首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two distinct patterns of mitochondrial DNA (mtDNA) segregation were found in different mouse-rat hybrid cell lines. On mouse-rat hybrid cell line, H2, retained complete sets of chromosomes and mtDNAs of both mouse and rat. Even after cultivation for about one year after cloning, the H2 cell population still retained both parental mtDNAs. However, when mtDNAs of H2 subclones were examined, it was found that some individual cells in the H2 cell population contained only mouse or only rat mtDNA, although they still retained complete sets of both kinds of parental chromosomes. This type of mtDNA segregation, named stochastic segregation, is bidirectional and may be caused by the repetition of random sharing of mouse and rat mtDNAs with daughter cells. This segregation occurred spontaneously during long-term cultivation. The second type of mtDNA segregation, named chromosome-dependent segregation, was found in the other mouse-rat hybrid cell lines that segregated either mouse or rat chromosomes. In these hybrid cells, chromosomes and mtDNA of the same species co-segregated. This second type of segregation is unidirectional. The types of mtDNA segregation appear to depend on the stability of the parental chromosomes in the hybrid cells. When both mouse and rat chromosomes retain stably, mtDNA shows stochastic segregation. On the contrary, when either species of chromosomes is segregated from the cells, mtDNA shows chromosome-dependent segregation.  相似文献   

2.
Andrew G. Clark 《Genetics》1985,111(1):97-112
Observations of intraspecific variation in organelle DNA have prompted a renewed interest in the evolutionary consequences of cytoplasmically transmitted factors. Attempts to quantify the significance of cytoplasmic effects are frequently limited by the difficulty in partitioning the cause of reciprocal cross differences among a series of possibilities. In the experiment reported here the nuclear genomes of a set of six lines of Drosophila melanogaster from diverse geographic locations were replaced in a series of cytoplasms. The segregation of the SM5 balancer chromosome was scored in a factorial design, and the data allowed a partitioning of variance such that cytoplasmic effects were distinguished from maternal effects and meiotic drive. An attempt was made to avoid the confounding problem of hybrid dysgenesis by performing the entire experiment (including chromosomal extractions) in a P cytotype. Results indicated a significant contribution of cytoplasm to the variance in SM5 segregation. Error variance showed an increasing trend as the experiment proceeded, and additional tests indicated that this was due to an accumulation of chromosomal mutations. These findings are interpreted in light of the population genetic theory that addresses the maintenance of cytoplasmic polymorphism.  相似文献   

3.
Mitochondrial DNA (mtDNA) insertions into nuclear chromosomes have been documented in a number of eukaryotes. We used fluorescence in situ hybridization (FISH) to examine the variation of mtDNA insertions in maize. Twenty overlapping cosmids, representing the 570-kb maize mitochondrial genome, were individually labeled and hybridized to root tip metaphase chromosomes from the B73 inbred line. A minimum of 15 mtDNA insertion sites on nine chromosomes were detectable using this method. One site near the centromere on chromosome arm 9L was identified by a majority of the cosmids. To examine variation in nuclear mitochondrial DNA sequences (NUMTs), a mixture of labeled cosmids was applied to chromosome spreads of ten diverse inbred lines: A188, A632, B37, B73, BMS, KYS, Mo17, Oh43, W22, and W23. The number of detectable NUMTs varied dramatically among the lines. None of the tested inbred lines other than B73 showed the strong hybridization signal on 9L, suggesting that there is a recent mtDNA insertion at this site in B73. Different sources of B73 and W23 were examined for NUMT variation within inbred lines. Differences were detectable, suggesting either that mtDNA is being incorporated or lost from the maize nuclear genome continuously. The results indicate that mtDNA insertions represent a major source of nuclear chromosomal variation.  相似文献   

