首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 469 毫秒
1.
A series of 2,5-substituted-1,3,4-oxadiazole/thiadiazole sulfone derivatives were synthesized and evaluated for their antibacterial activities against rice bacterial leaf blight and leaf streak caused by Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicolaby via the turbidimeter test in vitro. Antibacterial bioassay results indicated that most compounds demonstrated good inhibitory effect antibacterial bioactivities against rice bacterial leaf blight and leaf streak. Among the title compounds, compound 6c demonstrated the best inhibitory effect against rice bacterial leaf blight and leaf streak with half-maximal effective concentration (EC50) values of 1.07 and 7.14 μg/mL, respectively, which were even better than those of commercial agents such as Bismerthiazol and Thiediazole Copper. In vivo antibacterial activities tests at greenhouse conditions demonstrated that the controlling effect of compounds 6c (43.5%) and 6g (42.4%) against rice bacterial leaf blight were better than those of Bismerthiazol (25.5%) and Thiediazole Copper (37.5%).  相似文献   

2.
一株拮抗黄单胞菌的贝莱斯芽孢杆菌的分离和鉴定   总被引:3,自引:0,他引:3  
【目的】为了筛选防治水稻条斑病(bacterial leaf streak,BLS)的生防细菌。【方法】以水稻条斑病菌(Xanthomonas oryzae pv. oryzicola,Xoc)的模式菌株RS105为靶标菌,采用平板稀释和抑菌圈法,从空心菜根际土壤中筛选到一株对RS105具有拮抗作用的细菌菌株504。通过形态学、生理生化特征以及16SrDNA和gyrA序列分析对菌株504进行了鉴定。利用牛津杯法测定504对植物病原黄单胞菌的拮抗活性及其无菌发酵液拮抗活性的稳定性。通过PCR扩增预测504编码合成脂肽类和聚酮类化合物的合成相关基因。采用苗期水稻注射接菌法来评价水稻组织中504对Xoc的拮抗活性。【结果】菌株鉴定结果表明504为贝莱斯芽孢杆菌,命名为Bacillusvelezensis504。抑菌实验显示,B.velezensis504对黄单胞菌属的细菌具有较好的抑菌活性,对水稻白叶枯病菌(X. oryzae pv. oryzae,Xoo)的拮抗效果最显著。基因预测结果显示,B. velezensis 504含有fenA、dhbA、sfrA、bmyA、beaS、dfnA及bacA等编码脂肽类和聚酮糖类抑菌化合物的基因簇。其无菌发酵液的活性物质耐高温和蛋白酶降解,但不耐强酸、强碱,在pH值为5.5–8.9时仍具有稳定的拮抗活性。在高感水稻品种原丰早上,B. velezensis 504对Xoc在水稻叶片中引起的水渍症状具有显著的抑制作用。【结论】B. velezensis 504能够特异性拮抗黄单胞菌,在黄单胞菌引起的细菌性病害的生物防治中将具有较大的应用潜力。  相似文献   

3.
4.
Quantitative trait loci (QTL) that confer broad‐spectrum resistance (BSR), or resistance that is effective against multiple and diverse plant pathogens, have been elusive targets of crop breeding programmes. Multiparent advanced generation intercross (MAGIC) populations, with their diverse genetic composition and high levels of recombination, are potential resources for the identification of QTL for BSR. In this study, a rice MAGIC population was used to map QTL conferring BSR to two major rice diseases, bacterial leaf streak (BLS) and bacterial blight (BB), caused by Xanthomonas oryzae pathovars (pv.) oryzicola (Xoc) and oryzae (Xoo), respectively. Controlling these diseases is particularly important in sub‐Saharan Africa, where no sources of BSR are currently available in deployed varieties. The MAGIC founders and lines were genotyped by sequencing and phenotyped in the greenhouse and field by inoculation with multiple strains of Xoc and Xoo. A combination of genomewide association studies (GWAS) and interval mapping analyses revealed 11 BSR QTL, effective against both diseases, and three pathovar‐specific QTL. The most promising BSR QTL (qXO‐2‐1, qXO‐4‐1 and qXO‐11‐2) conferred resistance to more than nine Xoc and Xoo strains. GWAS detected 369 significant SNP markers with distinguishable phenotypic effects, allowing the identification of alleles conferring disease resistance and susceptibility. The BSR and susceptibility QTL will improve our understanding of the mechanisms of both resistance and susceptibility in the long term and will be immediately useful resources for rice breeding programmes.  相似文献   

