.
【目的】松材线虫是松树萎蔫病的病原,拟松材线虫在形态等方面与松材线虫极其相似。关于两种线虫与细菌的研究多集中于体表伴生细菌。本文要揭示松材线虫和拟松材线虫体内是否存在细菌。【方法】对松材线虫和拟松材线虫进行透射电镜观察;并采用1%升汞和抗菌素混合液对两种线虫虫体进行体表消毒后研磨,制备悬浮液涂布NA平板;通过生理生化测定和16S rDNA序列分析鉴定细菌种类。【结果】松材线虫和拟松材线虫透射电镜照片显示在两种线虫肠道内均发现细菌;体表无菌的松材线虫和拟松材线虫共分离到3株体内细菌;这3株细菌分别属于寡养单胞菌属(Stenotrophomonas)和爱文氏菌属(Ewingella)。【结论】松材线虫和拟松材线虫体内均存在细菌;这些细菌对这两种线虫可能具有一定的生理生态作用。本文是松材线虫和拟松材线虫体内存在细菌的首次报导。  相似文献   

5.
欧阳革成  张润杰 《生态学报》2005,25(10):2658-2661
松材线虫病是重要的森林病害,该病与松材线虫携带的病原菌和松树的内生病原菌密切相关。在室内条件下,初步研究了从人工培养的松材线虫上分离到的菌株C对松材线虫病的抑制作用。在健康的水培马尾松枝上分别接种松材线虫接种液、菌株C接种液、松材线虫与菌株C的混合接种液。处理后松枝的相对重量与相对蒸腾强度均为:接种菌株C的松枝>混合接种的松枝>接种线虫的松枝。处理后15d时,接种线虫的松枝与混合接种的松枝的相对重量有显著性差异(p<0.05)。接种线虫松枝的存活期显著短于其它处理松枝的存活期(p<0.05)。接种菌株C的针叶褐变株数少于接种线虫的松枝,两者有显著性差异(p<0.05)。从接种线虫和混合接种的所有松枝中都分离到松材线虫,且分离出的线虫量没有显著性差异。将8个月生的断根马尾松苗插入菌株C的查彼培养液的滤液中培养,6d后松苗的平均感病指数和感病株率均显著少于对照(p<0.05)。这表明,菌株C对松材线虫病有抑制作用,菌株C培养液中产生的某些代谢物质有利于松苗的抗病和存活。菌株C可能抑制了松树上的内生病原菌和松材线虫携带的病原微生物,或提高了松树的生长力和抗逆能力。经电子显微镜观察并参照AP I 20 C AUX鉴定系统鉴定,菌株C为季也蒙假丝酵母C and id a gu ilierm ond ii。  相似文献   

6.
The pinewood nematode (PWN), Bursaphelenchus xylophilus, has been thought to be the only causal agent of pine wilt disease (PWD), however, since bacteria have been suggested to play a role in PWD, it is important to know the diversity of the microbial community associated to it. This study aimed to assess the microbial community associated with B. xylophilus and with other nematodes isolated from pine trees, Pinus pinaster, with PWD from three different affected forest areas in Portugal. One hundred and twenty three bacteria strains were isolated from PWN and other nematodes collected from 14 P. pinaster. The bacteria strains were identified by comparative analysis of the 16S rRNA gene partial sequence. All except one gram-positive strain (Actinobacteria) belonged to the gram-negative Beta and Gammaproteobacteria. Most isolates belonged to the genus Pseudomonas, Burkholderia and to the family Enterobacteriaceae. Species isolated in higher percentage were Pseudomonas lutea, Yersinia intermedia and Burkholderia tuberum. The major bacterial population associated to the nematodes differed according to the forest area and none of the isolated bacterial species was found in all different forest areas. For each of the sampled areas, 60 to 100% of the isolates produced siderophores and at least 40% produced lipases. The ability to produce siderophores and lipases by most isolates enables these bacteria to have a role in plant physiological response. This research showed a high diversity of the microbial community associated with B. xylophilus and other nematodes isolated from P. pinaster with PWD.  相似文献   

