共查询到20条相似文献,搜索用时 0 毫秒
1.
YUANHE YANG JINGYUN FANG YANHONG TANG† CHENGJUN JI CHENGYANG ZHENG JINSHENG HE BIAO ZHU‡ 《Global Change Biology》2008,14(7):1592-1599
The soils of the Qinghai-Tibetan Plateau store a large amount of organic carbon, but the magnitude, spatial patterns and environmental controls of the storage are little investigated. In this study, using data of soil organic carbon (SOC) in 405 profiles collected from 135 sites across the plateau and a satellite-based dataset of enhanced vegetation index (EVI) during 2001–2004, we estimated storage and spatial patterns of SOC in the alpine grasslands. We also explored the relationships between SOC density (soil carbon storage per area) and climatic variables and soil texture. Our results indicated that SOC storage in the top 1 m in the alpine grasslands was estimated at 7.4 Pg C (1 Pg=1015 g), with an average density of 6.5 kg m−2 . The density of SOC decreased from the southeastern to the northwestern areas, corresponding to the precipitation gradient. The SOC density increased significantly with soil moisture, clay and silt content, but weakly with mean annual temperature. These variables could together explain about 72% of total variation in SOC density, of which 54% was attributed to soil moisture, suggesting a key role of soil moisture in shaping spatial patterns of SOC density in the alpine grasslands. 相似文献
2.
The impact of conservation tillage practices on soil carbon has been of great interest in recent years. Conservation tillage might have the potential to enhance soil carbon accumulation and alter the depth distribution of soil carbon compared to conventional tillage based systems. Changes in the soil organic carbon (SOC) as influenced by tillage, are more noticeable under long-term rather than short-term tillage practices. The objective of this study was to determine the impacts of long-term tillage on SOC and dissolved organic carbon (DOC) status after 19 years of four tillage treatments in a Hydragric Anthrosol. In this experiment four tillage systems included conventional tillage with rotation of rice and winter fallow system (CTF), conventional tillage with rotation of rice and rape system (CTR), no-till and ridge culture with rotation of rice and rape system (NT) and tillage and ridge culture with rotation of rice and rape system (TR). Soils were sampled in the spring of 2009 and sectioned into 0–10, 10–20, 20–30, 30–40, 40–50 and 50–60 cm depth, respectively.Tillage effect on SOC was observed, and SOC concentrations were much larger under NT than the other three tillage methods in all soil depths from 0 to 60 cm. The mean SOC concentration at 0–60 cm soil depth followed the sequence: NT (22.74 g kg?1) > CTF (14.57 g kg?1) > TR (13.10 g kg?1) > CTR (11.92 g kg?1). SOC concentrations under NT were significantly higher than TR and CTR (P < 0.01), and higher than CTF treatment (P < 0.05). The SOC storage was calculated on equivalent soil mass basis. Results showed that the highest SOC storage at 0–60 cm depth presented in NT, which was 158.52 Mg C ha?1, followed by CTF (106.74 Mg C ha?1), TR (93.11 Mg C ha?1) and CTR (88.60 Mg C ha?1). Compared with conventional tillage (CTF), the total SOC storage in NT increased by 48.51%, but decreased by 16.99% and 12.77% under CTR and TR treatments, respectively. The effect of tillage on DOC was significant at 0–10 cm soil layer, and DOC concentration was much higher under CTF than the other three treatments (P < 0.01). Throughout 0–60 cm soil depth, DOC concentrations were 32.92, 32.63, 26.79 and 22.10 mg kg?1 under NT, CTF, CTR and TR, and the differences among the four treatments were not significant (P > 0.05). In conclusion, NT increased SOC concentration and storage compared to conventional tillage operation but not for DOC. 相似文献
3.
