首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Cytochrome c derivatives labeled with a 3-nitrophenylazido group at lysine 13, at lysine 22, or at both residues have been prepared. The interaction of the cytochrome c derivatives with beef heart cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1) in the presence of ultrviolet light results in formation of a covalent complex between cytochrome c and the oxidase. Using the lysine 22 derivative, the polypeptide composition of the oxidase is not modified, nor is its catalytic activity, whereas with the lysine 13 derivative, the gel electrophoretic pattern is altered and the catalytic activity of the complex diminished. The data are consisten with a specfic covalent interaction of the lysine 13 derivative of cytochrome c with the polypeptide of molecular weight 23,700 (Subunit II) of cytochrome c oxidase.  相似文献   

3.
4.
Cytochrome c was chemically coupled to cytochrome c oxidase using the reagent 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) which couples amine groups to carboxyl residues. The products of this reaction were analyzed on 2.5–27% polyacrylamide gradient gels electrophoretically. Since cytochrome c binds to cytochrome oxidase electrostatically in an attraction between certain of its lysine residues and carboxyl residues on the oxidase surface, EDC is an especially appropriate reagent probe for binding-subunit studies. Coupling of polylysine to cytochrome oxidase using EDC was also performed, and the products of this reaction indicate that polylysine, an inhibitor of the cytochrome c reaction with oxidase, binds to the same oxidase subunit as does cytochrome c, subunit IV in the gel system used.  相似文献   

5.
6.
7.
A hypothetical three-dimensional model of the cytochrome c peroxidase . tuna cytochrome c complex is presented. The model is based on known x-ray structures and supported by chemical modification and kinetic data. Cytochrome c peroxidase contains a ring of aspartate residues with a spatial distribution on the molecular surface that is complementary to the distribution of highly conserved lysines surrounding the exposed edge of the cytochrome c heme crevice, namely lysines 13, 27, 72, 86, and 87. These lysines are known to play a functional role in the reaction with cytochrome c peroxidase, cytochrome oxidase, cytochrome c1, and cytochrome b5. A hypothetical model of the complex was constructed with the aid of a computer-graphics display system by visually optimizing hydrogen bonding interactions between complementary charged groups. The two hemes in the resulting model are parallel with an edge separation of 16.5 A. In addition, a system of inter- and intramolecular pi-pi and hydrogen bonding interactions forms a bridge between the hemes and suggests a mechanism of electron transfer.  相似文献   

8.
Second derivative absorption spectroscopy has been used to assess the effects of complex formation between cytochrome c and cytochrome c oxidase on the conformation of the cytochrome a cofactor. When ferrocytochrome c is complexed to the cyanide-inhibited reduced or mixed valence enzyme, the conformation of ferrocytochrome a is affected. The second derivative spectrum of these enzyme forms displays two electronic transitions at 443 and 451 nm before complex formation, but only the 443-nm transition after cytochrome c is bound. This effect is not induced by poly-L-lysine, a homopolypeptide which is known to bind to the cytochrome c binding domain of cytochrome c oxidase. The effect is limited to cyanide-inhibited forms of the enzyme; no effect was observed for the fully reduced unliganded or fully reduced carbon monoxide-inhibited enzyme. The spectral signatures of these changes and the fact that they are exclusively associated with the cyanide-inhibited enzyme are both reminiscent of the effects of low pH on the conformation of cytochrome a (Ishibe, N., Lynch, S., and Copeland, R. A. (1991) J. Biol. Chem. 266, 23916-23920). These results are discussed in terms of possible mechanisms of communication between the cytochrome c binding site, cytochrome a, and the oxygen binding site within the cytochrome c oxidase molecule.  相似文献   

9.
10.
Iodination of horse cytochrome c with the lactoperoxidase-hydrogen peroxide-iodide system results initially in the formation of the monoiodotyrosyl 74 derivative. This singly modified protein was obtained in pure form by ion exchange chromatography and preparative column electrophoresis. It shows an intact 695 nm absorption band, the midpoint potential of the native protein, a nuclear magnetic resonance spectrum which indicates an undisturbed heme crevice structure, a normal reaction with antibodies directed against native horse cytochrome c, and circular dichroic spectra in which the only changes from those of the native protein can be ascribed to the spectral properties of iodotyrosine itself. This conformationally intact derivative reacts with the succinate-cytochrome c reductase and the cytochrome c oxidase systems of beef mitochondrial particle preparations indistinguishably from the unmodified protein, showing that the region including tyrosine 74 is not involved in these enzymic electron transfer functions of the protein. The circular dichroic spectra of this derivative indicate that the minima observed at 288 and 282 nm in the spectrum of native ferricytochrome c originate from tyrosyl residue 74.  相似文献   

11.
12.
13.
Intramolecular electron transfer in the electrostatic cytochrome c oxidase/cytochrome c complex was investigated using a novel photoactivatable dye. Laser photolysis of thiouredopyrenetrisulfonate (TUPS), covalently linked to cysteine 102 on yeast iso-1-cytochrome c, generates a triplet state of the dye, which donates an electron to cytochrome c, followed by electron transfer to cytochrome c oxidase. Time-resolved optical absorption difference spectra were collected at delay times from 100 ns to 200 ms between 325 and 650 nm. On the basis of singular value decomposition (SVD) and multiexponential fitting, three apparent lifetimes were resolved. A sequential kinetic mechanism is proposed from which the microscopic rate constants and spectra of the intermediates were determined. The triplet state of TUPS donates an electron to cytochrome c with a forward rate constant of approximately 2.0 x 10(4) s(-1). A significant fraction of the triplet returns back to the ground state on a similar time scale. The reduction of cytochrome c is followed by faster electron transfer from cytochrome c to Cu(A), with the equilibrium favoring the reduced cytochrome c. Subsequently, Cu(A) equilibrates with heme a with an apparent rate constant of approximately 1 x 10(4) s(-1). On a millisecond time scale, the oxidized TUPS returns to the ground state and heme a becomes reoxidized. The extracted intermediate spectra are in excellent agreement with model spectra of the postulated intermediates, supporting the proposed mechanism.  相似文献   