7.
The virulence of different entomopathogenic nematode strains of the families Steinernematidae and Heterorhabditidae, isolates from Catalonia (NE Iberian Peninsula), and their symbiotic bacteria was assessed with regard to the larvae and adults of the hazelnut weevil, Curculio nucum L. (Coleoptera: Curculionidae). The nematode strains screened included one Steinernema affine, five Steinernema feltiae, one Steinernema carpocapsae, one Steinernema sp. (a new species not yet described) and one Heterorhabditis bacteriophora. The pathogenicity of all the strains of nematodes was tested on larvae and only four of them on adults of the hazelnut weevil. Larval mortality ranged from 10% with S. affine to 79% with Steinernema sp. Adult mortality was higher in S. carpocapsae, achieving 100% adult weevil mortality. The pathogenicity of the symbiotic bacteria Xenorhabdus bovienii, X. kozodoii, X. nematophila and Photorhabdus luminescens was studied in larvae and adults of C. nucum. In the larvae, X. kozodoii showed a LT50 of 22.7 h, and in the adults, it was 20.5 h. All nematodes species except S. affine tested against larvae showed great potential to control the insect, whereas S. carpocapsae was the most effective for controlling adults.  相似文献   

8.
A new orange variant of Curtobacterium flaccumfaciens pv. flaccumfaciens was isolated from seeds of common bean cv. Daneshkadeh and Dehghan stored in the seed banks in Khomein Bean Research Station, and field plants (cv. Local Khomein) in Arak, Iran. The pathogenicity of the isolates was confirmed on 5‐ to 7‐day‐old seedlings of cv. Daneshkadeh. Marginal necrosis and interveinal chlorosis on first trifoliate leaves were observed 10–15 days after inoculation. Amplification of 306 bp fragment of orange‐pigmented strains using CffFOR2‐ and CffREV4‐specific prime pair characterized them as C. flaccumfaciens pv. flaccumfaciens. Although the yellow‐pigmented variant of the causal agent was previously reported on cowpea, this is the first report of orange variant of C. flaccumfaciens pv. flaccumfaciens causing bacterial wilt on common bean in Iran.  相似文献   

9.
林峰  赵博光 《应用生态学报》2005,16(12):2476-2478
1.引言松材线虫病(Bursaphelenchus xylophilus)是松树的一种毁灭性病害,在日本、中国、韩国和北美、尼日利亚和葡萄牙等国家蔓延,造成了巨大经济损失,其中以日本和中国受害最重.一直认为松材线虫是引起该病的唯一病原,但近十几年来的研究发现,细菌在致病过程中可能起着重要作用,相继从病木和松材线虫体上分离到能对黑松苗有致萎活性的细菌.赵博光等首次根据实验提出松材线虫病是线虫和细菌共同侵染引起的复合侵染病害的假说,并在以后的试验中得到了验证.关于松材线虫对其细菌繁殖的影响研究鲜有报道.本试验采用从感病松树上分离并鉴定了的细菌菌株中选取假单胞属7株、其它属的细菌菌株3株,  相似文献   

10.
It is known that several bacteria are adherent to the surface coat of pine wood nematode (Bursaphelenchus xylophilus), but their function and role in the pathogenesis of pine wilt disease remains debatable. The Pseudomonas fluorescens GcM5-1A is a bacterium isolated from the surface coat of pine wood nematodes. In previous studies, GcM5-1A was evident in connection with the pathogenicity of pine wilt disease. In this study, we report the de novo sequencing of the GcM5-1A genome. A 600-Mb collection of high-quality reads was obtained and assembled into sequence contigs spanning a 6.01-Mb length. Sequence annotation predicted 5,413 open reading frames, of which 2,988 were homologous to genes in the other four sequenced P. fluorescens isolates (SBW25, WH6, Pf0-1 and Pf-5) and 1,137 were unique to GcM5-1A. Phylogenetic studies and genome comparison revealed that GcM5-1A is more closely related to SBW25 and WH6 isolates than to Pf0-1 and Pf-5 isolates. Towards study of pathogenesis, we identified 79 candidate virulence factors in the genome of GcM5-1A, including the Alg, Fl, Waa gene families, and genes coding the major pathogenic protein fliC. In addition, genes for a complete T3SS system were identified in the genome of GcM5-1A. Such systems have proved to play a critical role in subverting and colonizing the host organisms of many gram-negative pathogenic bacteria. Although the functions of the candidate virulence factors need yet to be deciphered experimentally, the availability of this genome provides a basic platform to obtain informative clues to be addressed in future studies by the pine wilt disease research community.  相似文献   

