首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oat genotypes vary for photoperiod and vernalization responses. Vernalization often promotes earlier flowering in fall-sown but not spring-sown cultivars. Longer photoperiods also promote earlier flowering, and the response to longer photoperiods tends to be greater in cultivars from higher latitudes. To investigate the genetic basis of photoperiod and vernalization responses in oat, we mapped QTLs for flowering time under four combinations of photoperiod and vernalization treatments in the Ogle 2 TAM O-301 mapping population in growth chambers. We also mapped QTLs for flowering time in early spring and late-spring field plantings to determine the genetic basis of response to early spring planting in oat. Three major flowering-time QTLs (on linkage groups OT8, OT31 and OT32) were detected in most conditions. QTLs with smaller effects on flowering were less-consistently observed among treatments. Both vernalization-sensitive and insensitive QTLs were discovered. Longer photoperiod or vernalization alone tended to decrease the effects of flowering-time QTLs. Applied together, longer photoperiod and vernalization interacted synergistically, often on the same genomic regions. Earlier spring planting conferred an attenuated vernalization treatment on seeds. The major flowering-time QTLs mapped in this study matched those mapped previously in the Kanota 2 Ogle oat mapping population. Between these two studies, we found a concordance of flowering-time QTLs, segregation distortion, and complex genetic linkages. These effects may all be related to chromosomal rearrangements in hexaploid oat. Comparative mapping between oat and other grasses will facilitate molecular analysis of vernalization response in oat.  相似文献   

2.
A genetic map populated with RAD and SSR markers was created from F1 progeny of a stem rust-susceptible and stem rust-resistant parent of perennial ryegrass (Lolium perenne). The map supplements a previous map of this population by having markers in common with several other Lolium spp. maps including EST-SSR anchor markers from a consensus map published by other researchers. A QTL analysis was conducted with disease severity and infection type data obtained by controlled inoculation of the population with each of two previously characterized pathotypes of Puccinia graminis subsp. graminicola that differ in virulence to different host plant genotypes in the F1 population. Each pathotype activated a specific QTL on one linkage group (LG): qLpPg1 on LG7 for pathotype 101, or qLpPg2 on LG1 for pathotype 106. Both pathotypes also activated a third QTL in common, qLpPg3 on LG6. Anchor markers, present on a consensus map, were located in proximity to each of the three QTL. These QTL had been detected also in previous experiments in which a genetically heterogeneous inoculum of the stem rust pathogen activated all three QTL together. The results of this and a previous study are consistent with the involvement of the pathotype-specific QTL in pathogen recognition and the pathotype-nonspecific QTL in a generalized resistance response. By aligning the markers common to other published reports, it appears that two and possibly all three of the stem rust QTL reported here are in the same general genomic regions containing some of the L. perenne QTL reported to be activated in response to the crown rust pathogen (P. coronata).  相似文献   