4.
Andrew G. Clark 《Genetics》1987,115(1):143-151
Functional variation among Y chromosomes in natural populations of Drosophila melanogaster was assayed by a segregation study. A total of 36 Y chromosomes was extracted and ten generations of replacement backcrossing yielded stocks with Y chromosomes in two different genetic backgrounds. Eleven of the Y chromosomes were from diverse geographic origins, and the remaining 25 were from locally captured flies. Segregation of sexes in adult offspring was scored for the four possible crosses among the two backgrounds with each Y chromosome. Although the design confounds meiotic drive and effects on viability, statistical partitioning of these effects reveals significant variation among lines in Y chromosome segregation. Results are discussed in regards to models of Y-linked segregation and viability effects, which suggest that Y-linked adaptive polymorphism is unlikely.  相似文献   

5.
Segregation Distorter (SD) chromosomes are preferentially recovered from SD/SD+ males due to the dysfunction of sperm bearing the SD+ chromosome. The proportion of offspring bearing the SD chromosome is given the symbol k. The nature of the frequency distribution of k was examined by comparing observed k distributions produced by six different SD chromosomes, each with a different mean, with k distributions predicted by two different statistical models. The first model was one where the k of all males with a given SD chromosome were considered to be equal prior to the determination of those gametes which produce viable zygotes. In this model the only source of variation of k would be binomial sampling. The results rigorously demonstrated for the first time that the observed k distributions did not fit the prediction that the only source of variation was binomial sampling. The next model tested was that the prior distribution of segregation ratios conformed to a beta distribution, such that the distribution of k would be a beta-binomial distribution. The predicted distributions of this model did not differ significantly from the observed distributions of k in five of the six cases examined. The sixth case probably failed to fit a beta-binomial distribution due to a major segregating modifier. The demonstration that the prior distribution of segregation ratios of SD lines can generally be approximated with a beta distribution is crucial for the biometrical analysis of segregation distortion.  相似文献   

6.
It has been suggested that mitochondrial DNA (mtDNA) may play an important role in aging. Yet, few empirical studies have tested this hypothesis, partly because the degree of sequence polymorphism in mtDNA is assumed to be low. However, low sequence variation may not necessarily translate into low phenotypic variation. Here, we report an experiment that tests whether there is within-population variation in cytoplasmic genes for female longevity and senescence. To achieve this, we randomly selected 25 "mitochondrial founders" from a single, panmictic population of Drosophila melanogaster and used these founders to generate distinct "mt" lines in which we controlled for the nuclear background by successive backcrossing. Potential confounding effects of cytoplasmically transmitted bacteria were eliminated by tetracycline treatment. The mt lines were then assayed for differences in longevity, Gompertz intercept (frailty), and demographic rate of change in mortality with age (rate-of-senescence) in females. We found significant cytoplasmic effects on all three variables. This provides evidence that genetic variation in cytoplasmic genes, presumably mtDNA, contributes to variation in female mortality and aging.  相似文献   

7.
Mitochondrial genotypes have been shown to segregate both rapidly and slowly when transmitted to consecutive generations in mammals. Our objective was to develop an animal model to analyze the patterns of mammalian mitochondrial DNA (mtDNA) segregation and transmission in an intraspecific heteroplasmic maternal lineage to investigate the mechanisms controlling these phenomena. Heteroplasmic progeny were obtained from reconstructed blastocysts derived by transplantation of pronuclear-stage karyoplasts to enucleated zygotes with different mtDNA. Although the reconstructed zygotes contained on average 19% mtDNA of karyoplast origin, most progeny contained fewer mtDNA of karyoplast origin and produced exclusively homoplasmic first generation progeny. However, one founder heteroplasmic adult female had elevated tissue heteroplasmy levels, varying from 6% (lung) to 69% (heart), indicating that stringent replicative segregation had occurred during mitotic divisions. First generation progeny from the above female were all heteroplasmic, indicating that, despite a meiotic segregation, they were derived from heteroplasmic founder oocytes. Some second and third generation progeny contained exclusively New Zealand Black/BINJ mtDNA, suggesting, but not confirming, an origin from an homoplasmic oocyte. Moreover, several third to fifth generation individuals maintained mtDNA from both mouse strains, indicating a slow or persistent segregation pattern characterized by diminished tissue and litter variability beyond second generation progeny. Therefore, although some initial lineages appear to segregate rapidly to homoplasmy, within two generations other lineages transmit stable amounts of both mtDNA molecules, supporting a mechanism where mitochondria of different origin may fuse, leading to persistent intraorganellar heteroplasmy.  相似文献   