11.
The pine wood nematode (Bursaphelenchus xylophilus), which causes the symptoms of pine wilt disease, is recognized worldwide as a major forest pest. It was introduced into Portugal in 1999. It is transmitted between trees almost exclusively by longhorn beetles of the genus Monochamus, including, in particular, M. galloprovincialis (Coleoptera: Cerambycidae) in maritime pine forests. Accurate estimates of the flight capacity of this insect vector are required if we are to understand and predict the spread of pine wilt disease in Europe. Using computer‐linked flight mills, we evaluated the distance flown, the flight probability and speed of M. galloprovincialis throughout adulthood and investigated the effects of age, sex and body weight on these flight performances, which are proxies for dispersal capacity. The within‐population variability of flight performance in M. galloprovincialis was high, with a mean distance of 16 km flown over the lifetime of the beetle. Age and body weight had a significant positive effect on flight capacity, but there was no difference in performance between males and females. These findings have important implications for managing the spread of the pine wood nematode in European forests.  相似文献   

12.
Most Bursaphelenchus species are fungal feeding nematodes that colonize dead or dying trees. However, Bursaphelenchus xylophilus, the pine wood nematode, is also a pathogen of trees and is the causal agent of pine wilt disease. B. xylophilus is native to North America and here it causes little damage to trees. Where it is introduced to new regions it causes huge damage. The most severely affected areas are found in the Far East but more recently B. xylophilus has been introduced into Portugal and the potential for damage here is also high. As incidence and severity of pine wilt disease are linked to temperature we suggest that climate change is likely to exacerbate the problems caused by B. xylophilus and, in addition, will extend (northwards in Europe) the range in which pine wilt disease can occur. Here we review what is currently known about the interactions of B. xylophilus with its hosts, including recent developments in our understanding of the molecular biology of pathogenicity in the nematode. We also examine the potential developments that could be made by more widespread use of genomics tools to understand interactions between B. xylophilus, bacterial pathogens that have been implicated in disease and host trees.  相似文献   

13.
The beneficial effects of plant‐–bacterial interactions in controlling plant pests have been extensively studied with single bacterial isolates. However, in nature, bacteria interact with plants in multitaxa consortia, systems which remain poorly understood. Previously, we demonstrated that a consortium of five native bacterial isolates protected their host plant Nicotiana attenuata from a sudden wilt disease. Here we explore the mechanisms behind the protection effect against the native pathosystem. Three members of the consortium, Pseudomonas azotoformans A70, P. frederiksbergensis A176 and Arthrobacter nitroguajacolicus E46, form biofilms when grown individually in vitro, and the amount of biofilm increased synergistically in the five‐membered consortium, including two Bacillus species, B. megaterium and B. mojavensis. Fluorescence in situ hybridization and scanning electron microscopy in planta imaging techniques confirmed biofilm formation and revealed locally distinct distributions of the five bacterial strains colonizing different areas on the plant‐root surface. One of the five isolates, K1 B. mojavensis produces the antifungal compound surfactin, under in vitro and in vivo conditions, clearly inhibiting fungal growth. Furthermore, isolates A70 and A176 produce siderophores under in vitro conditions. Based on these results we infer that the consortium of five bacterial isolates protects its host against fungal phytopathogens via complementary traits. The study should encourage researchers to create synthetic communities from native strains of different genera to improve bioprotection against wilting diseases.  相似文献   