3.
Sunflower oil is one of the major sources of edible oil. As the second largest hybrid crop in the world, hybrid sunflowers are developed by using the PET1 cytoplasmic male sterility system that contributes to a 20?% yield advantage over the open-pollinated varieties. However, sunflower production in North America has recently been threatened by the evolution of new virulent pathotypes of sunflower rust caused by the fungus Puccinia helianthi Schwein. Rf ANN-1742, an 'HA 89' backcross restorer line derived from wild annual sunflower (Helianthus annuus L.), was identified as resistant to the newly emerged rust races. The aim of this study was to elucidate the inheritance of rust resistance and male fertility restoration and identify the chromosome location of the underlying genes in Rf ANN-1742. Chi-squared analysis of the segregation of rust response and male fertility in F(2) and F(3) populations revealed that both traits are controlled by single dominant genes, and that the rust resistance gene is closely linked to the restorer gene in the coupling phase. The two genes were designated as R ( 11 ) and Rf5, respectively. A set of 723 mapped SSR markers of sunflower was used to screen the polymorphism between HA 89 and the resistant plant. Bulked segregant analysis subsequently located R ( 11 ) on linkage group (LG) 13 of sunflower. Based on the SSR analyses of 192 F(2) individuals, R ( 11 ) and Rf5 both mapped to the lower end of LG13 at a genetic distance of 1.6?cM, and shared a common marker, ORS728, which was mapped 1.3?cM proximal to Rf5 and 0.3?cM distal to R ( 11 ) (Rf5/ORS728/R ( 11 )). Two additional SSRs were linked to Rf5 and R ( 11 ): ORS995 was 4.5?cM distal to Rf5 and ORS45 was 1.0?cM proximal to R ( 11 ). The advantage of such an introduced alien segment harboring two genes is its large phenotypic effect and simple inheritance, thereby facilitating their rapid deployment in sunflower breeding programs. Suppressed recombination was observed in LGs 2, 9, and 11 as it was evident that no recombination occurred in the introgressed regions of LGs 2, 9, and 11 detected by 5, 9, and 22 SSR markers, respectively. R ( 11 ) is genetically independent from the rust R-genes R ( 1 ), R ( 2 ), and R ( 5 ), but may be closely linked to the rust R-gene R ( adv ) derived from wild Helianthus argophyllus, forming a large rust R-gene cluster of R ( adv )/R ( 11 )/R ( 4 ) in the lower end of LG13. The relationship of Rf5 with Rf1 is discussed based on the marker association analysis.  相似文献   

4.
Association mapping and linkage mapping were used to identify quantitative trait loci (QTL) and/or causative mutations involved in the control of flowering time in cultivated sunflower Helianthus annuus. A panel of 384 inbred lines was phenotyped through testcrosses with two tester inbred lines across 15 location × year combinations. A recombinant inbred line (RIL) population comprising 273 lines was phenotyped both per se and through testcrosses with one or two testers in 16 location × year combinations. In the association mapping approach, kinship estimation using 5,923 single nucleotide polymorphisms was found to be the best covariate to correct for effects of panel structure. Linkage disequilibrium decay ranged from 0.08 to 0.26 cM for a threshold of 0.20, after correcting for structure effects, depending on the linkage group (LG) and the ancestry of inbred lines. A possible hitchhiking effect is hypothesized for LG10 and LG08. A total of 11 regions across 10 LGs were found to be associated with flowering time, and QTLs were mapped on 11 LGs in the RIL population. Whereas eight regions were demonstrated to be common between the two approaches, the linkage disequilibrium approach did not detect a documented QTL that was confirmed using the linkage mapping approach.  相似文献   

5.
Yellow or stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of common wheat (Triticum aestivum L.) worldwide. A recombinant inbred line (RIL) population, derived from the cross PBW343 × Kenya Kudu, was phenotyped for yellow rust reaction in the field at the CIMMYT research station near Toluca, Mexico, during 2010 and 2011. Segregation results indicated the presence of a race-specific resistance gene, temporarily designated as YrKK, in Kenya Kudu that conferred immunity to adult plants in field trials, despite conferring only slight reductions in seedling reactions in greenhouse tests with three Mexican pathotypes. A minimum of four minor genes having additive effects also segregated in the population and were likely derived from both parents. A total of 635 simple sequence repeat (SSR) primers were screened for polymorphism surveys on the parents, and resistant (YrKK-possessing RILs) and susceptible (YrKK-lacking RILs) bulks identified four polymorphic markers. These markers were located on the short arm of chromosome 2B. Genotyping of the entire RIL population identified Xgwm148 and Xwmc474 as the most closely linked proximal and distal flanking SSR markers, with respective genetic distances of 3.6 and 1.8 cM from YrKK. Four yellow rust resistance genes (Yr27, Yr31, Yr41, and YrP81) are located on chromosome 2BS; however, their specificity to pathogen pathotypes and host reactions in seedling and adult plants indicate that YrKK is a new resistance gene.  相似文献   