Decomposition of soil organic matter from boreal black spruce forest: environmental and chemical controls 总被引:1,自引:0,他引:1
Black spruce forests are a dominant covertype in the boreal forest region, and they inhabit landscapes that span a wide range
of hydrologic and thermal conditions. These forests often have large stores of soil organic carbon. Recent increases in temperature
at northern latitudes may be stimulating decomposition rates of this soil carbon. It is unclear, however, how changes in environmental
conditions influence decomposition in these systems, and if substrate controls of decomposition vary with hydrologic and thermal
regime. We addressed these issues by investigating the effects of temperature, moisture, and organic matter chemical characteristics
on decomposition of fibric soil horizons from three black spruce forest sites. The sites varied in drainage and permafrost,
and included a “Well Drained” site where permafrost was absent, and “Moderately well Drained” and “Poorly Drained” sites where
permafrost was present at about 0.5 m depth. Samples collected from each site were incubated at five different moisture contents
(2, 25, 50, 75, and 100% saturation) and two different temperatures (10°C and 20°C) in a full factorial design for two months.
Organic matter chemistry was analyzed using pyrolysis gas chromatography-mass spectrometry prior to incubation, and after
incubation on soils held at 20°C, 50% saturation. Mean cumulative mineralization, normalized to initial carbon content, ranged
from 0.2% to 4.7%, and was dependent on temperature, moisture, and site. The effect of temperature on mineralization was significantly
influenced by moisture content, as mineralization was greatest at 20°C and 50–75% saturation. While the relative effects of
temperature and moisture were similar for all soils, mineralization rates were significantly greater for samples from the
“Well Drained” site compared to the other sites. Variations in the relative abundances of polysaccharide-derivatives and compounds
of undetermined source (such as toluene, phenol, 4-methyl phenol, and several unidentifiable compounds) could account for
approximately 44% of the variation in mineralization across all sites under ideal temperature and moisture conditions. Based
on our results, changes in temperature and moisture likely have similar, additive effects on in situ soil organic matter (SOM)
decomposition across a wide range of black spruce forest systems, while variations in SOM chemistry can lead to significant
differences in decomposition rates within and among forest sites. 相似文献
4.
Effect of land use conversion on soil organic carbon sequestration in the loess hilly area, loess plateau of China 总被引:5,自引:0,他引:5
Liding Chen Jie Gong Bojie Fu Zhilin Huang Yilong Huang Lide Gui 《Ecological Research》2007,22(4):641-648
Changes in land use may alter land cover, which results in carbon stock changes in biomass as well as in the soil. In China’s
loess plateau, vegetation restoration has been conducted since 1950s to control soil erosion and improve the ecosystem, with
significant investment of money and manpower. Despite these efforts, soil erosion has still been severe. To reduce soil erosion
and improve land quality, China initiated another state-funded project, Grain-for-Green, in 1999 in the loess plateau. However, it is not clear how effective this newly initiated project will be. In this study,
we evaluated the effect of land-use conversion on soil organic carbon (SOC) and the potential effect of the current project
on SOC sequestration in the Anjiapo catchment area of the loess hilly area of the loess plateau in China. This evaluation
is based on SOC measurements in cropland versus in other converted land use types. We found that SOC sequestration mainly
occurred in the surface soil after land use conversion took place. Land use conversion from cropland to shrubland or wild
grassland (i.e. undisturbed land) was better for SOC sequestration than tree plantation in the semi-arid loess hilly area.
By using the land use change in the study area as a scenario, the potential contribution of land use change on SOC sequestration
due to the Grain-for-Green project was estimated. It was found that this project in the loess plateau of China would be helpful for SOC sequestration
if successfully implemented. 相似文献
5.
贵州喀斯特地区典型土壤有机碳垂直分布特征及其同位素组成 总被引:8,自引:0,他引:8
以贵州喀斯特地区两种主要土壤类型(石灰土和黄壤)为研究对象,通过测定土壤pH值、土壤有机碳(SOC)含量和植物优势种、枯枝落叶、土壤有机质的稳定同位素(δ13Csoc值)组成,探讨了该地区石灰土和黄壤剖面SOC垂直分布特征和δ13Csoc值组成差异。结果表明,与黄壤相比,石灰土剖面的SOC含量较高,石灰土剖面和黄壤剖面SOC含量变化范围分别在3.6~69.8和2.4~51.2g·kg-1。黄壤和黄色石灰土剖面SOC主要集中在0~20cm深度内,而黑色石灰土剖面从0~60cm逐步减少。黑色石灰土和黄壤剖面δ13Csoc值变化范围分别在-22.9‰~-21.5‰和-25.6‰~-22.4‰,前者较后者变化小。从剖面表土向下,黄壤剖面δ13Csoc值均出现逐步增加的趋势,而石灰土剖面δ13Csoc值从剖面表土向下出现上升-降低-不变的变化趋势。黄色石灰土剖面δ13Csoc值变幅较大,变化范围为-23.7‰~-18.2‰。在枯枝落叶转化为表层土壤有机质的过程中,石灰土剖面δ13Csoc值变幅高于黄壤。其中,黄壤剖面δ13Csoc值升高了2.6‰~3.0‰,石灰土剖面δ13Csoc值升高了5.5‰~6.3‰。上述结果揭示了SOC含量及其δ13C值随深度变化的差异,反映植物残体的输入及其在土壤中分解累积特征,有助于揭示SOC循环过程及规律和了解剖面土壤成土过程。 相似文献
6.
