首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homologous genes and gene products often have redundant physiological functions. Members of the tumor necrosis factor (TNF) family of cytokines can signal activation, proliferation, differentiation, costimulation, inhibition, or cell death, depending on the type and status of the target cell. TNF, lymphotoxin alpha (LTalpha), and LTbeta form a subfamily of a larger family of TNF-related ligands with their genes being linked within a compact 12-kb cluster inside the major histocompatibility complex locus. Singly TNF-, LTalpha-, and LTbeta-deficient mice share several phenotypic features, suggesting that TNF/LT signaling pathways may regulate overlapping sets of target genes. In order to directly address the issue of redundancy of TNF/LT signaling, we used the Cre-loxP recombination system to create mice with a deletion of the entire TNF/LT locus. Mice with a triple LTbeta/TNF/LTalpha deficiency essentially manifest a combination of LT and TNF single-knockout phenotypes, except for microarchitecture of the spleen, where the disorder of lymphoid cell positioning and functional T- and B-cell compartmentalization is severer than that found in TNF or LT single-knockout mice. Thus, our data support the notion that TNF and LT have largely nonredundant functions in vivo.  相似文献   

2.
Inactivation of genes encoding members of TNF and TNF receptor families reveal their divergent roles in the formation and function of secondary lymphoid organs. Most lymphotoxin alpha (ltalpha)- and all lymphotoxin beta receptor (ltbetar)-deficient mice are completely devoid of lymph nodes (LNs); however, most lymphotoxin beta (ltbeta)-deficient mice develop mesenteric LNs. Tnf- and tnfrp55-deficient mice develop a complete set of LNs, while ltbeta/tnfrp55 double-deficient mice lack all LNs, demonstrating cooperation between LTbeta and TNFRp55 in LN development. Now we report that ltbeta/tnf double-deficient mice develop the same set of mucosal LNs as do ltbeta-deficient mice, suggesting that ligands other than TNF signal through TNFRp55 during LN development. These LNs retain distinct T and B cells areas; however, they lack follicular dendritic cell networks. Structures resembling germinal centers can be found in the LNs from immunized ltbeta-deficient mice but not in ltbeta/tnf double-deficient mice. Additionally, stromal components of the spleen and LNs appear to be more severely disturbed in ltbeta/tnf double-deficient mice as compared with ltbeta-deficient mice. We conclude that LTbeta and TNF cooperate in the establishment of the correct microarchitecture of lymphoid organs.  相似文献   

3.
Lymphotoxin alpha (LTalpha) can exist in soluble form and exert tumor necrosis factor (TNF)-like activity through TNF receptors. Based on the phenotypes of knockout (KO) mice, the physiological functions of LTalpha and TNF are considered partly redundant, in particular, in supporting the microarchitecture of the spleen and in host defense. We exploited Cre-LoxP technology to generate a novel neomycin resistance gene (neo) cassette-free LTalpha-deficient mouse strain (neo-free LTalpha KO [LTalphaDelta/Delta]). Unlike the "conventional" LTalpha-/- mice, new LTalphaDelta/Delta animals were capable of producing normal levels of systemic TNF upon lipopolysaccharide (LPS) challenge and were susceptible to LPS/D-galactosamine (D-GalN) toxicity. Activated neutrophils, monocytes, and macrophages from LTalphaDelta/Delta mice expressed TNF normally at both the mRNA and protein levels as opposed to conventional LTalpha KO mice, which showed substantial decreases in TNF. Additionally, the spleens of the neo-free LTalpha KO mice displayed several features resembling those of LTbeta KO mice rather than conventional LTalpha KO animals. The phenotype of the new LTalphaDelta/Delta mice indicates that LTalpha plays a smaller role in lymphoid organ maintenance than previously thought and has no direct role in the regulation of TNF expression.  相似文献   