5.
6.
Bacterial leaf streak (BLS) is a major bacterial disease of rice. Utilization of host genetic resistance has become one of the most important strategies for controlling BLS. However, only a few resistance genes have been characterized. Previously, a recessive BLS resistance gene bls1 was roughly mapped on chromosome 6. Here, we further delineated bls1 to a 21 kb region spanning four genes. Genetic analysis confirmed that the gene encoding a mitogen-activated protein kinase (OsMAPK6) is the target of the allelic genes BLS1 and bls1. Overexpression of BLS1 weakened resistance to the specific Xanthomonas oryzae pv. oryzicola (Xoc) strain JZ-8, while low expression of bls1 increased resistance. However, both overexpression of BLS1 and low expression of bls1 could increase no-race-specific broad-spectrum resistance. These results indicate that BLS1 and bls1 negatively regulate race-specific resistance to Xoc strain JZ-8 but positively and negatively control broad-spectrum resistance, respectively. Subcellular localization demonstrated that OsMAPK6 was localized in the nucleus. RGA4, which is known to mediate resistance to Xoc, is the potential target of OsMAPK6. Overexpression of BLS1 and low expression of bls1 showed increase in salicylic acid and induced expression of defense-related genes, simultaneously increasing broad-spectrum resistance. Moreover, low expression of bls1 showed increase an in jasmonic acid and abscisic acid, in company with an increase in resistance to Xoc strain JZ-8. Collectively, our study provides new insights into the understanding of BLS resistance and facilitates the development of rice host-resistant cultivars.  相似文献   

7.
Rice bacterial leaf blight (BB) caused by Xanthomonas oryzae pv. oryzae and bacterial leaf streak (BLS) caused by X. oryzae pv. oryzicola (Xoc) are two important diseases of rice that often outbreak simultaneously and constrain rice production in much of Asia and parts of Africa. Developing resistant cultivars has been the most effective approach to control BB, however, most single resistance genes have limited value in breeding programs because of their narrow-spectrum of resistance to the races of the pathogen. By contrast, there is little progress in breeding varieties resistant to Xoc since BLS resistance in rice was a quantitative trait and so far only a few quantitative resistance loci have been identified. We reported here the development of a high yield elite line, Lu-You-Zhan highly resistant to both BB and BLS by pyramiding Xa23 with a wide-spectrum resistance to BB derived from wild rice and a non-host maize resistance gene, Rxo1, using both marker assisted selection (MAS) and genetic engineering. Our study has provided strong evidence that non-host R genes could be a valuable source of resistance in combating those plant diseases where no single R gene controlling high level of resistance exists and demonstrated that MAS combined with transgenic technologies are an effective strategy to achieve high level of resistance against multiple plant diseases. Y-L Zhou and J-L Xu contributed equally to this work.  相似文献   

8.
In this study, thirty-four novel vanillin derivatives containing a 1,3,4-thiadiazole structure were obtained and their antibacterial activities were evaluated. The results indicate that most of the title compounds displayed inhibitory effects on Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc). Among them, compound 29 exhibited excellent antibacterial activities against Xoo and Xoc in vitro, with the EC50 values of 3.14 and 8.83 μg/mL, respectively, much superior to thiodiazole copper (87.03 and 108.99 μg/mL) and bismerthiazol (67.64 and 79.26 μg/mL). Under greenhouse condition, the protective efficiency of compound 29 against rice bacterial leaf blight was 49.34%, and curative efficiency was 40.96%. In addition, compound 29 can reduce the exopolysaccharides production of Xoo, increase the permeability of cell membrane and damage cell membrane.  相似文献   

9.
10.
Guo L  Li M  Wang W  Wang L  Hao G  Guo C  Chen L 《Molecular biology reports》2012,39(4):3491-3504
Bacterial leaf streak of rice (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc) is a widely-spread disease in the main rice-producing areas of the world. Investigating the genes that play roles in rice–Xoc interactions helps us to understand the defense signaling pathway in rice. Here we report a differentially expressed protein gene (DEPG1), which regulates susceptibility to BLS. DEPG1 is a nucleotide-binding site (NBS)-leucine rich repeat (LRR) gene, and the deduced protein sequence of DEPG1 has approximately 64% identity with that of the disease resistance gene Pi37. Phylogenetic analysis of DEPG1 and the 18 characterized NBS-LRR genes revealed that DEPG1 is more closely related to Pi37. DEPG1 protein is located to the cytoplasm, which was confirmed by transient expression of DEPG1-GFP (green fluorescent protein) fusion construct in onion epidermal cells. Semi-quantitative PCR assays showed that DEPG1 is widely expressed in rice, and is preferentially expressed in internodes, leaf blades, leaf sheaths and flag leaves. Observation of cross sections of leaves from the transgenic plants with a DEPG1-promoter::glucuronidase (GUS) fusion gene revealed that DEPG1 is also highly expressed in mesophyll tissues where Xoc mainly colonizes. Additionally, Xoc negatively regulates expression of DEPG1 at the early stage of the pathogen infection, and so do the three defense-signal compounds including salicylic acid (SA), methyl jasmonate (MeJA) and 1-aminocyclopropane-1-carboxylic-acid (ACC). Transgenic rice plants overexpressing DEPG1 exhibit enhanced susceptibility to Xoc compared to the wild-type controls. Moreover, enhanced susceptibility to Xoc may be mediated by inhibition of the expression of some SA biosynthesis-related genes and pathogenesis-related genes that may contribute to the disease resistance. Taken together, DEPG1 plays roles in the interactions between rice and BLS pathogen Xoc.  相似文献   