6.
Crown rust resistance is an important selection criterion in ryegrass breeding. The disease, caused by the biotrophic fungus Puccinia coronata, causes yield losses and reduced quality. In this study, we used linkage mapping and QTL analysis to unravel the genomic organization of crown rust resistance in a Lolium perenne population. The progeny of a pair cross between a susceptible and a resistant plant were analysed for crown rust resistance. A linkage map, consisting of 227 loci (AFLP, SSR, RFLP and STS) and spanning 744 cM, was generated using the two-way pseudo-testcross approach from 252 individuals. QTL analysis revealed four genomic regions involved in crown rust resistance. Two QTLs were located on LG1 (LpPc4 and LpPc2) and two on LG2 (LpPc3 and LpPc1). They explain 12.5, 24.9, 5.5 and 2.6% of phenotypic variance, respectively. An STS marker, showing homology to R genes, maps in the proximity of LpPc2. Further research is, however, necessary to check the presence of functional R genes in this region. Synteny at the QTL level between homologous groups of chromosomes within the Gramineae was observed. LG1 and LG2 show homology with group A and B chromosomes of oat on which crown rust-resistance genes have been identified, and with the group 1 chromosomes of the Triticeae, on which leaf rust-resistance genes have been mapped. These results are of major importance for understanding the molecular background of crown rust resistance in ryegrasses. The identified markers linked to crown rust resistance have the potential for use in marker-assisted breeding.  相似文献   

7.
Crown rust, caused by Puccinia coronata f. sp. lolii, is one of the most important diseases of temperate forage grasses, such as ryegrasses (Lolium spp.), affecting yield and nutritional quality. Therefore, resistance to crown rust is a major goal in ryegrass breeding programmes. In a two-way pseudo-testcross population consisting of 306 Lolium multiflorum individuals, multisite field evaluations as well as alternative methods based on artificial inoculation with natural inoculate in controlled environments were used to identify QTLs controlling resistance to crown rust. Disease scores obtained from glasshouse and leaf segment test (LST) evaluations were highly correlated with scores from a multisite field assessment (r = 0.66 and 0.79, P < 0.01, respectively) and thus confirmed suitability of these methods for crown rust investigations. Moreover, QTL mapping based on a linkage map consisting of 368 amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers revealed similar results across different phenotyping methods. Two major QTLs were consistently detected on linkage group (LG) 1 and LG 2, explaining up to 56% of total phenotypic variance (V p). Nevertheless, differences between position and magnitude of QTLs were observed among individual field locations and suggested the existence of specific local pathogen populations. The present study not only compared QTL results among crown rust evaluation methods and environments, but also identified molecular markers closely linked to previously undescribed QTLs for crown rust resistance in Italian ryegrass with the potential to be applied in marker-assisted forage crop breeding. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Two recombinant inbred line (RIL) populations derived from intraspecific crosses with a common parental line (JG62) were employed to develop a chickpea genetic map. Molecular markers, flower colour, double podding, seed coat thickness and resistance to fusarium wilt race 0 (FOC-0) were included in the study. Joint segregation analysis involved a total of 160 markers and 159 RILs. Ten linkage groups (LGs) were obtained that included morphological markers and 134 molecular markers (3 ISSRs, 13 STMSs and 118 RAPDs). Flower colour (B/b) and seed coat thickness (Tt/tt) appeared to be linked to STMS (GAA47). The single-/double-podding locus was located on LG9 jointly with two RAPD markers and STMS TA80. LG3 included a gene for resistance to FOC-0 (Foc01/foc01) flanked by RAPD marker OPJ20600 and STMS marker TR59. The association of this LG with FOC-0 resistance was confirmed by QTL analysis in the CA2139 × JG62 RIL population where two genes were involved in the resistance reaction. The STMS markers enabled comparison of LGs with preceding maps.  相似文献   