Spatial distribution of pH and organic matter in urban soils and its implications on site-specific land uses in Xuzhou,China 总被引:3,自引:0,他引:3
The spatial variation of soil pH and soil organic matter (SOM) in the urban area of Xuzhou, China, was investigated in this study. Conventional statistics, geostatistics, and a geographical information system (GIS) were used to produce spatial distribution maps and to provide information about land use types. A total of 172 soil samples were collected based on grid method in the study area. Soil pH ranged from 6.47 to 8.48, with an average of 7.62. SOM content was very variable, ranging from 3.51 g/kg to 17.12 g/kg, with an average of 8.26 g/kg. Soil pH followed a normal distribution, while SOM followed a log-normal distribution. The results of semi-variograms indicated that soil pH and SOM had strong (21%) and moderate (44%) spatial dependence, respectively. The variogram model was spherical for soil pH and exponential for SOM. The spatial distribution maps were achieved using kriging interpolation. The high pH and high SOM tended to occur in the mixed forest land cover areas such as those in the southwestern part of the urban area, while the low values were found in the eastern and the northern parts, probably due to the effect of industrial and human activities. In the central urban area, the soil pH was low, but the SOM content was high, which is mainly attributed to the disturbance of regional resident activities and urban transportation. Furthermore, anthropogenic organic particles are possible sources of organic matter after entering the soil ecosystem in urban areas. These maps provide useful information for urban planning and environmental management. 相似文献
7.
土体呼吸输出碳来源于土壤固有有机碳和外源添加碳,而以往关于不同施肥措施对水稻土碳排放的研究少有区分碳的来源。本试验利用一个长达30年的水稻土定位试验,在保证原有定位试验继续正常开展的前提下变更部分施肥处理,得到继续施用高量有机肥(HOM)、施用常量有机肥30年后改施高量有机肥(N-H)、继续施用常量有机肥(NOM)、施用化肥30年后改施常量有机肥(C-N)、施用高量有机肥30年后改施化肥(H-C)、施用常量有机肥30年后改施化肥(N-C)、继续施用化肥(CF)等7种施肥处理。通过观测早稻生长期间原有施肥和改施肥处理土体CO2排放通量(FCO2),研究不同后续施肥对水稻土FCO2的影响,以期探讨土壤原始有机碳和外源添加碳对土壤FCO2的影响。结果表明:7种不同施肥处理土体CO2平均排放通量(F珔CO2)分别为85.34、69.10、51.27、49.15、14.89、12.92和11.59 mg C.m-2.h-1;对施用无机肥料和常量有机肥料的土体而言,土壤本身有机碳含量对F珔CO2无显著影响,但对施用高量有机肥的土体而言,土壤本身的高有机碳含量会增强F珔CO2;CO2排放通量(Y)与添加外源碳量(x)之间符合指数方程:Y=13.33e1.719 x(R2=0.967,n=21),施入的外源有机碳对土体FCO2产生极显著影响;当季外源添加碳以CO2-C矿化分解释放的碳占其总碳量的14%左右,且该分解率受土壤有机碳含量和有机物料添加量的影响较小。 相似文献
8.