11.
12.
13.
Okinawa, the only subtropical area in Japan with numerous island ecosystems, is expected to have diverse microbial resources. Recently, we reported the construction of a culture filtrate library with microbes originally isolated from soils in Okinawa, including the Yaeyama Archipelago, and validated its phylogenetic diversity. In the present study, we investigated the inhibitory effect of the cell extract (CE) from microbial isolate 3–45 against Magnaporthe oryzae in rice (Oryza sativa). Abnormal appressorium formation by M. oryzae was induced in the presence of the CE from isolate 3–45. Additionally, melanization of appressoria was inhibited in the presence of CE from isolate 3–45. Sequence analysis of the 16S rDNA region of isolate 3–45 indicated that it shared similarities with Streptomyces erythrochromogenes. When rice leaves were inoculated with M. oryzae in the presence of CE from isolate 3–45, blast lesion formation was inhibited compared to leaves treated with M. oryzae in the absence of CE from isolate 3–45. In addition, M. oryzae infective activity was significantly inhibited in rice leaf sheaths treated with CE from isolate 3–45. Furthermore, abnormal appressorium formation was observed in the presence of heat‐treated CE from isolate 3–45. These results suggest that CE from isolate 3–45 can protect rice from blast disease caused by M. oryzae. Further studies are required to identify the active compounds present in 3–45‐CE and to clarify its mechanism of inhibition in full detail. The present study on isolate 3–45 might contribute to the development of a new fungicide for controlling rice blast disease caused by M. oryzae.  相似文献   

14.
Bacillus strains are broadly studied for their beneficial role in plant growth and biological control of plant disease and pest; however, little is known about their underlying mechanisms. In this study, we assessed the controlling and defence‐related mechanisms of three Bacillus strains including rice seed‐associated strain B. subtilis A15, rhizobacterial strains B. amyloliquefaciens D29 and B. methylotrophicus H8, all of which are against bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae. Results indicated that all three strains showed strong biofilm formation ability. The culture filtrates of each strain significantly suppressed the growth and biofilm formation of X. oryzae, while changes in bacterial cell morphology such as cell swell and severe cell wall alterations were observed through the transmission electron microscopy images. PCR analysis revealed that all three strains harbour the antimicrobial‐associated genes that are responsible for biosynthesis of bacillomycin, fengycin, iturin and surfactin. Subsequent real‐time qPCR analysis revealed the upregulated expression of fenD and srfAA genes in D29 and H8, and fenD and ituC genes in A15 during their in vitro interaction with X. oryzae. It suggests that the antibacterial mechanisms of the three strains may be at least partially associated with their ability to secrete corresponding lipopeptides. Interestingly, the applications of the three strains in greenhouse conditions were found to be effective in controlling the BLB disease, which was achieved through the activation of inducing systemic resistance resulted from the enhanced activities of defence‐related enzymes. This is the first report of demonstration of the mode of antibacterial effect of Bacillus strains against X. oryzae. Overall, data from the current study provide valuable information for biological control of BLB disease in rice.  相似文献   

15.
16.
Burkholderia glumae is a well‐known pathogen for causing bacterial panicle blight of rice. In this study, the infection process of B. glumae in rice plants at different growing stages was tracked by means of real‐time fluorescence quantitative PCR. Burkholderia glumae tended to colonize at the growing point of rice plants, and the biomass of population was 104 to 108 CFU/g. The most intensive colonization was detected in the upmost leaf in the two‐leaf period. However, after the two‐leaf period, the population of pathogens decreased significantly, and they successfully recovered in the booting stage and broke out in panicles. We also illustrated the incubation location of B. glumae by presenting the infection pattern in the seedling and tillering stage of rice. Under fluorescent microscopy, the gfp‐labelled pathogens were first found in the vascular bundle of lateral roots, taproots and injured cells, then they were observed in the root hairs, epidermal cells and main root cap. The pathogens in the vascular bundle laterally dispersed towards the epidermal cells. By spray application of a bacterial suspension, the pathogens landed on the leaf sheaths and leaves, colonized in the epidermal hairs and leaf hairs, or invaded into the cells through the stomas. At the same time, the pathogens from the vascular bundle of the roots spread into the vascular bundle of leaf sheaths and leaves, which caused the leaves to curl and wilt, beginning from the tip.  相似文献   

17.