9.
Ryegrass (Lolium spp.) is among the most important forage crops in Europe and Australia and is also a popular turfgrass in North America. Previous genetic analysis based on a three-generation interspecific (L. perenne x L. multiflorum) ryegrass population identified four quantitative trait loci (QTLs) for resistance to gray leaf spot (Magneporthe grisea) and four QTLs for resistance to crown rust (Puccinia coronata). The current analysis based on the same mapping population detected seven QTLs for resistance to leaf spot (Bipolaris sorokiniana) and one QTL for resistance to stem rust (Puccinia graminis) in ryegrass for the first time. Three QTLs for leaf spot resistance on linkage groups (LGs) 2 and 4 were in regions of conserved synteny to the positions of resistance to net blotch (Drechslera teres) in barley (Hordeum vulgare). One ryegrass genomic region spanning 19 cM on LG 4, which contained three QTLs for resistance to leaf spot, gray leaf spot, and stem rust, had a syntenic relationship with a segment of rice chromosome 3, which contained QTLs for resistance to multiple diseases. However, at the genome-wide comparison based on 72 common RFLP markers between ryegrass and cereals, coincidence of QTLs for disease resistance to similar fungal pathogens was not statistically significant.  相似文献   

10.
Soybean [Glycine max (L.) Merr.] was one of the most important legume crops in the world in 2010. Japanese beetles (JB; Popillia japonica, Newman) in the US were an introduced and potentially damaging insect pest for soybean. JBs are likely to spread across the US if global warming occurs. Resistance to JB in soybean was previously reported only in plant introductions. The aims here were to identify loci underlying resistance to JB herbivory in recombinant inbred lines (RILs) derived from the cross of Essex × Forrest cultivars (EF94) and to correlate those with loci with factors that confer insect resistance in soybean cultivars. The RIL population was used to map 413 markers, 238 satellite markers and 177 other DNA markers. Field data were from two environments over 2 years. Pest severity (PS) measured defoliation on a 0–9 scale. Pest incidence (PI) was the percentage of plants within each RIL with beetles on them. Antibiosis and antixenosis data were from feeding assays with detached leaves in petri plates. Five QTL were detected for the mean PS field trait (16% < R 2 < 27%). The loci were within the intervals Satt632–A2D8 on linkage group (LG) A2 (chromosome 8); Satt583–Satt415 on LG B1 (11); Satt009–Satt530 on LG N (3); and close to two markers OB02_140 (LG E; 20 cM from Satt572) and OZ15_150 LG (19 cM from Satt291 C2). Two QTL were detected for the mean PI field trait (16% < R 2 < 18%) close to Satt385 on LG A1 and Satt440 on LG I. The no choice feeding studies detected three QTL that were significant; two for antixenosis (22% < R 2 < 24%) between Satt632–A2D8 on LG A2 (8) and Sat_039–Satt160 on LG F (13); and a major locus effect (R 2 = 54%) for antibiosis on LG D2 (17) between Satt464–Satt488. Therefore, loci underlying resistance to JB herbivory were a mixture of major and minor gene effects. Some loci were within regions underlying resistance to soybean cyst nematode (LGs A2 and I) and root knot nematode (LG F) but not other major loci underlying resistance to nematode or insect pests (LGs G, H and M).  相似文献   

11.
Results from previous studies indicate that oxytocin (OT)-containing neural pathways are activated in laboratory rats after systemic administration of CCK or d-fenfluramine and that centrally released OT may participate in the anorexigenic effects of these treatments. To explore the relationship between feeding behavior and OT function, the effects of CCK and d-fenfluramine on feeding and central c-Fos expression were compared in wild-type (OT+/+) and OT-deficient mice (OT-/-) of C57BL/6 background. Male OT+/+ and OT-/- mice were administered saline or CCK (1, 3, or 10 microg/kg ip) after overnight food deprivation. Saline-treated OT+/+ and OT-/- mice consumed equivalent amounts of food after an overnight fast. CCK inhibited deprivation-induced food intake in a dose-dependent manner to a similar extent in both genotypes. CCK treatment also induced similar hindbrain and forebrain patterns of increased c-Fos expression in mice of both genotypes. After treatment with d-fenfluramine (10 mg/kg ip), both OT+/+ and OT-/- mice consumed significantly less food than untreated controls, with no difference between genotypes. We conclude that OT signaling pathways are unnecessary for the anorexigenic effects of systemically administered CCK and d-fenfluramine in C57BL/6 mice.  相似文献   