淹水培养条件下土壤微生物生物量碳、氮和可溶性有机碳、氦的动态 总被引:2,自引:0,他引:2
以洞庭湖区2个典型水稻土(红黄泥和紫潮泥)为对象,研究了25℃、淹水培养条件下稻草-硫铵配施和单施硫铵处理土壤微生物生物量碳、氮(SMBC、SMBN)和可溶性有机碳、氦(SDOC、SDON)的动态变化.结果表明,SMBC、SMBN和SDOC、SDON在培养前期达到峰值,之后降低,并趋于稳定.添加底物后,2种土壤不同处理土壤微生物生物量碳与有机碳(SMBC/TC)和土壤微生物生物量氮与全氮(SMBN/TN)的平均值都在2%-3%之间变化;可溶性碳与全碳(SDOC/TC)的平均值为1%左右,可溶性氮与全氮(SDON/TN)平均值为5%-6%.2种土壤中SMBC峰值单施硫铵处理最大,但与稻草-硫铵配施处理差异均不显著;SMBN、SDOC和SDON峰值稻草-硫铵配施最大.稻草.硫铵配施与单施硫铵处理中,低肥力红黄泥的SMBN、SDOC和SDON峰值差异显著;而高肥力紫潮泥SMBN和SDOC峰值差异不显著.前7d,SMBC/SMBN〈10;14d后,同一时刻单施硫铵处理SMBC/SMBN〉稻草.硫铵配施.不同处理的SDOC!SDON3d时最大.28d时最小. 相似文献
9.
Soil organic carbon budget and fertility variation of black soils in Northeast China 总被引:5,自引:0,他引:5
Black soils in Northeast China are characteristic of high soil organic carbon (SOC) density and were strongly influenced by human activities. Therefore, any change in SOC pool of these soils would not only impact the regional and global carbon cycle, but also affect the release and immobilization of nutrients. In this study, we reviewed the research progress on SOC storage, budget, variation, and fertility under different scenarios. The results showed that the organic carbon storage of black soils was 646.2 TgC and the most potential sequestration was 2887.8 g m−2. According to the SOC budget, the net carbon emission of black soils was 1.3 TgC year−1 under present soil management system. The simulation of CENTURY model showed that future climate change and elevated CO2 concentration, especially the increase of precipitation, would increase SOC content. Furthermore, fertilization and cropping sequence obviously influenced SOC content, composition, and allocation among different soil particles. Long-term input of organic materials such as manure and straw renewed original SOC, improved soil structure and increased SOC accumulation. Besides, soil erosion preferred to transport soil particles with low density and fine size, decreased recalcitrant SOC fractions at erosion sites and increased activities of soil microorganism at deposition sites. After natural grasslands were converted into croplands, obvious variation of soil chemical nutrients, physical structure, and microbial activities had taken place in surface and subsurface soils, and represented a degrading trend to a certain degree. Our studies suggested that adopting optimal management such as conservation tillage in black soil region is an important approach to sequester atmospheric CO2 and to slow greenhouse effects. 相似文献
10.
Guohan Si Jiafu Yuan Xiangyu Xu Shujun Zhao Chenglin Peng Jinshui Wu Zhongquan Zhou 《农业工程》2018,38(1):29-35
A 10-year (2005–2015) field experiment was conducted to study the effects of an integrated rice-crayfish (CR) model on soil organic carbon, enzyme activity, and microbial diversity at soil depths of 0–10?cm, 10–20?cm, 20–30?cm, and 30–40?cm. Compared with a mid-season rice monoculture (MR) model, total organic carbon (TOC), particle organic carbon (POC), and water-soluble organic carbon (WSOC) were significantly higher in the 0–40?cm soil layers, and the content of microbial biomass carbon (MBC) was significantly higher in the 30–40?cm soil layer in the CR model. The ratios of WSOC to TOC and POC to TOC in the 0–40?cm soil layers in CR model exhibited an increasing trend, whereas the ratio of MBC to TOC in the 0–30?cm layers exhibited a decreasing trend with respect to that of the MR model, however, these differences were not statistically significant. The activity of soil invertase, acid phosphatase, and urease in the 0–40?cm soil layers in the CR model exhibited a decreasing trend with respect to that of the MR model, and the activity of urease in the 10–20?cm soil layer in the CR model was significantly lower than that in the MR model. Compared with the MR model, the CR model significantly enhanced the carbon utilization capacity of soil microbes, and the richness index, dominance index, and diversity index of the soil microbial community in the 20–30?cm layer, whereas it significantly decreased the number of dominant soil microorganism species and the carbon utilization capacity of soil microbes in the 0–10?cm layer. Soil organic carbon and its active components had a significant direct correlation with the microbial diversity index, and significantly positive correlations with invertase, urease, and acid phosphatase. With respect to the soil microbial diversity index, soil organic carbon and its active components had a closer relationship with soil enzyme activity. 相似文献
11.