4.
Recent studies suggest that tumor necrosis factor (TNF) family members such as TNFalpha and lymphotoxin alphabeta (LTalpha1beta2) are important in the development of follicular dendritic cells (FDCs) and maintenance of FDC function. In this study we used FDC-like cells (FDC-LC) cultured from normal human tonsil and investigated the effects of TNF and LTalpha1beta2 on expression of adhesion molecules and the production of cytokines and chemokines. TNF and LTalpha1beta2 both increased the expression of VCAM-1 and ICAM-1 on FDC-LC. In addition, IL-4 with LTalpha1beta2 synergistically increased the expression of VCAM-1, but not ICAM-1. Cytokine IL-6 and IL-15 mRNAs were induced following stimulation with TNF and LTalpha1beta2. These two cytokines were present in FDC-LC supernatants by ELISA and increased following TNF and LTalpha1beta2 stimulation. We also examined FDC-LC for chemokines, which affect B cells, including IL-8, SDF-1, MIP3beta/ELC, and BCA-1/BLC. SDF-1 mRNA and protein were expressed by FDC-LC, and following stimulation with TNF and LTalpha1beta2, decreases in both were observed. Therefore, TNF and LTalpha1beta2, which are produced by activated B cells, increased the expression of adhesion molecules and cytokines from FDC-LC, potentially providing key signals to support germinal center B cell survival and differentiation.  相似文献   

5.
Biological functions of tumor necrosis factor cytokines and their receptors   总被引:18,自引:0,他引:18  
Tumor necrosis factor (TNF; formerly known as TNFalpha) and lymphotoxin (LT)alpha, originally characterized by their ability to induce tumor cell apoptosis and cachexia, are now considered as central mediators of a broad range of biological activities. These activities encompass beneficial effects for the host in inflammation and in protective immune responses against a variety of infectious pathogens. TNF family members on the other hand also exert host-damaging effects in sepsis, in tumor cachexia as well as in autoimmune diseases. In addition, the essential roles of the core members of the TNF superfamily, LTalpha, LTbeta, TNF, and LIGHT as well as their receptors during the organogenesis of secondary lymphoid organs and the maintenance of the architecture of lymphatic tissues now becomes appreciated. The elucidation of the biological functions of these cytokines and their specific cell surface receptors has been crucially advanced by the study of gene-targeted mouse strains. This presentation summarizes the roles of TNFR and TNF-like cytokines in infection, sepsis and autoimmunity as well as the pivotal involvement of these molecules in the development of secondary lymphoid organs.  相似文献   

6.
Ligands of the tumor necrosis factor superfamily (TNFSF) (4-1BBL, APRIL, BAFF, CD27L, CD30L, CD40L, EDA1, EDA2, FasL, GITRL, LIGHT, lymphotoxin alpha, lymphotoxin alphabeta, OX40L, RANKL, TL1A, TNF, TWEAK, and TRAIL) bind members of the TNF receptor superfamily (TNFRSF). A comprehensive survey of ligand-receptor interactions was performed using a flow cytometry-based assay. All ligands engaged between one and five receptors, whereas most receptors only bound one to three ligands. The receptors DR6, RELT, TROY, NGFR, and mouse TNFRH3 did not interact with any of the known TNFSF ligands, suggesting that they either bind other types of ligands, function in a ligand-independent manner, or bind ligands that remain to be identified. The study revealed that ligand-receptor pairs are either cross-reactive between human and mouse (e.g. Tweak/Fn14, RANK/RANKL), strictly species-specific (GITR/GITRL), or partially species-specific (e.g. OX40/OX40L, CD40/CD40L). Interestingly, the receptor binding patterns of lymphotoxin alpha and alphabeta are redundant in the human but not in the mouse system. Ligand oligomerization allowed detection of weak interactions, such as that of human TNF with mouse TNFR2. In addition, mouse APRIL exists as two different splice variants differing by a single amino acid. Although human APRIL does not interact with BAFF-R, the shorter variant of mouse APRIL exhibits weak but detectable binding to mouse BAFF-R.  相似文献   

7.
Inflammatory processes are involved with all phases of atherosclerotic lesion growth. Tumor necrosis factor-alpha (TNFalpha) is an inflammatory cytokine that is thought to contribute to lesion development. Lymphotoxin-alpha (LTalpha) is also a proinflammatory cytokine with homology to TNFalpha. However, its presence or function in lesion development has not been investigated. To study the role of these molecules in atherosclerosis, the expression of these cytokines in atherosclerotic lesions was examined. The presence of both cytokines was observed within aortic sinus fatty streak lesions. To determine the function of these molecules in regulating lesion growth, mice deficient for TNFalpha or LTalpha were examined for induction of atherosclerosis. Surprisingly, loss of TNFalpha did not alter lesion development compared with wild-type mice. This brings doubt to the generally held concept that TNFalpha is a "proatherogenic cytokine." However, LTalpha deficiency resulted in a 62% reduction in lesion size. This demonstrates an unexpected role for LTalpha in promoting lesion growth. The presence of LTalpha was observed in aortic sinus lesions suggesting a direct role of LTalpha in modulating lesion growth. To determine which receptor mediated these responses, diet-induced atherosclerosis in mice deficient for each of the TNF receptors, termed p55 and p75, was examined. Results demonstrated that loss of p55 resulted in increased lesion development, but loss of p75 did not alter lesion size. The disparity in results between ligand- and receptor-deficient mice suggests there are undefined members of the TNF ligand and receptor signaling pathway involved with regulating atherogenesis.  相似文献   