12.
Ascochyta blight in chickpea (Cicer arietinum L.) is a devastating fungal disease caused by the necrotrophic pathogen, Ascochyta rabiei (Pass.) Lab. To elucidate the genetic mechanism of pathotype-dependent blight resistance in chickpea, F7-derived recombinant inbred lines (RILs) from the intraspecific cross of PI 359075(1) (blight susceptible) × FLIP84-92C(2) (blight resistant) were inoculated with pathotypes I and II of A. rabiei. The pattern of blight resistance in the RIL population varied depending on the pathotype of A. rabiei. Using the same RIL population, an intraspecific genetic linkage map comprising 53 sequence-tagged microsatellite site markers was constructed. A quantitative trait locus (QTL) for resistance to pathotype II of A. rabiei and two QTLs for resistance to pathotype I were identified on linkage group (LG)4A and LG2+6, respectively. A putative single gene designated as Ar19 (or Ar21d) could explain the majority of quantitative resistance to pathotype I. Ar19 (or Ar21d) appeared to be required for resistance to both pathotypes of A. rabiei, and the additional QTL on LG4A conferred resistance to pathotype II of A. rabiei. Further molecular genetic approach is needed to identify individual qualitative blight resistance genes and their interaction for pathotype-dependent blight resistance in chickpea.  相似文献   

13.
Susceptibility to foliar pathogens commonly causes significant reductions in productivity of the important temperate forage perennial ryegrass. Breeding for durable disease resistance involves not only the deployment of major genes but also the additive effects of minor genes. An approach based on in vitro single nucleotide polymorphism (SNP) discovery in candidate defence response (DR) genes has been used to develop potential diagnostic genetic markers. SNPs were predicted, validated and mapped for representatives of the pathogenesis-related (PR) protein-encoding and reactive oxygen species (ROS)-generating gene classes. The F(1)(NA(6) x AU(6)) two-way pseudo-test cross population was used for SNP genetic mapping and detection of quantitative trait loci (QTLs) in response to a crown rust field infection. Novel resistance QTLs were coincident with mapped DR gene SNPs. QTLs on LG3 and LG7 also coincided with both herbage quality QTLs and candidate genes for lignin biosynthesis. Multiple DR gene SNP loci additionally co-located with QTLs for grey leaf spot, bacterial wilt and crown rust resistance from other published studies. Further functional validation of DR gene SNP loci using methods such as fine-mapping and association genetics will improve the efficiency of parental selection based on superior allele content.  相似文献   

14.
5R618是高抗叶锈病小麦品系。为了确定该品系所携带的抗叶锈基因,以5R618与感病小麦品种郑州5389杂交获得F1,自交获得F2分离群体以及F2∶3家系,用叶锈菌生理小种THJP对亲本、F2分离群体以及F2∶3家系进行叶锈抗性鉴定,然后进行分子标记分析。结果显示,5R618对生理小种THJP的抗病性由1对显性基因控制,该基因暂命名为Lr5R。经过亲本和抗感池间分子标记筛选以及F2∶3家系的标记检测,Lr5R定位于染色体3DL上,barc71和STS24-16是Lr5R最近的2个标记,遗传距离分别为0.9 c M和2.1 c M。  相似文献   