14.
Esteya vermicola (Ophiostomataceae) is the first reported endoparasitic fungus of the pinewood nematode (PWN), Bursaphelenchus xylophilus (Nematoda: Aphelenchoidoidea). It has high in vitro infectivity. In this study, the nematocidal effect of E. vermicola in logs was investigated and evaluated. Two months after inoculation of pine wilt-killed Pinus densiflora logs with E. vermicola conidia suspensions of 3 × 108 and 3 × 106 ml−1, the density of nematodes decreased by approximately 79% and 47%, respectively. When the fungus was sprayed on to four-year-old pine seedlings one month before PWN inoculation, the survival index of seedlings reached 0.67 compared with only 0.067 for control seedlings without fungal spraying. These results suggest that conidia spraying of Evermicola can, to some extent, protect pine trees from wilt disease. Moreover, infected nematodes and hyphae of Evermicola were observed in the treated wood sections.  相似文献   

15.
The pine wilt disease caused by Bursaphelenchus xylophilus (BX), also known as the pine wood nematode (PWN), is the most devastating disease of pine trees. In this work, a high molecular weight B. xylophilus cellulase antigen (BXCa) was purified from total homogenates of nematodes. BXCa was found to be able to hydrolyze carboxymethyl cellulose (CMC) efficiently (155.65 U/mg) and to have an approximate molecular mass of 58.9 kDa. We harvested anti-BXCa antibodies and performed immunocytochemical assays, which revealed the localization of cellulase pools in the esophageal gland cells of the PWN. It was also discovered that cellulase was secreted from the stylet and was used to hydrolyze cellulose to facilitate the PWN entering host cells. These results are consistent with other plant parasitical nematodes. Interestingly, strong fluorescence signals from cellulase staining were observed in tracheid cells in naturally infected pine wood, in addition to ray cells and the resin canal zone. These results strongly suggest that the cellulase released by the PWN is one of the pathogenic substances of pine wilt disease and is responsible for the development of the early symptoms of the disease.  相似文献   

16.
Scanning electron microscopy (SEM) was applied to paraffin-embedded wood sections to study the histopathology of pine seedlings inoculated with the pinewood nematode (PWN), Bursaphelenchus xylophilus. The sections, which had been previously prepared and observed by light microscopy (LM) on glass slides, were originally obtained from experiments in which pine seedlings had been inoculated with PWN. The cover glass was removed by soaking the glass slide in xylene for 3 to 5 days. The glass slides were cut into small pieces so that each piece contained one wood section. Each piece of the glass slide was attached with double adhesive tape to an aluminum stub. The specimens were sputter-coated with gold and examined with a scanning electron microscope (JEOL-JSM 5200). Compared to LM (as documented in previous reports) SEM provided greater depth of focus and resolution of the damaged wood tissues, nematodes and associated bacteria. SEM made it possible to observe the relationship between bacterial distribution and nematode distribution in wood tissues. SEM observations also suggested the possibility of documenting the death of ray cells and other parenchyma cells in relation to disease development. Finally, the current study of PWN in pine seedlings demonstrated that glass slides prepared for LM observations more than 25 years earlier could be successfully processed for examination by SEM.  相似文献   

17.
Animal–bacterial symbioses are highly dynamic in terms of multipartite interactions, both between the host and its symbionts as well as between the different bacteria constituting the symbiotic community. These interactions will be reflected by the titres of the individual bacterial taxa, for example via host regulation of bacterial loads or competition for resources between symbionts. Moreover, different host tissues represent heterogeneous microhabitats for bacteria, meaning that host‐associated bacteria might establish tissue‐specific bacterial communities. Wolbachia are widespread endosymbiotic bacteria, infecting a large number of arthropods and filarial nematodes. However, relatively little is known regarding direct interactions between Wolbachia and other bacteria. This study represents the first quantitative investigation of tissue‐specific Wolbachia–microbiota interactions in the terrestrial isopod Armadillidium vulgare. To this end, we obtained a more complete picture of the Wolbachia distribution patterns across all major host tissues, integrating all three feminizing Wolbachia strains (wVulM, wVulC, wVulP) identified to date in this host. Interestingly, the different Wolbachia strains exhibited strain‐specific tissue distribution patterns, with wVulM reaching lower titres in most tissues. These patterns were consistent across different host genetic backgrounds and might reflect different co‐evolutionary histories between the Wolbachia strains and A. vulgare. Moreover, Wolbachia‐infected females carried higher total bacterial loads in several, but not all, tissues, irrespective of the Wolbachia strain. Taken together, this quantitative approach indicates that Wolbachia is part of a potentially more diverse bacterial community, as exemplified by the presence of highly abundant bacterial taxa in the midgut caeca of several A. vulgare populations.  相似文献   