8.
The development of lymphoid organs requires membrane-bound lymphotoxin (LT), a heterotrimer containing LTalpha and LTbeta, but the effects of LT on T cell function have not been characterized extensively. Upon TCR cross-linking in vitro, splenocytes from both LTalpha-/- and LTbeta-/- mice failed to produce IL-4 and IL-10 due to a reduction in NK T cells. Concordantly, LTalpha-/- and LTbeta-/- mice did not respond to the lipoglycan alpha-galactosylceramide, which is presented by mouse CD1 to Valpha14+ NK T cells. Interestingly, both populations of NK T cells, including those that are mouse CD1 dependent and alpha-galactosylceramide reactive and those that are not, were affected by disruption of the LTalpha and LTbeta genes. NK T cells were not affected, however, in transgenic mice in which LT signaling is blocked, beginning on day 3 after birth, by expression of a soluble decoy LTbeta receptor. This suggests that membrane-bound LT is critical for NK T cells early in ontogeny, but not for the homeostasis of mature cells.  相似文献   

9.
Natural killer cells mediate spontaneously secretory/necrotic killing against rare leukemia cell lines and a nonsecretory/apoptotic killing against a large variety of tumor cell lines. The molecules involved in nonsecretory/apoptotic killing are largely undefined. In the present study, freshly isolated, nonactivated, human NK cells were shown to express TNF, lymphotoxin (LT)-alpha, LT-beta, Fas ligand (L), CD27L, CD30L, OX40L, 4-1BBL, and TNF-related apoptosis-inducing ligand (TRAIL), but not CD40L or nerve growth factor. Complementary receptors were demonstrated to be expressed on the cell surface of solid tumor cell lines susceptible to apoptotic killing mediated by NK cells. Individually applied, antagonists of TNF, LT-alpha1beta2, or FasL fully inhibited NK cell-mediated apoptotic killing of tumor cells. On the other hand, recombinant TNF, LT-alpha1beta2, or FasL applied individually or as pairs were not cytotoxic. In contrast, a mixture of the three ligands mediated significant apoptosis in tumor cells. These findings demonstrate that human NK cells constitutively express several of the TNF family ligands and induce apoptosis in tumor cells by simultaneous engagement of at least three of these cytotoxic molecules.  相似文献   

10.
11.
Although the essential role of TNF-alpha in the control of intracellular pathogens including Leishmania major is well established, it is uncertain whether the related cytokine lymphotoxin alphabeta2 (LTalpha1beta2, membrane lymphotoxin) plays any role in this process. In this study, we investigated the contribution of membrane lymphotoxin in host response to L. major infection by using LTbeta-deficient (LTbeta(-/-)) mice on the resistant C57BL/6 background. Despite mounting early immune responses comparable to those of wild-type (WT) mice, LTbeta(-/-) mice developed chronic nonhealing cutaneous lesions due to progressive and unresolving inflammation that is accompanied by uncontrolled parasite proliferation. This chronic disease was associated with striking reduction in IL-12 and Ag-specific IFN-gamma production by splenocytes from infected mice. Consistent with defective cellular immune response, infected LTbeta(-/-) mice had significantly low Ag-specific serum IgG1 and IgG2a levels compared with WT mice. Although administration of rIL-12 to L. major-infected LTbeta(-/-) mice caused complete resolution of chronic lesions, it only partially (but significantly) reduced parasite proliferation. In contrast, blockade of LIGHT signaling in infected LTbeta(-/-) mice resulted in acute and progressive lesion development, massive parasite proliferation, and dissemination to the visceral organs. Although infected LTbeta(-/-) WT bone marrow chimeric mice were more resistant than LTbeta(-/-) mice, they still had reduced ability to control parasites and showed defective IL-12 and IFN-gamma production compared with infected WT mice. These results suggest that membrane lymphotoxin plays critical role in resistance to L. major by promoting effective T cell-mediated anti-Leishmania immunity.  相似文献   