15.
Triticale introgressive lines were developed by incorporating diploid wheat (Triticum monococcum [TM16]) genes into the hexaploid triticale genotype LT522/6. The synthetic allotetraploidT. monococcum cereale (AmAmRR) was used as a bridging form to introduce the genes. A group of 43 introgressive lines, parental stocks and a check cultivar were inoculated at the seedling stage (in the greenhouse) and at the adult plant stage (in the field) with four pathotypes ofPuccinia striiformis f. sp.tritici to determine if the stripe rust resistance was derived from TM16 and to analyze the expression of the diploid wheat gene(s) at the hexaploid level. At the seedling stage, 14 triticale introgressive lines expressed resistance to some of the used pathotypes, showing introduction of a genetic material from theT. monococcum genome. Among them, 7 lines were resistant to all four stripe rust pathotypes applied at this stage. In the field, adult plant resistance and percentage of infected leaf area were scored and transformed into the coefficient of infection. Plant response to stripe rust was compatible at these two developmental stages with a high statistical probability showing the genetic dependence on the same genetic background. Also observed was a full concordance of the adult plant resistance to stripe rust with previously assessed resistance to leaf rust, as well as the highly significant linkage of the resistance to the both diseases at the seedling stage in the set of the tested introgression lines. This result strongly suggests thatT. monococcum genes responsible for these characters are located in proximity.  相似文献   

16.
Morishima K  Nakayama I  Arai K 《Genetica》2008,132(3):227-241
In the present study, the first genetic linkage map of the loach Misgurnus anguillicaudatus was constructed with 164 microsatellite markers and a color locus, and it included 155 newly developed markers. A total of 159 microsatellite markers and a color locus were mapped in 27 linkage groups (LGs). The female map covered 784.5 cM with 153 microsatellite markers and a color locus, whereas the male map covered 662.2 cM with 119 microsatellite markers. The centromeric position in each LG was estimated by marker-centromere mapping based on half-tetrad analysis. In 4 LGs (LG2, LG3, LG4, and LG5), the centromere was estimated at the intermediate region. In LG1, LG11, and LG12, the centromere was estimated to shift from the sub-intermediate region to the end (telomeric). The number of these LGs (7) was identical to the collective number of bi-arm metacentric (5) and sub-metacentric chromosome (2) of the haploid chromosome set (n = 5) of the loach. In the other LGs, the position of the centromere was estimated at the end or outside. These results indicate satisfactory compliance between the linkage map and the chromosome set. Our map would cover approximately almost the entire loach genome because most markers were successfully mapped.  相似文献   

17.
Lacrimal glands (LGs) of male non-obese diabetic (NOD) mice display many features of human LGs in patients afflicted with the autoimmune disease Sj?gren's syndrome (SS), including the loss of secretory functions and a lymphocytic infiltration into the glands by 4 months of age. So far, research has mainly focused on the intracellular events that are involved in initiating LG dysfunction; however, the impact of SS on extracellular matrix (ECM) structures of the diseased LGs has not yet been determined. In this study we identified and compared LG ECM formation and integrity of age-matched male healthy (BALB/c) and diseased (NOD) mice. LG tissues were examined using routine histological, biochemical, immunohistochemical and gene expression analysis. Multiphoton imaging and second-harmonic generation (SHG) microscopy permitted the non-invasive analysis of major LG ECM structures including collagen- and elastin-containing fibers. Biochemical testing demonstrated a significant loss of collagen, glycosaminoglycans and desmosine in NOD LGs when compared to healthy BALB/c LGs. Immunohistochemical staining and gene expression analysis confirmed this disease-related alteration of LG ECM structures. Furthermore, laser-induced autofluorescence and SHG microscopy revealed dramatic changes in the structural organization of most collagenous and elastic fibers of the diseased LG tissues that were more pronounced than those displayed by histological analysis. Our results clearly show an enhanced degradation of ECM proteins accompanied by the severe disorganization and deformation of ECM structures of diseased LG tissues. These new insights into the involvement of ECM degradation in SS may lead to novel therapies for patients suffering from dry eye disease.  相似文献   