8.
When a set of insecticidal toxicity tests yields parallel regression lines for the relationship between mortality probit and log dose, the potencies of the materials or conditions under test may be compared purely in terms of log L.D. 50's. The purpose of this paper is to suggest that, when tests have been made with all combinations of several different factors, standard methods for the statistical analysis of factorial experiments may be adapted to the examination of the relative potencies.
Data obtained by Potter & Gillham (1046), in a 2' factorial experiment on alternative storage conditions for insects before and after spraying and the adjuvant action of terpineol in a pyrethrins spray, are used in an example of the computations. Details are given of the test of parallelism of the regression lines, the factorial analysis of the log L.D. '50s, the estimation of the mean effects and interactions and their standard errors, the significance tests, and the preparation of summary tables.  相似文献   

9.
Neutral and Non-Neutral Evolution of Drosophila Mitochondrial DNA   总被引:4,自引:4,他引:4  
D. M. Rand  M. Dorfsman    L. M. Kann 《Genetics》1994,138(3):741-756
To test hypotheses of neutral evolution of mitochondrial DNA (mtDNA), nucleotide sequences were determined for 1515 base pairs of the NADH dehydrogenase subunit 5 (ND5) gene in the mitochondrial DNA of 29 lines of Drosophila melanogaster and 9 lines of its sibling species Drosophila simulans. In contrast to the patterns for nuclear genes, where D. melanogaster generally exhibits much less nucleotide polymorphism, the number of segregating sites was slightly higher in a global sample of nine ND5 sequences in D. melanogaster (s = 8) than in the nine lines of D. simulans (s = 6). When compared to variation at nuclear loci, the mtDNA variation in D. melanogaster does not depart from neutral expectations. The ND5 sequences in D. simulans, however, show fewer than half the number of variable sites expected under neutrality when compared to sequences from the period locus. While this reduction in variation is not significant at the 5% level, HKA tests with published restriction data for mtDNA in D. simulans do show a significant reduction of variation suggesting a selective sweep of variation in the mtDNA in this species. Tests of neutral evolution based on the ratios of synonymous and replacement polymorphism and divergence are generally consistent with neutral expectations, although a significant excess of amino acid polymorphism within both species is localized in one region of the protein. The rate of mtDNA evolution has been faster in D. melanogaster than in D. simulans and the population structure of mtDNA is distinct in these species. The data reveal how different rates of mtDNA evolution between species and different histories of neutral and adaptive evolution within species can compromise historical inferences in population and evolutionary biology.  相似文献   

10.
We have shown previously that the progeny of crosses between heterozygous females and C57BL/6 males show transmission ratio distortion at the Om locus on mouse chromosome 11. This result has been replicated in several independent experiments. Here we show that the distortion maps to a single locus on chromosome 11, closely linked to Om, and that gene conversion is not implicated in the origin of this phenomenon. To further investigate the origin of the transmission ratio distortion we generated a test using the well-known effect of recombination on maternal meiotic drive. The genetic test presented here discriminates between unequal segregation of alleles during meiosis and lethality, based on the analysis of genotype at both the distorted locus and the centromere of the same chromosome. We used this test to determine the cause of the transmission ratio distortion observed at the Om locus. Our results indicate that transmission ratio distortion at Om is due to unequal segregation of alleles to the polar body at the second meiotic division. Because the presence of segregation distortion at Om also depends on the genotype of the sire, our results confirm that the sperm can influence segregation of maternal chromosomes to the second polar body.  相似文献   