12.
Losses of soil organic carbon under wind erosion in China 总被引:7,自引:0,他引:7
Hao Yan Shaoqiang Wang† Changyao Wang‡ Guoping Zhang Nilanchal Patel§ 《Global Change Biology》2005,11(5):828-840
Soil organic carbon (SOC) storage generally represents the long‐term net balance of photosynthesis and total respiration in terrestrial ecosystems. However, soil erosion can affect SOC content by direct removal of soil and reduction of the surface soil depth; it also affects plant growth and soil biological activity, soil air CO2 concentration, water regimes, soil temperature, soil respiration, carbon flux to the atmosphere, and carbon deposition in soil. In arid and semi‐arid region of northern China, wind erosion caused soil degradation and desert expansion. This paper estimated the SOC loss of the surface horizon at eroded regions based on soil property and wind erosion intensity data. The SOC loss in China because of wind erosion was about 75 Tg C yr?1 in 1990s. The spatial pattern of SOC loss indicates that SOC loss of the surface horizon increases significantly with the increase of soil wind erosion intensity. The comparison of SOC loss and annual net primary productivity (NPP) of terrestrial ecosystem was discussed in wind erosion regions of China. We found that NPP is also low in the eroded regions and heavy SOC loss often occurs in regions where NPP is very small. However, there is potential to improve our study to resolve uncertainty on the soil organic matter oxidation and soil deposition processes in eroded and deposited sites. 相似文献
13.
Agricultural soils in China have been estimated to have a large potential for carbon sequestration, and modelling and literature survey studies have yielded contrasting results of soil organic carbon (SOC) stock change, ranging from ?2.0 to +0.6% yr?1. To assess the validity of earlier estimates, we collected 1394 cropland soil profiles from all over the country and measured SOC contents in 2007–2008, and compared them with those of a previous national soil survey conducted in 1979–1982. The results showed that average SOC content in the 0–20 cm soil increased from 11.95 g kg?1 in 1979–1982 to 12.67 g kg?1 in 2007–2008, averaging 0.22% yr?1. The standard deviation of SOC contents decreased. Four major soil types had statistically significant changes in their mean SOC contents for 0–20 cm. These were: +7.5% for Anthrosols (paddy soils), +18.3% for Eutric Cambisols, +30.5% for Fluvisols, and ?22.3% for Chernozems. The change of SOC contents showed a negative relationship with the average SOC contents of the two sampling campaigns only when soils in the region south of Yangtse River were excluded. SOC contents of the two major soil types in the region south of Yangtse River, i.e., Haplic Alisols/Haplic Acrisols and Anthrosols (paddy soils), changed little or significantly increased, though with a high SOC content. We suggest that the increase of SOC content is mainly attributed to the large increase in crop yields since the 1980s, and the short history as cropland establishment is mainly responsible for the decrease in SOC content for some soil types and regions showing a SOC decline. 相似文献
14.