14.
15.
Dilatometry is a sensitive technique for measuring volume changes occurring during a chemical reaction. We applied it to the reduction-oxidation cycle of cytochrome c oxidase, and to the binding of cytochrome c to the oxidase. We measured the volume changes that occur during the interconversion of oxidase intermediates. The numerical values of these volume changes have allowed the construction of a thermodynamic cycle that includes many of the redox intermediates. The system volume for each of the intermediates is different. We suggest that these differences arise by two mechanisms that are not mutually exclusive: intermediates in the catalytic cycle could be hydrated to different extents, and/or small voids in the protein could open and close. Based on our experience with osmotic stress, we believe that at least a portion of the volume changes represent the obligatory movement of solvent into and out of the oxidase during the combined electron and proton transfer process. The volume changes associated with the binding of cytochrome c to cytochrome c oxidase have been studied as a function of the redox state of the two proteins. The volume changes determined by dilatometry are large and negative. The data indicate quite clearly that there are structural alterations in the two proteins that occur on complex formation.  相似文献   

16.
This study determined the role of body temperature during exercise on cytochrome-c oxidase (CytOx) activity, a marker of mitochondrial content, and mitochondrial heat shock protein 70 (mtHSP70), which is required for import of nuclear-coded preproteins. Male, 10-wk-old, Sprague-Dawley rats exercised identically for 9 wk in ambient temperatures of 23 degrees C (n = 10), 8 degrees C with wetted fur (n = 8), and 4 degrees C with wetted fur and fan (n = 7). These conditions maintained exercising core temperature (T(c)) at 40.4, 39.2, or 38.0 degrees C (resting temperature), respectively. During weeks 3-9, exercisers ran 5 days/wk up a 6% grade at 20 m/min for 60 min. Animals were housed at 23 degrees C. Gastrocnemius CytOx activity in T(c)=38.0 degrees C (83.5 +/- 5.5 microatoms O x min(-1) x g wet wt(-1)) was greater than all other groups (P < 0.05), exceeding sedentary (n = 7) by 73.2%. T(c) of 40.4 and 39.2 degrees C also were higher than sedentary by 22.4 and 37.4%, respectively (P < 0.05). Quantification of CytOx content verified that the increased activity was due to an increase in protein content. In extensor digitorum longus, a nonactive muscle, CytOx was not elevated in T(c) = 38.0 degrees C. mtHSP70 was significantly elevated in gastrocnemius of T(c) = 38.0 degrees C compared with sedentary (P < 0.05) but was not elevated in extensor digitorum longus (P > 0.05). The data indicate that decreasing exercise T(c) may enhance mitochondrial biogenesis and that mtHSP70 expression is not dependent on temperature.  相似文献   

17.
Oxidation of cytochrome c, a key protein in mitochondrial electron transport and a mediator of apoptotic cell death, by reactive halogen species (HOX, X2), i.e., metabolites of activated neutrophils, was investigated by stopped-flow. The fast initial reactions between FeIIIcytc and HOX species, with rate constants (at pH 7.6) of k > 3 x 10(6) M(-1) s(-1) for HOBr, k > 3 x 10(5) M(-1) s(-1) for HOCl, and k = (6.1+/-0.3) x 10(2) M(-1) s(-1) for HOI, are followed by slower intramolecular processes. All HOX species lead to a blue shift of the Soret absorption band and loss of the 695-nm absorption band, which is an indicator for the intact iron to Met-80 bond, and of the reducibility of FeIIIcytc. All HOX species do, in fact, persistently impair the ability of FeIIIcytc to act as electron acceptor, e.g., in reaction with ascorbate or O2*-. I2 selectively oxidizes the iron center of FeIIcytc, with a stoichiometry of 2 per I2, and with k(FeIIcytc + I2) approximately 4.6 x 10(4) M(-1) s(-1) and k(FeIIcytc + I2*-) = (2.9+/-0.4) x 10(8) M(-1) s(-1). Oxidation of FeIIcytc by HOX species is not selectively directed toward the iron center; HOBr and HOCl are considered to react primarily by N-halogenation of side chain amino groups, and HOI mainly by sulfoxidation. There is some evidence for the generation of HO* radicals upon reaction of HOCl with FeIIcytc. Chloramines (e.g., NH2Cl), bromamine (NH2Br), and cyclo-Gly2 chloramide oxidize FeIIcytc slowly and unselectively, but iodide efficiently catalyzes reactions of these N-halogens to yield fast selective oxidation of the iron center; this is due to generation of I2 by reaction of I- with the N-halogen and recycling of I- by reaction of I2 with FeIIcytc. Iodide also catalyzes methionine sulfoxidation and thiol oxidation by NH2Cl. The possible biological relevance of these findings is discussed.  相似文献   

18.
19.
Interaction of cytochrome c peroxidase with cytochrome c   总被引:1,自引:0,他引:1  
J J Leonard  T Yonetani 《Biochemistry》1974,13(7):1465-1468
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号