11.
The aim of this study was to explore, by computer simulation, the mapping of QTLs in a realistic but complex situation of many (linked) QTLs with different effects, and to compare two QTL mapping methods. A novel method to dissect genetic variation on multiple chromosomes using molecular markers in backcross and F2 populations derived from inbred lines was suggested, and its properties tested using simulations. The rationale for this sequential testing method was to explicitly test for alternative genetic models. The method consists of a series of four basic statistical tests to decide whether variance was due to a single QTL, two QTLs, multiple QTLs, or polygenes, starting with a test to detect genetic variance associated with a particular chromosome. The method was able to distinguish between different QTL configurations, in that the probability to `detect' the correct model was high, varying from 0.75 to 1. For example, for a backcross population of 200 and an overall heritability of 50%, in 78% of replicates a polygenic model was detected when that was the underlying true model. To test the method for multiple chromosomes, QTLs were simulated on 10 chromosomes, following a geometric series of allele effects, assuming positive alleles were in coupling in the founder lines For these simulations, the sequential testing method was compared to the established Multiple QTL Mapping (MQM) method. For a backcross population of 400 individuals, power to detect genetic variance was low with both methods when the heritability was 0.40. For example, the power to detect genetic variation on a chromosome on which 6 QTLs explained 12.6% of the genetic variance, was less than 60% for both methods. For a large heritability (0.90), the power of MQM to detect genetic variance and to dissect QTL configurations was generally better, due to the simultaneous fitting of markers on all chromosomes. It is concluded that when testing different QTL configurations on a single chromosome using the sequential testing procedure, regions of other chromosomes which explain a significant amount of variation should be fitted in the model of analysis. This study reinforces the need for large experiments in plants and other species if the aim of a genome scan is to dissect quantitative genetic variation.  相似文献   

12.
Keith TP 《Genetics》1983,105(1):135-155
Statistical tests comparing allele frequencies in natural populations with those predicted by various theories of genic variation depend critically on the accurate enumeration of alleles. This study used a series of five sequential electrophoretic conditions to characterize the allele frequency distributions of esterase-5 in two large population samples of Drosophila pseudoobscura from California. In Standard chromosome lines 12 electromorphs were discriminated using a single electrophoretic condition. When four additional criteria were used, the number of electromorphs increased to 41, 33 in one population and 22 in the other. Both populations had the same two alleles in high frequency, with other alleles present in frequencies of 6% or less. Although each population had a number of unique alleles, a χ2 contingency test demonstrated no significant genetic divergence between them. A statistical comparison of allele frequencies in both populations with that predicted by neutral models suggests that the individual and combined distributions deviate from neutrality in the direction of purifying selection.—Sex-Ratio chromosomes differed markedly from Standard chromosomes in both allelic content and diversity. In 32 Sex-Ratio chromosomes from one population only three alleles were found, all of which were detected under the initial "standard" electrophoretic conditions. Moreover, none of these alleles was found in the Standard chromosome lines.  相似文献   

13.
The amount and form of natural genetic variation for recombination were studied in six lines for which second chromosomes were extracted from a natural population of Drosophila melanogaster. Multiply marked second, X and third chromosomes were used to score recombination. Recombination in the second chromosomes varied in both amount and distribution. These second chromosomes caused variation in the amount and distribution of crossing over in the X chromosome and also caused variation in the amount, but not the distribution, of crossing over in the third chromosome. The total amount of crossing over on a chromosome varied by 12-14%. One small region varied twofold; other regions varied by 16-38%. Lines with less crossing over on one chromosome generally had less crossing over on other chromosomes, the opposite of the standard interchromosomal effect. These results show that modifiers of recombination can affect more than one chromosome, and that the variation exists for fine-scale response to selection on recombination.  相似文献   

14.
A severe mitochondrial protein synthesis defect in myoblasts from a patient with mitochondrial myopathy was transferred with myoblast mitochondria into two genetically unrelated mitochondrial DNA (mtDNA)-less human cell lines, pointing to an mtDNA alteration as being responsible and sufficient for causing the disease. The transfer of the defect correlated with marked deficiencies in respiration and cytochrome c oxidase activity of the transformants and the presence in their mitochondria of mtDNA carrying a tRNA(Lys) mutation. Furthermore, apparently complete segregation of the defective genotype and phenotype was observed in the transformants derived from the heterogeneous proband myoblast population, suggesting that the mtDNA heteroplasmy in this population was to a large extent intercellular. The present work thus establishes a direct link between mtDNA alteration and a biochemical defect.  相似文献   