Dynamics of soil organic carbon and soil fertility affected
by alfalfa productivity in a semiarid agro-ecosystem 总被引:1,自引:0,他引:1
We explore the dynamics of soil organic carbon of various forms and its relation with soil fertility in seeded alfalfa grassland
established using a field micro-catchment technique to harvest water on the semiarid Loess Plateau in China. Five regimes
were set up: (1) conventional flat cultivation without mulch (CK), (2) ridges and furrows were set up alternately on flat
land, with 15 cm between each so that the distance between successive ridges (or successive furrows) was 30 cm, and the ridges
were mulched with plastic film (M30), (3) similar to M30, but with twice the distance between furrows and ridges (M60), (4)
similar to M30, but the ridges were not mulched (B30), (5) similar to M60, but the ridges were not mulched (B60). The increase
in alfalfa forage yield in the mulch regimes promotes soil organic carbon (SOC) content, the light fraction of organic carbon
(LFOC), the heavy fraction of organic carbon (HFOC) and microbial biomass carbon (MBC). MBC was significantly higher in M30
and M60 than in the other regimes. Significant positive correlation is found between MBC and LFOC (R=0.89; P<0.0001), and MBC and HFOC (R=0.82; P=0.00016). At the end of our three-year experiment, the C/N ratio of 10.09 in M60 was significantly (P<0.005) higher than the other regimes. Since a lower C/N ratio accelerates SOC decomposition in this region, the higher C/N
ratio in M60 could limit mineralization of soil nitrogen, conserving soil nitrogen and SOC. The lower ratio of nitrate and
nitrite nitrogen to total nitrogen, of 10.74, in M60 at the end of this experiment than in the other regimes and before sowing
supports this point. The correlations of SOC with available P and with the ratio of available P to total P are positive in
the dry year of 2001, but negative in the wet year of 2002. This can be explained on the basis that a high forage yield of
alfalfa requires more soil available P in the wet years than in the dry years. 相似文献
15.
红壤丘陵区土地利用方式变更后土壤有机碳动态变化的模拟 总被引:37,自引:6,他引:37
采用双组分模型模拟土地利用方式变更后土壤有机碳储量的变化,并用一些调查和监测数据进行了初步验证.此双组分模型将土壤有机碳分为新形成有机碳和原有有机碳两个组分.每个组分有机碳的形成转化用一级动力学方程描述.本文用此模型对亚热带土壤开垦利用为马尾松林地、湿地松林地、柑桔园和牧草地4种方式10年来土壤有机碳储量的变化过程进行了模拟,初步结果表明,模拟值与实测值拟合较好.可见,此方法适于用来模拟不同土壤类型下土地利用系统变更初期的土壤有机碳储量动态变化过程. 相似文献
16.
17.
Matthias C. Rillig Bruce A. Caldwell Han A. B. Wösten Philip Sollins 《Biogeochemistry》2007,85(1):25-44
Mechanisms of soil organic carbon (C) and nitrogen (N) stabilization are of great interest, due to the potential for increased
CO2 release from soil organic matter (SOM) to the atmosphere as a result of global warming, and because of the critical role
of soil organic N in controlling plant productivity. Soil proteins are recognized increasingly as playing major roles in stabilization
and destabilization of soil organic C and N. Two categories of proteins are proposed: detrital proteins that are released
upon cell death and functional proteins that are actively released into the soil to fulfill specific functions. The latter
include microbial surface-active proteins (e.g., hydrophobins, chaplins, SC15, glomalin), many of which have structures that
promote their persistence in the soil, and extracellular enzymes, responsible for many decomposition and nutrient cycling
transformations. Here we review information on the nature of soil proteins, particularly those of microbial origin, and on
the factors that control protein persistence and turnover in the soil. We discuss first the intrinsic properties of the protein
molecule that affect its stability, next possible extrinsic stabilizing influences that arise as the proteins interact with
other soil constituents, and lastly controls on accessibility of proteins at coarser spatial scales involving microbial cells,
clay particles, and soil aggregates. We conclude that research at the interface between soil science and microbial physiology
will yield rapid advances in our understanding of soil proteins. We suggest as research priorities determining the relative
abundance and turnover time (age) of microbial versus plant proteins and of functional microbial proteins, including surface-active
compounds. 相似文献
18.