12.
Lymphoid organogenesis is a highly coordinated process involving orchestrated expression of a number of genes. Although the essential role of lymphotoxin alpha (LTalpha) for the normal development of secondary lymphoid organs is well established, it is not clear to which extent it depends upon cooperation with T and B lymphocytes for lymphoid neo-organogenesis. To determine whether LTalpha is sufficient to mediate recruitment of basic elements needed for lymphoid organogenesis, we made use of a LTalpha-transfected cell line as an experimental tool and established tumors in nude and SCID mice. Our data showed that high endothelial venules formed and follicular dendritic cells accumulated and differentiated in response to LTalpha in the absence of lymphocytes. A CD4(+)CD3(-)CD11c(+) cell population that is found in the secondary lymphoid organ was also recruited into tumors expressing LTalpha. Furthermore, in nude mice, B cells migrated in response to LTalpha and formed intratumoral follicles. These B cell follicles were structurally well equipped with follicular dendritic cell networks and high endothelial venules; however, they were not functionally active; e.g., those B cells specific for a surrogate Ag expressed by the tumor were found in the spleen, but not in the tumor. We show that, even in the absence of functional T and B lymphocytes, local expression of LTalpha in transplanted tumors induced typical stromal characteristics of lymphoid tissue, emphasizing that LTalpha is a critically important cytokine for formation of lymphoid organ infrastructure.  相似文献   

13.
Activation of the classical and noncanonical NF-kappaB pathways by ligation of the lymphotoxin (LT)-beta receptor (LTbetaR) plays a crucial role in lymphoid organogenesis and in the generation of ectopic lymphoid tissue at sites of chronic inflammation. Within these microenvironments, LTbetaR signaling regulates the phenotype of the specialized high endothelial cells. However, the direct effects of LTbetaR ligation on endothelial cells remain unclear. We therefore questioned whether LTbetaR ligation could directly activate endothelial cells and regulate classical and noncanonical NF-kappaB-dependent gene expression. We demonstrate that the LTbetaR ligands LIGHT and LTalpha1beta2 activate both NF-kappaB pathways in HUVECs and human dermal microvascular endothelial cells (HDMEC). Classical pathway activation was less robust than TNF-induced signaling; however, only LIGHT and LTalpha1beta2 and not TNF activated the noncanonical pathway. LIGHT and LTalpha1beta2 induced the expression of classical NF-kappaB-dependent genes in HUVEC, including those encoding the adhesion molecules E-selectin, ICAM-1, and VCAM-1. Consistent with this stimulation, LTbetaR ligation up-regulated T cell adhesion to HUVEC. Furthermore, the homeostatic chemokine CXCL12 was up-regulated by LIGHT and LTalpha1beta2 but not TNF in both HUVEC and HDMEC. Using HUVEC retrovirally transduced with dominant negative IkappaB kinase alpha, we demonstrate that CXCL12 expression is regulated by the noncanonical pathway in endothelial cells. Our findings therefore demonstrate that LTbetaR ligation regulates gene expression in endothelial cells via both NF-kappaB pathways and we identify CXCL12 as a bona fide noncanonical NF-kappaB-regulated gene in these cells.  相似文献   