15.
Dole J  Weber DF 《Genetics》2007,177(4):2309-2319
The genetic basis of variation in recombination in higher plants is polygenic and poorly understood, despite its theoretical and practical importance. Here a method of detecting quantitative trait loci (QTL) influencing recombination in recombinant inbred lines (RILs) is proposed that relies upon the fact that genotype data within RILs carry the signature of past recombination. Behavior of the segregational genetic variance in numbers of chromosomal crossovers (recombination) over generations is described for self-, full-sib-, and half-sib-generated RILs with no dominance in true crossovers. This genetic variance, which as a fraction of the total phenotypic variance contributes to the statistical power of the method, was asymptotically greatest with half sibbing, less with sibbing, and least with selfing. The statistical power to detect a recombination QTL declined with diminishing QTL effect, genome target size, and marker density. For reasonably tight marker linkage power was greater with less intense inbreeding for later generations and vice versa for early generations. Generational optima for segregation variance and statistical power were found, whose onset and narrowness varied with marker density and mating design, being more pronounced for looser marker linkage. Application of this method to a maize RIL population derived from inbred lines Mo17 and B73 and developed by selfing suggested two putative QTL (LOD > 2.4) affecting certain chromosomes, and using a canonical transformation another putative QTL was detected. However, permutation tests failed to support their presence (experimentwise alpha = 0.05). Other populations with more statistical power and chosen specifically for recombination QTL segregation would be more effective.  相似文献   

16.
Geographic Variation in Human Mitochondrial DNA from Papua New Guinea   总被引:34,自引:3,他引:31       下载免费PDF全文
High resolution mitochondrial DNA (mtDNA) restriction maps, consisting of an average of 370 sites per mtDNA map, were constructed for 119 people from 25 localities in Papua New Guinea (PNG). Comparison of these PNG restriction maps to published maps from Australian, Caucasian, Asian and African mtDNAs reveals that PNG has the lowest amount of mtDNA variation, and that PNG mtDNA lineages originated from Southeast Asia. The statistical significance of geographic structuring of populations with respect to mtDNA was assessed by comparing observed GST values to a distribution of GST values generated by random resampling of the data. These analyses show that there is significant structuring of mtDNA variation among worldwide populations, between highland and coastal PNG populations, and even between two highland PNG populations located approximately 200 km apart. However, coastal PNG populations are essentially panmictic, despite being spread over several hundred kilometers. Highland PNG populations also have more mtDNA variability and more mtDNA types represented per founding lineage than coastal PNG populations. All of these observations are consistent with a more ancient, restricted origin of highland PNG populations, internal isolation of highland PNG populations from one another and from coastal populations, and more recent and extensive population movements through coastal PNG. An apparent linguistic effect on PNG mtDNA variation disappeared when geography was taken into account. The high resolution technique for examining mtDNA variation, coupled with extensive geographic sampling within a single defined area, leads to an enhanced understanding of the influence of geography on mtDNA variation in human populations.  相似文献   

17.
MtDNA and Y-chromosome lineages in the Yakut population   总被引:1,自引:0,他引:1  
The structure of female (mtDNA) and male (Y-chromosome haplotypes) lineages in the Yakut population was examined. To determine mtDNA haplotypes, sequencing of hypervariable segment I and typing of haplotype-specific point substitutions in the other parts of the mtDNA molecule were performed. Y haplogroups were identified through typing of biallelic polymorphisms in the nonrecombining part of the chromosome. Haplotypes within haplogroups were analyzed with seven microsatellite loci. Mitochondrial gene pool of Yakuts is mainly represented by the lineages of eastern Eurasian origin (haplogroups A, B, C, D, G, and F). In Yakuts haplogroups C and D showing the total frequency of almost 80% and consisting of 12 and 10 different haplopypes, respectively, were the most frequent and diverse. The total part of the lineages of western Eurasian origin ("Caucasoid") was about 6% (4 haplotypes, haplogroups H, J, and U). Most of Y chromosomes in the Yakut population (87%) belonged to haplogroup N3 (HG16), delineated by the T-C substitution at the Tat locus. Chromosomes of haplogroup N3 displayed the presence of 19 microsatellite haplotypes, the most frequent of which encompassed 54% chromosomes of this haplogroup. Median network of haplogroup N3 in Yakuts demonstrated distinct "starlike phylogeny". Male lineages of Yakuts were shown to be closest to those of Eastern Evenks.  相似文献   