Spatial and temporal distribution of carbon isotopes in soil organic matter at the Dinghushan Biosphere Reserve, South China 总被引:6,自引:0,他引:6
Qingqiang Chen Chengde Shen Yanmin Sun Shaolin Peng Weixi Yi Zhi’an Li Mantao Jiang 《Plant and Soil》2005,273(1-2):115-128
The spatial and temporal distribution of carbon isotopes (13C, 14C) in soil organic matter (SOM) were studied based on SOM content, SOM 14C and SOM 13C of thinly layered soil samples for six soil profiles with different elevations at the Dinghushan Biosphere Reserve (DHSBR), South China. The results indicate that variations of SOM 13C with depth of the soil profiles at different elevations are controlled by soil development, and correlate well with SOM composition in terms of SOM compartments with different turnover rates, and SOM turnover processes at the DHSBR. The effect of carbon isotope fractionation was obvious during transformation of organic matter (OM) from plant debris to SOM in topsoil and SOM turnover processes after the topsoil was buried, which resulted in great increments of OM 13C, respectively. Increments of SOM 13C of topsoil from 13C of plant debris were controlled by SOM turnover rates. Both topsoil SOM 13C and plant debris 13C increase with elevation, indicating regular changes in vegetation species and composition with elevation, which is consistent with the vertical distribution of vegetation at the DHSBR. The six soil profiles at different elevations had similar characteristics in variations of SOM 13C with depth, alterations of SOM contents with depth and that SOM 14C apparent ages increasing with depth, respectively. These are presumably attributed to the regular distribution of different SOM compartments with depth because of their regular turnover during soil development. Depth with the maximal SOM 13C value is different in mechanism and magnitude with penetrating depth of 14C produced by nuclear explosion into atmosphere from 1952 to 1962, and both indicate controls of topography and vegetation on the distribution of SOM carbon isotopes with depth. Elevation exerts indirect controls on the spatial and temporal distribution of SOM carbon isotopes of the studied mountainous soil profiles at the DHSBR. This study shows that mountainous soil profiles at different elevations and with distinctive aboveground vegetation are presumably ideal sites for studies on soil carbon dynamics in different climatic-vegetation zones. 相似文献
19.
Seasonal patterns of viruses, bacteria and dissolved organic carbon in a riverine wetland 总被引:3,自引:0,他引:3
SUMMARY 1. Viral and bacterial abundances were studied in relation to environmental attributes over an annual period, for both planktonic and attached (sediment, aquatic macrophyte and submerged wood) habitats, in a riverine wetland.
2. Annual mean abundance of planktonic viruses ranged from 2.3 × 105 −3.8 × 105 particles mL−1 and varied according to sampling site. Significant seasonal patterns in viral abundance were evident and appeared to be linked to variations in bacterial abundance, dissolved organic carbon and inorganic nutrients.
3. Annual mean abundance of viruses associated with surfaces ranged from 1.3 × 106 particles cm−2 on aquatic macrophytes to 1.1 × 107 particles cm−2 on wood and also showed seasonal patterns. The difference in viral dynamics among the different sites emphasizes the importance of considering habitat diversity within wetlands when examining microbial communities. 相似文献
2. Annual mean abundance of planktonic viruses ranged from 2.3 × 10
3. Annual mean abundance of viruses associated with surfaces ranged from 1.3 × 10
20.
J. MEERSMANS B. VAN WESEMAEL F. DE RIDDER† M. FALLAS DOTTI‡ S. DE BAETS§ M. VAN MOLLE‡ 《Global Change Biology》2009,15(11):2739-2750
In most studies concerning the carbon (C) exchange between soil and atmosphere only the topsoil (0–0.3 m) is taken into account. However, it has been shown that important amounts of stable soil organic carbon (SOC) are also stored at greater depth. Here, we developed a quantitative model to estimate the evolution of the distribution of SOC with depth between 1960 (database 'Aardewerk') and 2006 in northern Belgium. This temporal analysis was conducted under different land use, texture and drainage conditions. The results indicate that intensified land management practices seriously affect the SOC status of the soil. The increase in plough depth and a change in crop rotation result in a significant decrease of C near the surface for dry silt loam cropland soils, (i.e. 1.02 ± 0.23 kg C m−2 in the top 0.3 m between 1960 and 2006). In wet to extremely wet grasslands, topsoil SOC decreased significantly, indicating a negative influence of intensive soil drainage on SOC stock. This resulted in a decline of SOC between 1960 and 2006 in the top 1 m, ranging from 3.99 ± 2.57 kg C m−2 in extremely wet silt loam soils to 2.04 ± 2.08 kg C m−2 in wet sandy soils. A slight increase of SOC stock is observed under dry to moderately wet grasslands at greater depths corresponding to increased livestock densities in the region. The increase of SOC in the top 1 m under grassland ranges from 0.65 ± 1.39 kg C m−2 in well drained silt loam soils to 2.59 ± 6.49 kg C m−2 in moderately drained silt loam soils over entire period. 相似文献