18.
Major gene resistance to sunflower downy mildew (Plasmopara halstedii) races 304 and 314 was found to segregate independently from the resistance to races 334, 307 and 304 determined by the gene Pl2, already positioned on Linkage Group (LG) 8 of sunflower molecular maps. Using a consensus SSR-SNP map constructed from the INEDI RIL population and a new RIL population FU?×?PAZ2, the positions of Pl2 and Pl5 were confirmed and the new gene, denoted Pl21, was mapped on LG13, at 8?cM from Pl5. The two RIL populations were observed for their quantitative resistance to downy mildew in the field and both indicated the existence of a QTL on LG8 at 20-40?cM from the major resistance gene cluster. In addition, for the INEDI population, a strong QTL on LG10, reported previously, was confirmed and a third QTL was mapped on LG7. A growth chamber test methodology, significantly correlated with field results, also revealed the major QTL on LG10, explaining 65?% of variability. This QTL mapped in the same area as a gene involved in stomatal opening and root growth, which may be suggested as a possible candidate to explain the control of this character. These results indicate that it should be possible to combine major genes and other resistance mechanisms, a strategy that could help to improve durability of sunflower resistance to downy mildew.  相似文献   

19.
Carica papaya L. is a tropical and sub-tropical fruit-tree crop with a small genome and nine pairs of chromosomes. The transgenic cultivar ‘SunUp’ has been sequenced and three high-density genetic maps are available for mapping agronomically and economically-important traits. However, the small size and similar morphology of papaya chromosomes hinder their identification and few cytological resources are available for integration of genetic and cytogenetic information. Fluorescence in situ hybridization (FISH) was performed on mitotic metaphase chromosomes using BAC clones harboring mapped simple sequence repeat (SSR) markers as probes. A total of 104 BAC clones covering all 12 linkage groups (LGs) were tested and 12 of them, that gave a single specific signal, were chosen as representative of the 12 LGs of the SSR genetic map. This set of chromosome-specific DNA markers acted as a foundation for papaya chromosome karyotyping and re-assigning orientation of LGs. Chromosome-specific markers allowed us to assign the minor LGs 10, 11, and 12 to major LGs 8, 9, and 7, respectively. We thus reduced the number of LGs in the genetic map to nine, corresponding to the haploid number of papaya chromosomes. We also tested the relative order of DNA markers on minor LGs 10 and 11 to place them on top of LGs 8 and 9 in the correct orientation. Ribosomal DNAs (rDNAs), a set of major cytogenetic markers, were positioned on specific papaya chromosomes. The 25S rDNA showed strong signals at the constriction site of a single pair of chromosomes identified as LG 2 by LG 2-specific BAC clone. The 5S rDNA showed strong signals on two pairs of chromosomes that are syntenic with LG 4- and LG 5-specific BAC clones. This integrated map will facilitate genome assembly, quantitative trait locus (QTL) mapping, and the study of cytological, physical and genetic distance relationships between papaya chromosomes.  相似文献   

20.
Molecular mapping of soybean aphid resistance genes in PI 567541B   总被引:2,自引:0,他引:2  
The soybean aphid (Aphis glycines Matsumura) is an important pest of soybean [Glycine max (L.) Merr.] in North America since it was first reported in 2000. PI 567541B is a newly discovered aphid resistance germplasm with early maturity characteristics. The objectives of this study were to map and validate the aphid resistance genes in PI 567541B using molecular markers. A mapping population of 228 F3 derived lines was investigated for the aphid resistance in both field and greenhouse trials. Two quantitative trait loci (QTLs) controlling the aphid resistance were found using the composite interval mapping method. These two QTLs were localized on linkage groups (LGs) F and M. PI 567541B conferred resistant alleles at both loci. An additive × additive interaction between these two QTLs was identified using the multiple interval mapping method. These two QTLs combined with their interaction explained most of the phenotypic variation in both field and greenhouse trials. In general, the QTL on LG F had less effect than the one on LG M, especially in the greenhouse trial. These two QTLs were further validated using an independent population. The effects of these two QTLs were also confirmed using 50 advanced breeding lines, which were all derived from PI 567541B and had various genetic backgrounds. Hence, these two QTLs identified and validated in this study could be useful in improving soybean aphid resistance by marker-assisted selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号