18.
Morgan TJ  Mackay TF 《Heredity》2006,96(3):232-242
For insects, temperature is a major environmental variable that can influence an individual's behavioral activities and fitness. Drosophila melanogaster is a cosmopolitan species that has had great success in adapting to and colonizing diverse thermal niches. This adaptation and colonization has resulted in complex patterns of genetic variation in thermotolerance phenotypes in nature. Although extensive work has been conducted documenting patterns of genetic variation, substantially less is known about the genomic regions or genes that underlie this ecologically and evolutionarily important genetic variation. To begin to understand and identify the genes controlling thermotolerance phenotypes, we have used a mapping population of recombinant inbred (RI) lines to map quantitative trait loci (QTL) that affect variation in both heat- and cold-stress resistance. The mapping population was derived from a cross between two lines of D. melanogaster (Oregon-R and 2b) that were not selected for thermotolerance phenotypes, but exhibit significant genetic divergence for both phenotypes. Using a design in which each RI line was backcrossed to both parental lines, we mapped seven QTL affecting thermotolerance on the second and third chromosomes. Three of the QTL influence cold-stress resistance and four affect heat-stress resistance. Most of the QTL were trait or sex specific, suggesting that overlapping but generally unique genetic architectures underlie resistance to low- and high-temperature extremes. Each QTL explained between 5 and 14% of the genetic variance among lines, and degrees of dominance ranged from completely additive to partial dominance. Potential thermotolerance candidate loci contained within our QTL regions are identified and discussed.  相似文献   

19.
L. R. Hale  R. S. Singh 《Genetics》1991,129(1):103-117
Preliminary studies with restriction fragment length polymorphisms of mitochondrial DNA (mtDNA) in natural populations of Drosophila melanogaster revealed considerable variation in terms of nucleotide sequence and overall size. In this report we present data from more isofemale lines and more restriction enzymes, and explore the utility of the data in inferring a colonization history of this species. Size variation in the noncoding A + T-rich region is particularly plentiful, with size variants occurring in all restriction site haplotypes in all populations. We report here classes of small-scale mobility polymorphisms (apparent range of 20 bp) in specific restriction fragments in the coding region. The variation in one such fragment appears to be generated even more rapidly than in the noncoding region. On the basis of the distribution of restriction site haplotypes, the species range can be divided into three major regions along longitudinal lines: Euro-African populations are the most diverse and are taken to be oldest; Far East populations have a complex distribution of haplotypes; Western Hemisphere populations are the least diverse and are interpreted to be the youngest. The history inferred from mtDNA alone is remarkably similar to one based on several nuclear markers. The mtDNA haplotype distribution is also very different from that of allozymes in these same populations. We interpret this as further evidence that natural selection is still the most parsimonious explanation for the parallel latitudinal allozyme clines in this species.  相似文献   

20.
A. G. Clark 《Genetics》1990,125(3):527-534
Deficiency mapping with Y autosome translocations has shown that the Y chromosome of Drosophila melanogaster carries genes that are essential to male fertility. While the qualitative behavior of these lesions provides important insight into the physiological importance of the Y chromosome, quantitative variation in effects on male fertility among extant Y chromosomes in natural populations may have a significant effect on the evolution of the Y chromosome. Here a series of 36 Y chromosome replacement lines were tested in two ways designed to detect subtle variation in effects on male fertility and total male fitness. The first test involved crossing males from the 36 lines to an excess of females in an attempt to measure differences in male mating success (virility) and male fecundity. The second test challenged males bearing each of the 36 Y chromosomes to competition in populations with males bearing a standard, phenotypically marked (BsY) chromosome. These tests indicated that the Y chromosome lines did not differ significantly in either male fertility or total fitness, but that interactions with autosomes approached significance. A deterministic population genetic model was developed allowing Y autosome interaction in fertility, and it is shown that, consistent with the experimental observations, this model cannot protect Y-linked polymorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号