Background  

Bacterial leaf blight causes significant yield losses in rice crops throughout Asia and Africa. Although both the Asian and African strains of the pathogen, Xanthomonas oryzae pv. oryzae (Xoo), induce similar symptoms, they are nevertheless genetically different, with the African strains being more closely related to the Asian X. oryzae pv. oryzicola (Xoc).  相似文献   

18.
Bacterial leaf streak caused by Xanthomonas oryzae pv. oryzicola (Xoc) is one of the most important diseases in rice. However, little is known about the pathogenicity mechanisms of Xoc. Here we have investigated the function of three HD-GYP domain regulatory proteins in biofilm formation, the synthesis of virulence factors and virulence of Xoc. Deletion of rpfG resulted in altered production of extracellular polysaccharides (EPS), abolished virulence on rice and enhanced biofilm formation, but had little effect on the secretion of proteases and motility. In contrast, mutational analysis showed that the other two HD-GYP domain proteins had no effect on virulence factor synthesis and tested phenotypes. Mutation of rpfG led to up-regulation of the type III secretion system and altered expression of three putative glycosyltransferase genes gumD, pgaC and xagB, which are part of operons directing the synthesis of different extracellular polysaccharides. The pgaABCD and xagABCD operons were greatly up-regulated in the Xoc ΔrpfG mutant, whereas the expression of the gum genes was unaltered or slightly enhanced. The elevated biofilm formation of the Xoc ΔrpfG mutant was dramatically reduced upon deletion of gumD, xagA and xagB, but not when pgaA and pgaC were deleted. Interestingly, only the ΔgumD mutant, among these single gene mutants, exhibits multiple phenotype alterations including reduced biofilm and EPS production and attenuated virulence on rice. These data indicate that RpfG is a global regulator that controls biofilm formation, EPS production and bacterial virulence in Xoc and that both gumD- and xagB-dependent EPS contribute to biofilm formation under different conditions.  相似文献   

19.
The hydrosols are by‐products derived during the extraction of essential oils. Although essential oils have been widely evaluated for their insecticidal activities, the possible use of hydrosols in pest control has been almost unknown. The effects of the hydrosols of Origanum majorana (marjoram), Mentha pulegium (pennyroyal), and Melissa officinalis (lemon balm) on the survival and settling behaviour of the aphid pest Myzus persicae were investigated. The hydrosols were isolated using Clevenger hydrodistillation (i) with conventional heating (HD) and (ii) assisted by microwaves (MWHD). GC‐MS analysis showed that the volatiles occurring in the hydrosols were similar between the two techniques. Hydrosols were assayed for possible settling inhibitory effects on M. persicae in Petri dishes (15 cm diameter). In each dish, a sprayed together with an unsprayed eggplant leaf piece was placed. An adult aphid <24 h old was released on the treated leaf and its path length was recorded during the initial 10 min. Then, its position (on the treated or untreated leaf) was recorded 10, 20, 30, 60 min and 24 h after spraying. M. officinalis HD hydrosol resulted in fourfold increase of the path length compared with the control (deionized water). The last observation (24 h) revealed that M. officinalis and M. pulegium HD hydrosols had the strongest inhibitory effect. Additionally, O. majorana hydrosols caused 10–15% aphid mortality after 24 h. In this study, the wider use of the MWHD technique is further supported as in addition to its well‐known advantages (i.e. shorter distillation time, less energy consumption), the effects of the hydrosols produced are comparable to those obtained by HD. Most importantly, the results clearly showed that the potential of hydrosols in pest control ought not to be ignored and should attract the interest of future studies.  相似文献   

20.
Brown spot, caused by the fungus Bipolaris oryzae, is one of the most destructive diseases of rice. This study investigated the effect of zinc rates on the development of brown spot in rice. Rice plants (cv. ‘Metica‐1′) were grown in hydroponic culture amended with Zn rates (applied as ZnSO4.7H2O) of 0, 0.5, 1, 2 and 4 μm and inoculated with B. oryzae. The foliar concentration of Zn was determined. Leaf samples were assessed for disease severity, and then, area under brown spot progress curve (AUBSPC) was calculated. The relationship between Zn concentrations on leaf tissues and the rates of this micronutrient was best described by a positive linear regression model, while the relationship between the Zn rates and the AUBSPC was best described with a positive quadratic regression model. The correlation between Zn concentrations on leaf tissues and AUBSPC was positive and significant (r = 0.68, P < 0.05). The results from this study showed that high foliar concentration of Zn was associated with increasing rice susceptibility to brown spot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号