18.
Bacterial wilt disease caused by Ralstonia solanacearum leads to decrease of crops yield. Investigation of cultivable bacteria diversity provides more microbial species for screening antagonistic bacteria. In the present study, a variety of cultivation methods were used to investigate the diversity of cultivable bacteria alive in tobacco field. A total of 441 bacterial strains were obtained that belonged to four phyla, 49 genera and 146 species. Actinobacteria and Proteobacteria were the dominant phyla. Agrobacterium, Arthrobacter, Bacillus, Klebsiella, Paenarthrobacter, Pseudomonas and Pseudarthrobacter were the dominant genera. Some rare genera were discovered including Bosea, Cedecea, Delftia and Dyella. Diversity, species and abundances of bacteria altered under different cultivation conditions. One hundred three bacterial strains showed plant growth-promoting attributes. Twenty Bacillus strains showed high antibacterial activity against R. solanacearum. In field experiments, individual strain and consortia of Bacillus subtilis, B. siamensis and B. vallismortis effectively inhibited bacterial wilt. The core genes that controlled synthesis of secondary metabolites were knocked out in B. vallismortis SSB-10. Difficidin, which was synthesized by dif operon and controlled by sfp gene, was the antibacterial substance produced by SSB-10. Difficidin destroyed cell wall and cell membrane of R. solanacearum and inhibited its motility, production of extracellular polysaccharides and cellulase activity.  相似文献   

19.
This study was carried out to identify pathogenic bacteria and fungi on mistletoe (Viscum album L.) and investigate their potential use in biological control of this parasitic plant. For this purpose, a total of 48 fungal isolate and 193 bacterial strains were isolated from contaminated V. album during the summers 2005–2006. The isolated bacterial strains and fungal isolates were identified by using the Sherlock Microbial Identification System (MIS; Microbial ID, Newark) and microscopic methods, respectively. The bacterial strains that induced hypersensitive reaction (HR) on tobacco (Nicotiana tabacum L.) and fungal isolates were tested for pathogenicity on young shoots of mistletoe by using injection methods. The pathogenic bacterial strains and fungal isolates were also tested for their activity against mistletoe using spray methods. Five bacterial strains (two Burkholderia cepacia, one each of Bacillus megaterium, Bacillus pumilus and Pandoraea pulminicola) were HR and pathogenicity positive when injected but none of them when sprayed on mistletoe. When fungi were injected, 32 isolates were pathogenic but only thirteen when sprayed on mistletoe. Alternaria alternata VA?‐202, VA?‐205, VA?‐217 and Acremonium kiliense VA‐11 fungal isolates were the most effective ones and caused strong disease symptoms on mistletoe. The present study is the first report on the efficiency of potential biocontrol agents against mistletoe in Turkey.  相似文献   

20.
Hamedan province of Iran is a suitable niche for alfalfa growth but many diseases including alfalfa bacterial wilt, bacterial crown and root rot diseases cause economic crop losses. Bacterial wilt is caused by Clavibacter michiganensis subsp. insidiosus, and bacterial crown and root rot diseases are caused by Pseudomonas viridiflava. In this study, we investigated the pathogenicity of C. michiganensis subsp. insidiosus and P. viridiflava strains collected from the main alfalfa growing areas of Hamedan province. Pathogenicity of the virulent strains was tested on alfalfa and the bacterial strains caused symptoms, and data were collected about stem length, root length, wet weight and dry weight of the infected plantlets. The data about the pathogenicity of C. michiganensis subsp. insidiosus and P. viridiflava on alfalfa were compared with each other and were analysed by SAS software and Dunkan's test. Resulted data showed more pathogenicity of C. michiganensis subsp. insidiosus than P. viridiflava on alfalfa. These data also showed that both of these bacteria produced the most losses on wet weight and dry weight of alfalfa plantlets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号