14.
15.
Immunity to Toxoplasma gondii critically depends on TNFR type I-mediated immune reactions, but the precise role of the individual ligands of TNFR1, TNF and lymphotoxin-alpha (LTalpha), is still unknown. Upon oral infection with T. gondii, TNF(-/-), LTalpha(-/-), and TNF/LTalpha(-/-) mice failed to control intracerebral T. gondii and succumbed to an acute necrotizing Toxoplasma encephalitis, whereas wild-type (WT) mice survived. Intracerebral inducible NO synthase expression and-early after infection-splenic NO levels were reduced. Additionally, peritoneal macrophages produced reduced levels of NO upon infection with T. gondii and had significantly reduced toxoplasmastatic activity in TNF(-/-), LTalpha(-/-), and TNF/LTalpha(-/-) mice as compared with WT animals. Frequencies of parasite-specific IFN-gamma-producing T cells, intracerebral and splenic IFN-gamma production, and T. gondii-specific IgM and IgG titers in LTalpha(-/-) and TNF/LTalpha(-/-) mice were reduced only early after infection. In contrast, intracerebral IL-10 and IL-12p40 mRNA expression and splenic IL-2, IL-4, and IL-12 production were identical in all genotypes. In addition, TNF(-/-), LTalpha(-/-), and TNF/LTalpha(-/-), but not WT, mice succumbed to infection with the highly attenuated ts-4 strain of T. gondii or to a subsequent challenge infection with virulent RH toxoplasms, although they had identical frequencies of IFN-gamma-producing T cells as compared with WT mice. Generation and infection of bone marrow reconstitution chimeras demonstrated an exclusive role of hematogeneously produced TNF and LTalpha for survival of toxoplasmosis. These findings demonstrate the crucial role of both LTalpha and TNF for control of intracerebral toxoplasms.  相似文献   

16.
It is generally accepted that immunologically naive T cells display a very restricted cytokine production profile consisting mainly of IL-2, which is used as an autocrine growth factor. Here we report that activated naive CD4+ T cells, of neonatal or adult origin, express very high levels of soluble lymphotoxin (LT) alpha (LTalpha3), as determined by ELISA, RNase protection assay, and intracytoplasmic staining. Besides LTalpha3 and IL-2, these cells also produce high levels of TNF-alpha together with significant amounts of IFN-gamma and IL-13. Naive cells also express LTbeta mRNA and the membrane form of LTalpha (LTalphabeta). On average, naive CD4+ T cells secrete four times more LTalpha3 than Th1-like cells, twice more than naive CD8+ T cells, and ten times more than B cells. Thus, naive T cells express a large spectrum of cytokines, mainly of the Th1 type, and the very high levels of LTalpha3/TNF-alpha that they release may play an hitherto unsuspected role in the early stage of T cell-dependent immune responses.  相似文献   

17.
18.
肿瘤坏死因子与其受体相互作用的计算机模拟研究   总被引:2,自引:0,他引:2  
利用同源模建方法,以TNFR55受体胞外区的晶体结构为参考模板,预测了TNFR75受体胞外区Cys18~Phe147片段的三维结构.根据R55受体胞外区与LT相结合的复合物的晶体结构,预测了TNF与R55及R75胞外区的复合物的三维结构,模拟了TNF与受体之间的相互作用.由于TNF与受体的作用形式是三聚体对三聚体,因此在模拟TNF与受体相互作用时选择了包括一个非对称的TNF三聚体和一个受体(R55或R75)单体的模拟系统.结合已有的突变体实验结果,利用计算机模拟分析手段,发现了一些TNF突变体之所以具有受体选择性的三维结构基础和发挥了关键作用的氨基酸残基以及这些残基之间的主要作用形式.研究深化了对已有的突变体实验结果的认识,建立了不同的实验结果之间的内在关联,为以后有目的的新型突变体设计和实验研究打下了基础.  相似文献   

19.
Targeted disruption of the Rel/NF-kappaB family members NF-kappaB2, encoding p100/p52, and RelB in mice results in anatomical defects of secondary lymphoid tissues. Here, we report that development of Peyer's patch (PP)-organizing centers is impaired in both NF-kappaB2- and RelB-deficient animals. IL-7-induced expression of lymphotoxin (LT) in intestinal cells, a crucial step in PP development, is not impaired in RelB-deficient embryos. LTbeta receptor (LTbetaR)-deficient mice also lack PPs, and we demonstrate that LTbetaR signaling induces p52-RelB and classical p50-RelA heterodimers, while tumor necrosis factor (TNF) activates only RelA. LTbetaR-induced binding of p52-RelB requires the degradation of the inhibitory p52 precursor, p100, which is mediated by the NF-kappaB-inducing kinase (NIK) and the IkappaB kinase (IKK) complex subunit IKKalpha, but not IKKbeta or IKKgamma. Activation of RelA requires all three IKK subunits, but is independent of NIK. Finally, we show that TNF increases p100 levels, resulting in the specific inhibition of RelB DNA binding via the C-terminus of p100. Our data indicate an important role of p52-RelB heterodimers in lymphoid organ development downstream of LTbetaR, NIK and IKKalpha.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号